地球科学进展 ›› 2018, Vol. 33 ›› Issue (2): 115 -130. doi: 10.11867/j.issn.1001-8166.2018.02.0115

综述与评述    下一篇

热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展
令锋 1( ), 张廷军 2   
  1. 1.肇庆学院数学与统计学院,广东 肇庆 526061
    2.兰州大学资源环境学院,甘肃 兰州 730000
  • 收稿日期:2017-08-18 修回日期:2018-01-08 出版日期:2018-02-20
  • 基金资助:
    国家自然科学基金项目“青藏高原热融湖对冻土热状况长期作用的数值模拟研究”(编号:41271076);广东省自然科学基金项目“一维相变导热问题的热平衡积分解法及其应用研究”(编号:2015A030313704)资助

Progress in Numerical Simulation of Long-Term Impact of Thermokarst Lakes on Permafrost Thermal Regime

Feng Ling 1( ), Tingjun Zhang 2   

  1. 1.School of Mathematics and Statistics, Zhaoqing University, Zhaoqing Guangdong 526061, China
    2.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
  • Received:2017-08-18 Revised:2018-01-08 Online:2018-02-20 Published:2018-04-02
  • About author:

    First author:Ling Feng(1963- ),male, Qishan County, Shaanxi Province, Professor. Research areas include scientific computation with application in the land-atmosphere interaction in cold regions.E-mail:lingf@zqu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Numerical simulation of the long-term impact of thermokarst lakes on permafrost thermal regime under the lake” No.41271076);The Guangdong Natural Science Foundation “Heat Balance Integral (HBI) method and its applications in geoscience” No.2015A030313704)

热喀斯特湖是其周边多年冻土重要的热源,也是排向大气的温室气体的重要源泉,对湖下及周边多年冻土中发生的物理、化学、生物、地貌和水文过程能产生重要的作用,严重影响冻土区环境和建筑物的稳定性。数值模拟为量化分析热喀斯特湖及其演化对周边多年冻土热状况长期影响的效果提供了有效的方法,极大地深化了人们对热喀斯特湖作用的认识,总结热喀斯特湖对多年冻土热状况数值模拟研究的进展对运用和改进现有数学模型以及开发更加有效的模型具有重要的指导作用。综述了最近10多年开发的描述热喀斯特湖对多年冻土热状况影响的相变热传导模型、热融滑塌模型、湖塘—冻土耦合模型、组合热量传递与质量传输过程的湖扩张模型、温度场与水分场耦合运移模型,以及基于移动网格方法的热喀斯特湖动态演化模型等主要数学模型的构成、功能、优点和不足,提出了未来数值模拟研究中值得重视的问题,包括建立更有效的模型,确定更符合实际的初始条件,深入研究土壤的热和物理参数,充分考虑湖水补给的作用,进一步研究热喀斯特湖周边冻土层上水的热效果,建立耦合相变热传导与对流传热过程的控制方程,在模型中嵌入气候变暖的效应,研究热喀斯特湖干涸对多年冻土区环境变化的长期影响,量化分析多个热喀斯特湖对冻土共同作用的效果,模拟热喀斯特湖邻近湖岸浅水区下面融区发展的过程与特点,并继续做好系统全面的现场观测等。

