地球科学进展 ›› 2006, Vol. 21 ›› Issue (10): 1046 -1057. doi: 10.11867/j.issn.1001-8166.2006.10.1046

综述与评述 上一篇    下一篇

海气CO 2通量与涡动相关法应用研究进展
鲁中明,戴民汉   
  1. 厦门大学近海海洋环境科学国家重点实验室,厦门大学环境科学研究中心,福建 厦门 361005
  • 收稿日期:2006-06-20 修回日期:2006-09-14 出版日期:2006-10-15
  • 通讯作者: 戴民汉(1965-),男,浙江杭州人,教授,博士生导师,主要从事海洋生物地球化学研究. E-mail:mdai@xmu.edu.cn
  • 基金资助:

    国家自然科学基金重大项目“上层海洋与低层大气生物地球化学与物理过程耦合研究”(编号:40490260)资助.

Advances in Air-Sea CO 2 Flux Study and the Application of Eddy Covariance Technique

Lu Zhongming,Dai Minhan   

  1. State Key Laboratory of Marine Environmental Science, Environmental Science Research Center, Xiamen University, Xiamen 361005,China
  • Received:2006-06-20 Revised:2006-09-14 Online:2006-10-15 Published:2006-10-15

海气CO2交换速率及通量的测定、估算是碳循环研究的重要内容。测定、估算海气CO2交换速率及通量有多种方法,但都有其局限性,准确定量海气碳通量的大小仍是碳循环研究的热点问题。当前应用最广泛的海气界面分压差法需要通过间接手段测定海气交换速率,交换速率和风速的关系基于经验公式,不确定性较大;而涡动相关法(eddy covariance / eddy correlation)是一种直接测量方法,理论上不需要任何经验参数,在近年来取得较大进展。综述了近年来国内外CO2海气交换速率及通量的测定、估算方法的研究进展,并对各种方法的原理、应用、优缺点进行了分析,着重介绍了涡动相关法测量CO2通量的原理、国内外研究现状、相对传统方法的优缺点以及发展前景等,对未来海气CO2交换速率及通量研究发展趋势和研究方法作了展望。

Determination of air-sea CO2 transfer velocity and flux is a key to constrain the global carbon fluxes. A widely used method to estimate air-sea CO2 flux has been based on so-called “bulk” CO2 method. This method requires the determination of the difference between air and sea surface CO2 partial pressure and the gas transfer velocity. The latter is typically obtained through the empirical relationship between transfer velocity and wind speed. Such a simplification would potentially induce uncertainties in the flux estimation due to for instance, the lack of on site gas transfer velocity data. Eddy covariance method is a direct measurement method, which in theory does not require any empirical parameters. During the past decade, significant progress has been achieved in the application of eddy covariance method in measuring air-sea CO2 fluxes. This paper is attempting to provide an overview and a comparison between various techniques available for the measurement of air-sea CO2 transfer velocity and for the estimates of fluxes. Principle, merit and demerit of each method will be briefly introduced. Our special attention is given to the eddy covariance technique, one of the potentially promising micrometeorological method.

中图分类号: 

[1] Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J].Nature, 1999, 399(6 735): 429-436.

[2] NOAA/CMDL. Climate Monitoring and Diagnostics Laboratory Summary [R/OL]. http: //www.cmdl.noaa.gov/publications/annrpt26/ index.html,2002.

[3] Wang G C, Wen Y P, Kong Q X, et al. CO2 background concentration in the atmosphere over the Chinese mainland[J]. Chinese Science Bulletin,2002, 47(14):1 217-1 220.

[4] Dai Minhan, Zhai Weidong, Lu Zhongming, et al. Regional studies of carbon cycles in China:Progress and perspectives[J]. Advances in Earth Science,2004, 19(1): 120-130.[戴民汉, 翟惟东, 鲁中明, .中国区域碳循环研究进展与展望[J]. 地球科学进展, 2004, 19(1): 120-130.]

[5] NOAA/CMDL. Climate Monitoring and Diagnostics Laboratory Summary [R/OL]. http://www.cmdl.noaa.gov/publications/annrpt27/carboncycle2.pdf,2003.

