地球科学进展 ›› 2019, Vol. 34 ›› Issue (11): 1141 -1151. doi: 10.11867/j.issn.1001-8166.2019.11.1141

研究论文 上一篇    下一篇

基于通量测量的稻田甲烷排放特征及影响因素研究
宋朝清 1, 2( ),刘伟 3,陆海波 4, 5,袁文平 4, 5( )   
  1. 1. 中国科学院西北生态环境资源研究院,冰冻圈科学国家重点实验室,甘肃 兰州 730000
    2. 中国科学院大学,北京 100049
    3. 中国科学院植物研究所,植被与环境变化国家重点实验室,北京 100093
    4. 中山大学大气科学学院,广东省气候变化与自然灾害研究重点实验室,广东 珠海 519082
    5. 南方海洋科学与工程广东省实验室,广东 珠海 519082
  • 收稿日期:2019-09-09 修回日期:2019-10-29 出版日期:2019-11-10
  • 通讯作者: 袁文平 E-mail:songchaoqing@lzb.ac.cn;yuanwp3@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“气候和土地利用变化对陆地—河流碳通量的影响研究”(31870459)

Characteristics and Drivers of Methane Fluxes from a Rice Paddy Based on the Flux Measurement

Chaoqing Song 1, 2( ),Wei Liu 3,Haibo Lu 4, 5,Wenping Yuan 4, 5( )   

  1. 1. State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    4. Guangdong Province Key Laboratory for Change and Natural Disaster Studies, School of Atmospheric Sciences, Sun Yat-sen University, Guangdong Zhuhai 519082, China
    5. Southern Marine Science and Engineering Guangdong Laboratory, Guangdong Zhuhai 519082, China
  • Received:2019-09-09 Revised:2019-10-29 Online:2019-11-10 Published:2019-12-31
  • Contact: Wenping Yuan E-mail:songchaoqing@lzb.ac.cn;yuanwp3@mail.sysu.edu.cn
  • About author:Song Chaoqing (1995-), Yichang City, Hubei Province, Master student. Research areas include methane emission from rice field. E-mail: songchaoqing@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Research on the impact of climate and land use change on land-river of carbon flux”(31870459)

稻田是大气甲烷(CH4)的重要来源之一,会直接加剧全球气候变暖。基于涡度相关方法,通过对湖南省益阳市水稻田的CH4通量进行连续测量,探讨来自水稻田的CH4通量特征、动态及其影响因素。结果表明: 该地区水稻田的CH4通量具有显著的季节性变化特征,即在水稻营养生长阶段CH4通量最大,随后逐渐减少,在休耕阶段CH4通量最小。 该地区水稻田的CH4通量在水稻营养生长和生殖生长阶段具有明显的日变化,在14:00-16:00达到日通量峰值,但在休耕阶段,CH4通量没有显著的日变化。 空气温度是该地区水稻田CH4通量季节性变化最重要的控制因子,饱和水汽亏缺对CH4通量的季节性变化也具有一定影响。 该地区水稻田的最大日平均CH4通量为0.69 μmol/(m2·s),出现在水稻营养生长阶段后期,整个观测时段的CH4排放总量约为28 g C/m2

Rice paddies are an important anthropogenic source of methane (CH4) to the atmosphere, which aggravate the global warming greatly. CH4 fluxes from a rice paddy in Central China were continuously measured with the eddy covariance method in 2018. The characteristics, dynamics and drivers of the observed CH4 fluxes from this paddy field were subsequently analyzed. The results indicated that a distinct seasonal variation of daily CH4 fluxes was found over the whole observed period. Daily CH4 fluxes were the highest in the vegetative period, then decreased gradually, and became the lowest in the fallow period; observed CH4 fluxes had a clear single-peak diurnal pattern during the vegetative and reproductive periods, and reached daily peaks at about 14:00-16:00. However, no obvious diurnal variation in CH4 fluxes was observed during the fallow period; air temperature was the most important drivers that controlled the seasonal variation of CH4 fluxes from this paddy field, and Vapor Pressure Deficit (VPD) was also found related to the CH4 emissions; the largest daily CH4 flux was 0.69 μmol/(m2·s), occurred in the late of vegetative period, and the total amount of CH4 emissions over the whole observed period was about 28 g C/m2.

