地球科学进展 ›› 2019, Vol. 34 ›› Issue (11): 1131 -1140. doi: 10.11867/j.issn.1001-8166.2019.11.1131

综述与评述 上一篇    下一篇

多年冻土区天然气管道工程:技术挑战和应对方案
李欣泽 1, 2, 3( ),金会军 1, 4, 5( )   
  1. 1. 中国科学院西北生态环境资源研究院 冻土工程国家重点实验室,甘肃 兰州 730000
    2. 中国科学院大学资源环境学院,北京 100049
    3. 中石化石油工程设计有限公司,山东 东营 257026
    4. 哈尔滨工业大学 土木工程学院,黑龙江 哈尔滨 150090
    5. 哈尔滨工业大学 极地研究院 冻土与寒区工程国际研究中心,黑龙江 哈尔滨 150090
  • 收稿日期:2019-06-23 修回日期:2019-09-27 出版日期:2019-11-10
  • 通讯作者: 金会军 E-mail:slecclxz@sina.com;hjjin@lzb.ac.cn
  • 基金资助:
    中石化石油工程建设有限公司应用基础课题“阿拉斯加天然气管道建设关键技术可行性研究”资助

Technical Challenges and Engineering Solutions for Gas Pipelines in Permafrost Regions: A Review

Xinze Li 1, 2, 3( ),Huijun Jin 1, 4, 5( )   

  1. 1. State Key Laboratory of Frozen Soils Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. Colleage of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Sinopec Petroleum Engineering Co. , Shandong Dongying 257026,China
    4. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090,China
    5. International Research Center for Polar and Cold Regions Engineering (IRC-PaCRE), Polar Academy of Harbin Institute of Technology (PA-HIT), Harbin 150090, China
  • Received:2019-06-23 Revised:2019-09-27 Online:2019-11-10 Published:2019-12-31
  • Contact: Huijun Jin E-mail:slecclxz@sina.com;hjjin@lzb.ac.cn
  • About author:Li Xinze (1987-), male, Karamay City, Xinjiang Uygur Autonomous Region, Ph.D student. Research areas include permafrost and cold zone engineering. E-mail: slecclxz@sina.com
  • Supported by:
    the Applied Science of Sinopec Petroleum Engineering Construction Co. LTD "Feasibility study on key technologies for Alaska natural gas pipeline construction"

多年冻土区油气管道工程在许多方面都有别于常温地区的油气管道工程,如偏僻的地理位置和敏感脆弱的环境,更重要是其特殊的气候、水文地质和工程地质条件以及冻融岩土灾害等条件。这使得管道设计、建设、运营、维抢和管道系统安全以及完整性管理等方面面临一系列的特殊难题。不同于已建成并运营至今的美国阿拉斯加(Alyeska)原油管道、加拿大罗曼井(Norman Wells)原油管道、中俄原油管道(漠河—大庆段)和格尔木—拉萨成品油管道,多年冻土区的天然气管道在输运介质、输送温度、环保要求等方面和输油管道有很大差异,将面临一系列新问题和新挑战。通过对多年冻土区天然气管道冷却输送工艺,管道—冻土水、热、力耦合计算,压气站失效后下游管道最低金属温度超限,基于应力设计局限、敷设方式单一、管道运营期监测系统可靠性等冻土区天然气管道特有的技术难题探讨,初步给出相应的解决方案构想,希望能够为冻土区天然气管道建设提供新的思路。

Oil and gas pipelines in permafrost regions differ greatly from those in temperate climate zones. People only know that these pipelines were constructed in remote areas with fragile environments. However, gas pipeline engineering, construction, operation and management will face a series of unique problems because of unforgiving environment, special hydrogeology, engineering geology, and freezing and thawing disasters. Being different from the Trans-Alaska Pipeline System, Roman Wells Oil Pipeline, China-Russia Crude Oil Pipeline from Mo’he to Daqing and Golmud-Lhasa Oil Products Pipeline, natural gas pipelines in permafrost regions face new problems and challenges in many areas including different transporting media, gas flow temperature control and environmental protection. This paper systematically reviewed issues such as chilled transporting processes, coupled hydrothermal-hydraulic-mechanical modeling of the pipe-soil system, temperature overrun in station outage scenarios, engineering constraints of stress-based design, single laying method and low reliability of monitoring system during operating stage. Initial framework solutions were proposed in the hope of identifying new approaches for gas pipeline in northern and upland permafrost regions.