[6] Chen Zhi, Li Shiming, Lü Naiping, et al. Results of air-sea flux observation during TOGA-COARE IOP[J]. Chinese Journal of Geophysics, 1997, 40(6): 753-762.[陈陟, 李诗明, 吕乃平, . TOGA-COARE IOP期间的海气通量观测结果[J]. 地球物理学报, 1997, 40(6): 753-762.]

[7] Global Carbon Project. Science Framework and Implementation [R/OL]. http://www.globalcarbonproject.org/about_gcp.htm,2003: 69.

[8] SOLAS. Surface Ocean-Lower Atmosphere Study[Z].http://www.solas-int.org/,2005.

[9] NACP. The North American Carbon Program Plan[Z].http://www.isse.ucar.edu/nacp,2006-08-28.

[10] Doney S, Hood M. A Global Ocean Carbon Observation System-A Background Report [R/OL]. http://unesdoc.unesco.org/images/0012/001270/127070e.pdf,2002.

[11] Bender M, Doney S, Feely R A, et al. A Large-Scale CO2 Observing Plan: In Situ Oceans and Atmosphere (LSCOP)[R]. Washinghon DC:NOAA OAR Special Report, NOAA Office of Global Programs,2002.

[12] McCartney M. Climate change-Is the ocean at the helm?[J]. Nature, 1997, 388(6 642): 521-522.

[13] Norby R. Carbon cycle— Inside the black box[J].Nature,1997, 388(6 642): 522-523.

[14] Xu Yongfu, Zhao Liang, Pu Yifen, et al. Uncertainties in the estimate of the air-sea exchange flux of carbon dioxide[J]. Earth Science Frontiers, 2004, 11(2): 565-571.[徐永福, 赵亮, 浦一芬,.二氧化碳海气交换通量估计的不确定性[J].地学前缘,2004,11(2):565-571.]

[15] Broecker W S. Fate of fossil fuel carbon dioxide and the global carbon budget[J]. Science,1979, 206: 409-418.

[16] Siegenthaler U, Oeschger H. Predicting future atmospheric carbon dioxide levels[J]. Science,1978, 199: 388-395.

[17] Houghton J T, Jenkins G J, Ephraums J J. Climate Change: The IPCC Scientific Assessment[M]. New York: Cambridge University Press, 1990.

[18] Houghton J T, Callander B A, Varney S K. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment[M]. New York: Cambridge University Press, 1992.

[19] Sundquist E T. The global carbon dioxide budget[J]. Science,1993, 259: 934-941.

[20] IPCC. Summary for Policymakers: Land Use, Land-Use Change, and Forestry. A Special Report of the Intergovernmental Panel on Climate Change[R]. 2000.

[21] Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis[M]. Cambridge, UK: Cambridge University Press, 2001.

[22] Xu Xiaofeng, Song Changchun. Advances of the research on missing sink in global carbon cycling[J]. Journal of the Graduate School of the Chinese Academy of Science, 2004, 21(2):145-152.[徐小锋, 宋长春.全球碳循环研究中碳失汇研究进展[J]. 中国科学院研究生院学报, 2004, 21(2): 145-152.]

[23] Sarmiento J L, Sundquist E T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide[J]. Nature,1992,356:589-593.

[24] Song Jinming. Carbon sources and sinks in oceans[J]. Marine Environmental Science, 2003, 22(2): 75-80.[宋金明.海洋碳的源与汇[J]. 海洋环境科学, 2003, 22(2): 75-80.]

[25] Wallace D W R. Introduction to special section: Ocean measurements and models of carbon sources and sinks[J]. Global Biogeochemical Cycles,2001,15(1):3-10.

[26] Matthews B J H. The Rate of Air-Sea CO2 Exchange: Chemical Enhancement and Catalysis by Marine Microalgae Type[D]. Norwich: University of East Anglia, 1999.

[27] Broecker W S, Peng T H. Greenhouse Puzzles(2nd)[M]. Eldigio Press, 1998.

[28] Watson A J, Orr J C. Cavbon dioxide fluxes in the global pcean[C]Field M, eds. Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change. Berlin: Springer,2003:123-141.