中图分类号: 

图1 研究区概况
(a)研究区地理位置;(b)研究区风速和风向(0为正北方向)
Fig.1 Overview of the study area
(a)Location of the study area; (b)Distribution of winds speeds and directions over the whole observed period (0 is the north direction)
图2 环境条件和碳通量的日变化
(a)空气温度;(b)光量子通量密度;(c)饱和水汽亏缺;(d)CO 2通量;(e)总生态系统生产;黑色误差线代表相应变量的标准差
Fig.2 Diurnal variations of environmental conditions and carbon fluxes
(a) Air temperature ( T air); (b) Photosynthetic Photon Flux Density (PPFD); (c) Vapor Pressure Deficit (VPD); (d) CO 2 fluxes; (e) Gross Ecosystem Production (GEP). The black error bars represent the standard deviations of corresponding variables
图3 不同阶段CH4通量的日变化
黑色误差线代表CH 4通量的标准差
Fig.3 Diurnal variation of CH4 fluxes during different periods
The black error bars represent the standard deviations of CH 4 fluxes
图4 环境条件和碳通量的季节性变化
(a)空气温度和降水;(b)光量子通量密度;(c)饱和水汽亏缺;(d)CO 2通量;(e)总生态系统生产
Fig.4 Seasonal variations of environmental conditions and carbon fluxes
(a) Air temperature ( T air) and rainfall; (b) Photosynthetic Photon Flux Density (PPFD); (c) Vapor Pressure Deficit (VPD); (d) CO 2 fluxes; (e) Gross Ecosystem Production (GEP)
表1 不同阶段空气温度、 PPFDVPDCO2通量、 GEPCH4通量的统计情况
Table 1 The statistics of air temperature ( T air), PPFD, VPD, CO 2 fluxes, GEP, and CH 4 fluxes during different periods
图5 CH4通量的季节性变化
Fig.5 Seasonal variation of CH4 fluxes
图6 CH4通量与(a)空气温度、(b)光量子通量密度、(c)饱和水汽亏缺和(d)总生态系统生产之间的关系
Fig.6 The relationships between daily CH4 fluxes and (a) air temperature (Tair), (b) Photosynthetic Photon Flux Density (PPFD), (c) Vapor Pressure Deficit (VPD), and (d) Gross Ecosystem Production (GEP) during the whole observed period
图7 非线性回归模型CH4通量模拟结果
(a) CH 4通量模拟值与观测值的比较(黑色交叉点);(b)整个观测时段的CH 4通量模拟值
Fig.7 The modeled CH4 fluxes based on the nonlinear regression model
(a) Comparison between the modeled and observed CH 4 fluxes (black cross dots); (b) The modeled CH 4 fluxes during the whole observed period
表2 基于涡度相关测量的水稻田 CH4排放收支概况
Table 2 Review of CH 4 emission budget from rice paddies measured with eddy covariance method
1 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013.
2 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2007.
3 Neue H U. Methane emission from rice fields [J]. Bioscience, 1993, 43(7): 466-474.
4 Wang J, Zhang X, Xiong Z, et al. Methane emissions from a rice agroecosystem in South China: Effects of water regime, straw incorporation and nitrogen fertilizer [J]. Nutrient Cycling in Agroecosystems, 2012, 93(1): 103-112.
5 Weller S, Kraus D, Ayag K, et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems[J]. Nutrient Cycling in Agroecosystems, 2015, 101(1): 37-53.
6 Alberto M C R, Wassmann R, Buresh R J, et al. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer[J]. Field Crops Research, 2014, 160: 12-21.
7 Knox S H, Matthes J H, Sturtevant C, et al. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy [J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(3): 978-1 001.
8 Meijide A, Manca G, Goded I, et al. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy [J]. Biogeosciences, 2011, 8(12): 3 809-3 821.
9 Iwata H, Mano M, Ono K, et al. Exploring sub-daily to seasonal variations in methane exchange in a single-crop rice paddy in central Japan [J]. Atmospheric Environment, 2018, 179: 156-165.
10 Yuan J, Yuan Y, Zhu Y, et al. Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil [J]. Science of the Total Environment, 2018, 627: 770-781.