中图分类号: 

图1 某极地天然气管道的沿线压力和温度曲线图(冬季工况)
红色曲线代表压力,蓝色曲线代表温度
Fig.1 Pesssure and temperature graph of one arctic gas pipeline(winter scenario)
Red line stands for pressure and blue line stands for temperature
图2 某极地天然气管道的沿线压力和温度曲线图(夏季工况)
红色曲线代表压力,蓝色曲线代表温度
Fig.2 Pesssure and temperature graph of one arctic gas pipeline(summer scenario)
Red line stands for pressure and blue line stands for temperature
图3 管道运行温度控制线
Fig.3 Pipeline operating temperature control line
图4 带冷却功能单机组压气站工艺流程图
Fig.4 Process flow diagram of single-unit compressor station with coolers
表1 部分国家燃气相关标准中对硫化氢含量要求
Table 1 H 2S content requirement in relavent standards of some countries
表2 技术方案对比表
Table 2 Comparison table of technical scheme
表3 涉及基于应变设计方法的管道规范或导则
Table 3 Code or guidance for strain-based design of pipeline
表4 涉及基于应变设计方法的管道工程
Table 4 Pipeline project application on strain-based design
表5 多年冻土区天然气管道敷设方案优缺点对比
Table 5 The advantages and disadvantages of laying methods of gas pipeline in permafrost
1 Khataniar Santanu,He Enjiang,Dou Dianwu.Transportation of GTL product in north slope of Alaska[J]. Foreign Oilfield Engineering,2004,20(8):24-28.
Khataniar Santanu,何恩江, 窦殿武. 阿拉斯加北坡GTL产品的输送[J]. 国外油田工程,2004,20(8):24-28.
2 Alyeska Pipeline Service Company. Project Description of the Trans Alaska Pipeline System: Summary[M]. Anchorage, Alaska, US: Alyeska Pipeline Service Company, 1971.
3 Brewer M C, Jin Huijun,Hu Wanzhi, et al.The changes of design of the Alyeska pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6):809-817.
4 Nixon J F, Burgess M. Norman wells pipeline settlement and uplift movements[J]. Canadian Geotechnical Journal, 1999, 36(1): 119-135.
5 Doblanko R M, Oswell J M, Hanna A J. Right-of-Way and pipeline monitoring in permafrost: The Norman wells pipeline experience[C]//2002 4th International Pipeline Conference. American Society of Mechanical Engineers Digital Collection, 2002: 605-614.
6 Wang Fei, Li Guoyu, Ma Wei, et al.Permafrost warming along the Mo’he-Jiagedaqi section of the China-Russia crude oil pipeline[J]. Journal of Mountain Science, 2019, 16(2): 285-295.
7 Wang Yongping,Jin Huijun,Li Guoyu,et al.Secondary geohazards alone the operating Mohe-Jagdaqi section of China-Russia crude oil pipeline in permafrost regions:A case study on a seasonal frost mound at the site MDX364[J]. Journal of Glaciology and Geocryology, 2015,37(3):731-739.
王永平,金会军,李国玉,等. 漠河—加格达奇段多年冻土区中俄原油管道运营以来的次生地质灾害研究——以MDX364处的季节性冻胀丘为例[J]. 冰川冻土,2015,37(3):731-739.
8 He Ruixia,Jin Huijun,Lanzhi Lü,et al.Permafrost and environment problems along the Golmud-Lhasa oil product pipeline and their mitigation[J]. Journal of Glaciology and Geocryology,2010,32(1):18-27.
何瑞霞,金会军,吕兰芝,等. 格尔木—拉萨成品油管道沿线冻土工程和环境问题及其防治对策[J]. 冰川冻土,2010,32(1):18-27.
9 DeGeer D, Nessim M. Arctic pipeline design considerations[C]//ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. American Society of Mechanical Engineers Digital Collection, 2008: 583-590.
10 Jin Huijun,Yu Wenbing,Chen Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipeline in permafrost regions: A review[J]. Journal of Glaciology and Geocryology, 2005, 27(3):455- 464.
金会军, 喻文兵, 陈友昌, 等.多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J].冰川冻土,2005, 27 (3):455-464.
11 Oswell J M.Pipelines in permafrost: Geotechnical issues and lessons[J]. Canadian Geotechnical Journal,2011,48(9): 1 412-1 431.
12 Li Junfeng,Hongqing Lü,Li Zhuxin. Experience and revelation learned from foreign pipeline construction projects in permafrost regions[J]. Petroleum Engineering Construction,2006,6(6):1-4.