[29] Keeling R, Piper S C, Heinmann M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration[J]. Nature,1996,381:218-221.

[30] Keeling R F. Measuring correlations in atmospheric O2 and CO2 mole fractions: A preliminary study in urban air[J]. Journal of Atmospheric Chemistry,1988,7:153-176.

[31] Keeling R F, Schertz S R. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon-cycle[J]. Nature,1992, 358: 723-727.

[32] Sowers T M, Bender D, Raynaud Y S, et al. The delta 18O of atmospheric O2 from air inclusions in the Vostok ice core: Timing of CO2 and ice volume changes during the penultimate deglaciation[J]. Paleoceanography, 1991, 6: 679-696.

[33] McKinley G A, Follows M J, Marshall J, et al. Interannual variability of air-sea O2 fluxes and the determination of CO2 sinks using atmospheric O2/N2[J]. Geophysical Research Letters,2003, 30(3):1 101-1 104.

[34] Wanninkhof R. Kinetic fractionation of the carbon isotopes 13C and 12C during transfer of CO2 from air to seawater[J]. Tellus Series B,1985, 37: 128-135.

[35] Siegenthaler U, Oeschger H. Atmospheric carbon dioxide and the ocean[J].Nature,1993, 365: 119-125.

[36] Orr J C. Accord between ocean models predicting uptake of anthropogenic CO2[J]. Water, Air and Soil Pollution,1993, 70(4): 465-481.

[37] Takahashi T, Sutherland S C, Sweeney C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J]. Deep-Sea Research Part Ii-Topical Studies in Oceanography,2002, 49(9/10):1 601-1 622.

[38] Zhai Weidong. Air-sea Fluxes of Carbon Dioxide and Upper Ocean Biogeochemical Processes in the Northern South China Sea and the Pearl River Estuary Type[D]. Xiamen: Xiamen University, 2003.[翟惟东.南海北部与珠江河口水域CO2通量及其调控因子[D].厦门: 厦门大学, 2003.]

[39] Frost T, Upstill-Goddard R C. Air-sea gas exchange into the millennium: Progress and uncertainties[J]. Oceanography and Marine Biology,1999, 37: 1-45.

[40] Broecker W S, Peng T H. Gas exchange rates between air and sea[J].Tellus Series B,1974, 26: 21-35.

[41] Elsinger R J, Moore W S. Gas exchange in the Pee Dee River based on 222Rn evasion[J]. Geophysical Research Letters, 1983, 10(6):443-446.

[42] Liss P S, Merlivat L. Air-sea gas exchange rates: Introduction and synthesis[C]The Role of Air-Sea Exchange in Geochemical Cycling. Dordrecht: Reidel Publishing Company, 1986.

[43] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2 budget[J]. Science,1990, 247:1 431-1 438.

[44] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research, 1992, 97(C5):7 373-7 382.

[45] Wang Gengchen. A view on measurement methods for greenhouse gases emission from terrestrial ecosystem[J]. Climatic and Environmental Research, 1997, 2(3): 251-263.[王庚辰.陆地生态系统温室气体排放(吸收)测量方法简评[J]. 气候与环境研究, 1997, 2(3): 251-263.]

[46] Li Guitong, Li Baoguo, Chen Deli. Method for measurement of ammonia volatilization from large area field by bowen ratio system[J]. Journal of China Agricultural University, 2001, 6(5): 56-62.[李贵桐, 李保国, 陈德立.利用Bowen比仪测定大面积农田土壤氨挥发的方法研究[J]. 中国农业大学学报, 2001, 6(5): 56-62.]

[47] Liu Shirong, Guo Quanshui, Wang Bing. Likely impacts of rising atmospheric CO2 concentration on plants and ecosystems I—CO2 experimental techniques and responses of cells, leaves and individual plants to CO2 enrichment[J]. Acta Geographica Sinica, 1996, 51: 129-140.[刘世荣, 郭泉水,王兵.大气CO2浓度增加对生物组织结构与功能的可能影响——模拟CO2实验技术以及细胞、叶片和个体生长对CO2的响应[J]. 地理学报, 1996, 51:129-140.]