11 Dai S, Ju W, Zhang Y, et al. Variations and drivers of methane fluxes from a rice-wheat rotation agroecosystem in eastern China at seasonal and diurnal scales [J]. Science of the Total Environment, 2019, 690(10): 973-990.
12 Ge H, Zhang H, Zhang H, et al. The characteristics of methane flux from an irrigated rice farm in East China measured using the eddy covariance method [J]. Agricultural and Forest Meteorology, 2018, 249: 228-238.
13 Li H, Guo H, Helbig M, et al. Does direct-seeded rice decrease ecosystem-scale methane emissions?—A case study from a rice paddy in southeast China [J]. Agricultural and Forest Meteorology, 2019, 272/273: 118-127.
14 Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future [J]. Global Change Biology, 2003, 9(4): 479-492.
15 Reichstein M, Falge E, Baldocchi D, et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm [J]. Global Change Biology, 2005, 11(9): 1 424-1 439.
16 Lloyd J, Taylor J. On the temperature dependence of soil respiration [J]. Functional Ecology, 1994, 8(3): 315-323.
17 Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange [J]. Agricultural and Forest Meteorology, 2001, 107(1): 43-69.
18 Song W, Wang H, Wang G, et al. Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season [J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(8): 1 475-1 490.
19 Long K D, Flanagan L B, Cai T. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance [J]. Global Change Biology, 2010, 16(9): 2 420-2 435.
20 Shen Renxing, Shangguan Xingjian, Wang Mingxing, et al. Methane emission from rice fields in Guangzhou region and the spatial variation of methane emission in China [J]. Advances in Earth Science, 1995, 10(4): 387-392.
沈壬兴,上官行健,王明星,等.广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化[J].地球科学进展,1995,10(4):387-392.
21 Jia Q, Yu W, Zhou L, et al. Methane emissions from typical paddy fields in Liaohe Plain and Sanjiang Plain, Northeast China[J]. Environmental Research Communications, 2019, 1(1):011006.
22 Schütz H, Seiler W, Conrad R. Influence of soil temperature on methane emission from rice paddy fields [J]. Biogeochemistry, 1990, 11(2): 77-95.
23 Conrad R. Control of microbial methane production in wetland rice fields [J]. Nutrient Cycling in Agroecosystems, 2002, 64(1/2): 59-69.
24 Huang Y, Sass R, Fisher F. Methane emission from Texas rice paddy soils. 2. Seasonal contribution of rice biomass production to CH4 emission [J]. Global Change Biology, 1997, 3(6): 491-500.
25 Sass R L, Andrews J A, Ding A J, et al. Spatial and temporal variability in methane emissions from rice paddies: Implications for assessing regional methane budgets [J]. Nutrient Cycling in Agroecosystems, 2002, 64(1/2): 3-7.
26 Shangguan Xingjian, Wang Mingxing, Chen Dezhang, et al. Methane production in rice paddy fields [J]. Advances in Earth Science, 1993, 8(5): 1-12.
上官行健,王明星,陈德章,等.稻田土壤中的CH4生成[J].地球科学进展,1993,8(5):1-12.
[1] 罗维均, 王世杰, 刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望 *[J]. 地球科学进展, 2014, 29(12): 1333-1340.
[2] 朱治林, 孙晓敏, 贾媛媛, 温学发, 张仁华, 袁国富, 唐新斋. 基于大孔径闪烁仪(LAS)测定农田显热通量的不确定性分析[J]. 地球科学进展, 2010, 25(11): 1199-1207.
[3] 张劲松,孟平,郑宁,黄辉,高峻. 大孔径闪烁仪法测算低丘山地人工混交林显热通量的可行性分析[J]. 地球科学进展, 2010, 25(11): 1283-1290.
[4] 顾峰雪,[曹明奎],于贵瑞,陶波,温学发,刘允芬,张雷明. 典型森林生态系统碳交换的机理模拟及其与观测的比较研究[J]. 地球科学进展, 2007, 22(3): 313-321.
[5] 温学发;于贵瑞;孙晓敏. 基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性[J]. 地球科学进展, 2004, 19(4): 658-663.
阅读次数
全文


摘要