李均峰,吕宏庆,李著信. 国外多年冻土区管道建设的经验与启示[J].石油工程建设, 2006,6(6):1-4.
13 Zhao Mingshi,Wu Ming,Dong Youzhi. Analysis of internal CO2 corrosion of oil and gas pipelines[J]. Corrosion & Protection in Petrochemical Industry,2007,24(1):33-35.
赵名师,吴明,董有智. 管道内CO2腐蚀分析[J]. 石油化工腐蚀与防护,2007,24(1):33-35.
14 Jurca T, Coutts R J, Nixon J F, et al. Thermal-hydraulics modeling for buried gas pipeline strain-based design[C]//The 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2017.
15 Luo Dongliang, Jin Huijun, He Ruixia, et al. Characteristics of water‐heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai‐Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18): 10 057-10 075.
16 Luo Dongliang, Jin Huijun, Jin Xiaoying, et al. Elevation‐dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains,northeastern Qinghai-Tibet Plateau, southwest China[J]. Permafrost and Periglacial Processes, 2018, 29(4): 257-270.
17 Zhang Zhongqiong, Wu Qingbai, Liu Yongzhi, et al. Characteristics of water and heat changes in near-surface layers under influence of engineering interface[J]. Applied Thermal Engineering, 2017, 125: 986-994.
18 Li Guoyu,Ma Wei,Zhou Zhiwei,et al. The limit state of pipeline based on stain design on cold regions[J]. Journal of Glaciology and Geocryology,2016,38(4):1 099-1 105.
李国玉,马巍,周志伟,等. 寒区输油管道基于应变设计的极限状态研究[J]. 冰川冻土,2016,38(4):1 099-1 105.
19 Ma Xiaofang,Xie Wenjiang. The prospect of transfer pipeline based on strain design in China[J]. Welded Pipe and Tube,2010,33(4):62-65.
马小芳,谢文江. 输送管线基于应变的设计方法在我国的前景与展望[J]. 焊管,2010,33(4):62-65.
20 Hall W J, Nyman D J, Johnson E R, et al. Performance of the Trans-Alaska pipeline in the november 3, 2002 denali fault earthquake[M]//Advancing Mitigation Technologies and Disaster Response for Lifeline Systems, 2003: 522-534.
21 Zhao Li,Jiang Huayi,Deng Ling.Natural gas pipeline special design and construction in permafrost[J].Inner Mongolia Petrochemical Industry,2008,(20):18-21.
赵莉,蒋华义,邓灵. 阿拉斯加地区天然气管线的特殊设计和建设[J]. 内蒙古石油化工,2008,(20):18-21.
22 Li Guoyu,Ma Wei,Wang Xueli,et al.Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia cude oil pipeline[J]. Rock and Soil Mechanics,2015,36(10):2 964-2 972.
李国玉,马巍,王学力,等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学,2015,36(10):2 964-2 972.
23 Lu Jianguo,Zhang Mingyi,Zhang Xiyin,et al.Review of the coupled hydro-thermo-mechanical interaion of frozen soil[J]. Journal of Glaciology and Geocryology,2017,39(1):102-111.
路建国,张明义,张熙胤,等. 冻土水热力耦合研究现状及进展[J].冰川冻土,2017, 39(1):102-111.
24 Zhou Zhiwei, Ma Wei, Zhang Shujuan.Effect of freeze-thaw cycles in mechanical behaviors of frozen loess[J]. Cold Regions Science and Technology, 2018, 146: 9-18.
25 Huang Long,Sheng Yu,Hu Xiaoying,et al.Intercations between the pipeline and soils in permafrost:A review[J]. Journal of Glaciology and Geocryology,2017,39(1):112-122.
黄龙,盛煜,胡晓莹,等. 冻土区管土相互作用研究综述[J]. 冰川冻土,2017,39(1):112-122.
26 Brewer M C, Jin Huijun, Hu Wanzhi, et al. The change of design of the Alyeska Pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 809-817.
Brewer M C,金会军,胡万志,等. 阿拉斯加输油管的设计和施工方式方案变更过程及其背后的原因和哲学思想[J]. 冰川冻土, 2006, 28(6): 809-817.
27 Liu Yali,Wang Junfeng,Wu Qingbai.The linear engineering impact on the eco-environment in permafrost regions:Research status and prospect[J]. Journal of Glaciology and Geocryology,2018,40(4):728-737.
刘亚丽,王俊峰,吴青柏. 多年冻土区线性工程的生态环境影响研究现状与展望[J]. 冰川冻土,2018,40(4): 728-737.
28 Luo Dongliang, Jin Huijun, Marchenko S S, et al. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau[J]. Geoderma, 2018, 312: 74-85.