[48] Huang Miaofen. Advance of research on surface flux[J]. Arid Land Geography, 2003, 26(2): 159-165.[黄妙芬.地表通量研究进展[J]. 干旱区地理, 2003, 26(2): 159-165.]

[49] McGillis W R, Edson J B, Hare J E, et al. Direct covariance air-sea CO2 fluxes[J]. Journal of Geophysical Research-Oceans,2001,106(C8): 16 729-16 745.

[50] Swinbank W C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere[J]. Journal of Meteorology,1951, 8: 135-145.

[51] Zhu Zhilin, Sun Xiaomin, Zhang Renhua, et al. The estimate of energy and mass exchanges in inner mongoli emi-arid grassland using micrometeorological methods[J]. Climatic and Environmental Research, 2002, 7(3): 351-358. [朱治林, 孙晓敏, 张仁华,. 内蒙古半干旱草原能量物质交换的微气象方法估算[J]. 气候与环境研究, 2002, 7(3): 351-358.]

[52] Dyer A J, Pruitt W O. Eddy-flux measurements over a small, irrigated area[J]. Journal of Applied Meteorology, 1962, 1(4): 471-473.

[53] Anderson D E, Verma S B, Rosenberg N J. Eddy correlation measurements of CO2, latent heat, and sensible heat fluxes over a crop surface[J]. Boundary Layer Meteorology,1984, 29: 263-272.

[54] Jones E P, Smith S D. A first measurement of sea air CO2 flux by eddy correlation[J]. Journal of Geophysical Research,1977, 82: 5 900-5 992.

[55] Verma S B. Micrometeorological methods for measuring surface fluxes of mass and energy[J]. Remote Sensing Review,1990, 5(1): 99-115.

[56] Kaimal J C, Finnigan J J. Atmospheric Boundary Layer Flows[M].New York: Oxford University Press,1994.

[57] Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology,1996,78: 83-105.

[58] Anderson D E, Farrar C D. Eddy covariance measurement of CO2 flux to the atmosphere from an area of high volcanogenic emissions, Mammoth Mountain, California[J]. Chemical Geology, 2001, 177(1/2): 31-42.

[59] Moncrieff J B, Massheder J M, DeBruin H, et al. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide[J]. Journal of Hydrology,1997,189(1/4):589-611.

[60] Shen Yan, Liu Yunfen, Wang Yan. Advances in applying the eddy-covariance technique to calculate heat, moisture and CO2 flux[J]. Journal of Nanjing Institute of Meteorology, 2005, 28(4): 559-566.[沈艳, 刘允芬, 王堰.应用涡动相关法计算水热、CO2通量的国内外进展概况[J]. 南京气象学院学报, 2005, 28(4): 559-566.]

[61] Song Xia, Yu Guirui, Liu Yunfen, et al. Science in China Ser[J]. Science in China (Serires D), 2004, 34(suppl.): 67-76.[宋霞, 于贵瑞, 刘允芬,.开路与闭路涡度相关系统通量观测比较研究[J]. 中国科学:D, 2004, 34(增刊): 67-76.]

[62] Wang Ying, Bian Lingen, Chen Zhiguang. Correction of errors and uncertainty in the measurements of CO2 turbulent flux[J]. Quarterly Journal of Applied Meteorology, 2004, 15(2): 234-244.[汪瑛, 卞林根, 谌志刚.湍流通量误差的修正和不确定性研究进展[J]. 应用气象学报, 2004, 15(2): 234-244.]

[63] Edson J B, Hinton A A, Prada K E, et al. Direct covariance flux estimates from mobile platforms at sea[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(2):547-562.

[64] Blanc T V. An error analysis of profile, flux, stability, and roughness length measurements made in the atmospheric surface layer[J]. Boundary-Layer Meteorology,1983,26: 234-267.

[65] Blanc T V. A practical approach to flux measurements of long duration in the marine atmospheric surface layer[J]. Journal of Climate Applied Meteorlogy,1983,22:1 093-1 110.

[66] Wesley M L, Cook D R, Hart R L, et al. Air-sea exchange of CO2 and evidence for enhanced upward lluxes[J]. Journal of Geophysical Research,1982, 87(C11): 8 827-8 832.

[67] Smith S D, Jones E P. Evidence for wind-pumping of air-sea gas-exchange based on direct measurements of CO2 fluxes[J]. Journal of Geophysical Research-Oceans,1985, 90(C1): 869-875.

[68] Broecker W S, Ledwell J R, Takahashi T, et al. Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict[J]. Journal of Geophysical Research,1986,91(C9):10 517-10 527.

[69] Oost W A, Fairall C W, Edson J B, et al. Flow distortion calculations and their application in HEXMAX[J]. Journal of Atmospheric and Oceanic Technology,1994,11:366-386.

[70] Oost W A. The ASGASEX,93 expeliment[C]Jahne B, Monahan B J, eds. Air Water Gas Transfer. Monahan, AEON Verlag and studio, Hanau, 1995.

[71] Nightingale P D, Malin G, Law C S, et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeochemical Cycles,2000,14(1): 373-387.

[72] Jacobs C, Kjeld J F, Nightingale P, et al. Possible errors in CO2 air-sea transfer velocity from deliberate tracer releases and eddy covariance measurements due to near-surface concentration gradients[J]. Journal of Geophysical Research-Oceans,2002,107(C9):1 101-1 126.

[73] Anderson D E, Striegl R G, Stannard D I, et al. Estimating lake-atmosphere CO2 exchange[J]. Limnology and Oceanography,1999, 44(4): 988-1 001.

[74] Crawford T L, Mcmillen R T, Meyers T P, Hicks B B. Spatial and temporal variability of heat, water-vapor, carbon-dioxide, and momentum air-sea exchange in a coastal environment[J]. Journal of Geophysical Research-Atmospheres,1993,98(D7):12 869-12 880.

[75] Kunz G J de, Leeuw G, Larsen S E, et al. Over-water eddy correlation measurements of fluxes of momentum, heat, water vapor and CO2[C]Jahne B, Monahan E C, eds. Air Water Gas Transfer. AEON Verlag and Studio, Hanau,1995.

[76] Donolan M A, Drennan W M. Direct field measarements of the flux of carbon dioxide[C]Jahne B, Monahan E C, eds. Air Water Gas Transfer.AEON Verlag and Studio, Hanau, 1995.

[77] McGillis W R, Edson J B, Ware J D, et al. Carbon dioxide flux techniques performed during GasEx-98[J]. Marine Chemistry, 2001, 75(4):267-280.

[78] Mitsuta Y, Fujitani T. Direct measurement of turbulent fluxes on a cruising ship[J]. Boundary-Layer Meteorology, 1974,6:203-217.

[79] Fujitani T. Method of turbulent flux measurements on a ship by using a stable platform system[J]. Meteorology and Geophysics,1985, 36: 157-170.

[80] Tsukamoto O, Ohtaki E, Ishida H, et al. On-board direct measurements of turbulent fluxes over the open sea[J]. Journal of the Meteorological Society of Japan,1990, 68: 203-211.

[81] Tsukamoto O, Ishida H. Turbulent flux measurements and energy budget analysis over the equatorial Pacific during TOGA-COARE IOP[J]. Journal of the Meteorological Society of Japan,1995, 73: 557-568.

[82] Bradley E F, Coppin P A, Godfrey J S. Measurements of sensible and latent heat flux in the western tropical Pacific Ocean[J]. Journal of Geophysical Research,1991,96:3 375-3 389.

[83] Friehe C A, Shaw W J, Rogers D P, et al. Air-sea fluxes and surface layer turbulence around a sea surface temperature front[J]. Journal of Geophysical Research,1991,96(C5):8 593-8 609.

[84] Fairall C W, White A B, Edson J B, et al. Integrated shipboard measurements of the marine boundary layer[J]. Journal of Atmospheric and Oceanic Technology,1997,14(3): 338-359.

[85] Tsukamoto Osamu, Takehiko Kono S T.On-board direct CO2 flux measurement with eddy covariance method over open ocean[Z]. IUGG 2003,2003.