29 Koui Kim,Wei Zhou,Huang S L.Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology,2008,53(1):382-396.
30 Hongqing Lü,Pu Xiaobo,Xue Hongjiang. Study on engineering technology for pipelines in permafrost[J]. Journal of Logistical Engineering University,2010,26(2):25-28.
吕宏庆,蒲小波,薛洪江. 多年冻土区管道的设计技术研究[J]. 后勤工程学院学报,2010,26(2):25-28.
31 Liu Bing, Liu Xuejie, Zhang Hong. Strain-based design criteria of pipelines[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 884-888.
32 Zhou J, Horsley D, Rothwell B. Application of strain-based design for pipelines in permafrost areas[C]//2006 International Pipeline Conference. American Society of Mechanical Engineers Digital Collection, 2006: 899-907.
33 Jin Huijun, Brewer M C. Experiences and lessons learned in the engineering design and construction in the Alaska Arctic[J]. Journal of Glaciology and Geocryology, 2005, 27(1):140- 145.
金会军,Brewer M C. 阿拉斯加北极地区的工程设计和施工经验及教训[J]. 冰川冻土,2005,27(1):140-145.
34 Konuk I. Arctic pipeline design challenges and current practices: Ice scour[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2009: 155-162.
35 He Ruixia, Jin Huijun.Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J]. Cold Regions Science and Technology,2010,64(3): 279-288.
36 Wang Yongping,Jin Huijun,Hao Jiaqian, et al. Pipe-laying technology in a subarctic permafrost region—A case study for the China-Russia crude oil pipeline from Mo'he to Daqing, Northern Northeast China[C]//Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference. Quebec, Canada, 2015.
37 Dong Peng,Zheng Dahai,Huang Jianzhong, et al. Monitoring on the temperature field around buried pipeline of Mohe-Daqing crude oil pipeline in the permafrost region[J]. Oil & Gas Storage and Transportation,2018,37(5):533-540.
董鹏,郑大海,黄建忠,等. 漠大多年冻土区埋地输油管道周围温度场监测[J].油气储运,2018,37(5):533-540.
38 Wang Fei, Li Guoyu, Ma Wei, et al.Permafrost thawing along the China-Russia Crude Oil Pipeline and countermeasures: A case study in Jiagedaqi, Northeast China[J]. Cold Regions Science and Technology,2018, 155: 308-313.
39 Fu Yuanhui,Ma Guiyang,Du Mingjun,et al. Research on freeze-thaw hazards and protective measures of buried hot oil pipeline in permafrost regions[J]. Contemporary Chemical Industry,2017,46(3):493-495.
富元晖,马贵阳,杜明俊,等. 冻土区埋地热油管道冻融危害及防护措施研究[J]. 当代化工,2017,46(3):493-495.
40 Wang Yongping, Jin Huijun, Li Guoyu. Investigation of the freeze-thaw states of foundation soils in permafrost areas along the China-Russia Crude Oil Pipeline (CRCOP) route using the ground penetrating radar[J]. Cold Regions Science and Technology, 2016, 126: 10-21.
41 Yu Wenbing, Han Fenglei, Liu Weibo, et al. Geohazards and thermal regime analysis of oil pipeline along the Qinghai-Tibet Plateau Engineering Corridor[J]. Natural Hazards, 2016,83(1): 193-209.
42 Li Guoyu, Ma Wei, Wang Xueli, et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia crude oil pipeline[J]. Rock and Soil Mechanics, 2015, 36(10): 2 963-2 973.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[6] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[7] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[8] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[9] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[10] 徐学祖,程国栋,俞祁浩. 青藏高原多年冻土区天然气水合物的研究前景和建议[J]. 地球科学进展, 1999, 14(2): 201-204.
[11] 金会军,程国栋. 冻土区甲烷排放研究进展[J]. 地球科学进展, 1997, 12(3): 276-283.
[12] 王绍令. 青藏高原冻土退化的研究[J]. 地球科学进展, 1997, 12(2): 164-167.
[13] 崔之久; 宋长青. 中国第四纪晚更新世晚期以来冰缘环境[J]. 地球科学进展, 1993, 8(2): 1-8.
阅读次数
全文


摘要