[86] Lu Aiqing, Zhao Yongping, Chen Yongli, et al. Ship speed and posture angle monitoring system[J]. Marine Sciences, 1994, (3): 16-19.[陆蔼庆, 赵永平, 陈永利,. 船舶运动速度及姿态角监测系统[J]. 海洋科学, 1994, (3): 16-19.]

[87] Hu Dunxin, Zhao Yongping, Lu Aiqing, et al. Study on the air-sea turbulent flux measurements on a ship[J]. Oceanologia et Limnologia Sinica,1996, 27(2): 163-168.[胡敦欣, 赵永平, 陆蔼庆,.船上海气之间湍流通量的观测研究[J]. 海洋与湖沼, 1996, 27(2): 163-168.]

[88] Yukio Y, Watanabe T. Comparative measurements of CO2 flux over a forest using closed-path and open-path CO2 analyzers[J]. Boundary -Layer Meteorol, 2001, 100(2): 191-208.

[89] Aubinet M, Grelle A, Ibrom A, et al. Estimates of the annual net carbon and water exchange of forests: The Euroflux methodology[J]. Advances in Ecological Research,2000, 30: 113-175.

[90] Goulden M L, Munger J W, Fan S M, et al. Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy[J]. Global Change Biology, 1996, 2: 159-168.

[91] Lee X H. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural and Forest Meteorology,1998, 91(1/2): 39-49.

[92] Pilegaard K, Hummelshoj P, Jensen N O, et al. Two years of continuous CO2 eddy-flux measurements over a Danish beech forest[J]. Agricultural and Forest Meteorology,2001,107(1): 29-41.

[93] Turnipseed A A, Blanken P D, Anderson D E, et al. Energy budget above a high-elevation subalpine forest in complex topography[J]. Agricultural and Forest Meteorology,2002,110(3):177-201.

[94] Malhi Y, Nobre A D, Grace J, et al. Carbon dioxide transfer over a Central Amazonian rain forest[J]. Journal of Geophysical Research,1998, 103: 31 593-31 612.

[95] Gash J H C, Dolman A J. Sonic anemometer (co)sine response and flux measurement I. The potential for (co)sine error to affect sonic anemometer-based flux measurements[J]. Agricultural and Forest Meteorology,2003, 119(3/4):195-207.

[96] Goulden M L, Daube B C, Fan S M, et al. Physiological responses of a black spruce forest to weather[J]. Journal of Geophysical Research,1997,102:28 987-28 996.

[97] Lavigne M B, Ryan M G, Anderson D E, et al. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites[J]. Journal of Geophysical Research,1997,102:28 977-28 985.

[98] Suyker A E, Verma S B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie[J]. Global Change Biology,2001,7(3):279-289.

[99] Scott R L, Edwards E A, Shuttleworth W J, et al. Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem[J]. Agricultural and Forest Meteorology,2004, 122(1/2):65-84.

[100] Webb E K, Pearman G I, Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of the Royal Meteorological Society,1980,106:85-100.

[101] Liu H P. An alternative approach for CO2 flux correction caused by heat and water vapour transfer[J]. Boundary-Layer Meteorology,2005,115(1):151-168.

[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[3] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[4] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[5] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[6] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[7] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[8] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[9] 宋朝清,刘伟,陆海波,袁文平. 基于通量测量的稻田甲烷排放特征及影响因素研究[J]. 地球科学进展, 2019, 34(11): 1141-1151.
[10] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[11] 李琦, 徐亮, 匡冬琴. 阿姆河右岸区块气藏酸气的成因与分布影响因素[J]. 地球科学进展, 2017, 32(11): 1183-1192.
[12] 曹沛雨, 张雷明, 李胜功, 张军辉. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4): 365-376.
[13] 韩钦臣, 康建成, 王国栋, 朱炯. 基于海洋分析资料的吕宋海峡水交换的月际变化特征[J]. 地球科学进展, 2015, 30(5): 609-619.
[14] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[15] 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7): 774-785.
阅读次数
全文


摘要