Thermokarst lakes are a major heat source for the adjacent permafrost and a significant source of atmospheric methane. These lakes have important impacts on the physical, chemical, biological, geomorphological and hydrological processes occurring in the ground under and around thermokarst lakes, and seriously affect the local environment and the stability of the structures constructed in permafrost regions. Numerical simulation methods provide an effective method for quantitative analysis of the long-term impact of thermokarst lakes and their evolution on permafrost surrounding the lakes, and have deepened our knowledge about the impact of thermokarst lakes immensely. Summarizing the research progresses in numerical simulation of long-term impact of thermokarst lakes on thermal regime of surrounding permafrost has an important guiding function to improve mathematical models and develop more effective models. In this study, the components, functions, advantages and defects of several typical mathematical models having developed over the past ten years or so were reviewed, such as the heat conduction model with phase change, thaw slumping model, the coupled lake-permafrost model, thaw lake expansion model combining thermal processes with mass wasting and thaw-driven subsidence, the coupled heat conduction and moisture migration model, and the moving mesh method based thermokarst lake dynamic evolution model. Several issues deserving to be paid further attention in the future researches were proposed, including creating more effective models, determining the more realistic initial condition, lucubrating thermal and physical parameters of the typical soils, consider the impact of lake water replenishment, quantitative analysis of the thermal effect of supra-permafrost water flow around the thermokarst lakes, creating the coupled governing equation of heat conduction with phase change and convective heat transfer, embed ding the effect of climate warming in the model, numerical investigation of the long-term influence of thermokarst lake drainage on the environment change in permafrost regions, analyzing the long-term joint impact of multiple lakes on adjacent permafrost, simulating the near-shore talik development process and feature beneath shallow water in expanding thermokarst lakes, and continuing to do the systemic and comprehensive field measurements.

中图分类号: 

表1 数值模拟研究中实施的模拟情形 [ 5 ]
Table 1 Simulation cases carried out in the study [ 5 ]
图1 阿拉斯加北极海滨平原上形成3 000年的热喀斯特湖干涸200年,400年,600年和1 000年时原湖下土壤的热状况 [ 9 ]
Fig.1 Ground thermal regimes beneath the original thermokarst lake at years 200, 400, 600 and 1 000 after drainage of the lake with an age of 3 000 years on the Alaskan Arctic Coastal Plain [ 9 ]
表2 气温升高速率与热喀斯特湖下贯通融区形成年份的关系 [ 59 ]
Table 2 The relationship between the rate of air temperature rise and the penetrative year of thermokarst lake [ 59 ]
图2 模拟的热喀斯特湖半径随时间的变化 [ 61 ]
Fig.2 Changes in radius of the simulated thermokarst lake with time [ 61 ]
[1] Washburn A L.Geocryology: A Survey of Periglacial Processes and Environments[M]. New York: Halsted Press, 1980: 406.
[2] Qiu Guoqing, Liu Jingren, Liu Hongxu, et al.Dictionary of Permafrost[M]. Lanzhou: Gansu Science and Technology Press, 1994:275.
[邱国庆, 刘经仁,刘洪绪,等.冻土学词典[M].兰州:甘肃科学技术出版社,1994: 275.]
[3] Black R F, Barksdale W L.Oriented lakes of northern Alaska[J]. The Journal of Geology,1949, 57:105-118.
doi: 10.1086/625590     URL    
[4] Sellmann P V, Brown J, Lewellen R L,et al.The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska[R].CRREL Research Report 344,1975:36.
[5] Ling Feng, Zhang Tingjun.Numerical simulation of permafrost thermal regime and talik development under shallow thermokarst lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research,2003, 108(D16).DOI:10.1029/2002JD003014.
doi: 10.1029/2002JD003014     URL    
[6] Hinkel K M, Frohn R, Nelson F E, et al.Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska[J]. Permafrost Periglacial Processes,2005, 16: 327-341.
doi: 10.1002/ppp.532     URL    
[7] Mackay J R.A full-scale field experiment (1978-1995) on the growth of permafrost by means of lake drainage, Western Arctic Coast: A discussion of the method and some results[J]. Canadian Journal of Earth Sciences,1997, 34: 17-33.
doi: 10.1139/e17-002     URL    
[8] Burn C R.Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada[J]. Canadian Journal of Earth Sciences,2002, 39(6): 1 281-1 298.
doi: 10.1139/e02-035     URL    
[9] Ling Feng, Zhang Tingjun.Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research,2004, 109(D1).DOI:10.1029/2003JD003886.
doi: 10.1029/2003JD003886     URL    
[10] Zimov S A, Voropaev Y V, Semiletov I P, et al.North Siberian lake: A methane source fueled by Pleistocene carbon[J]. Science, 1997, 277: 800-802.
doi: 10.1126/science.277.5327.800     URL    
[11] Brouchkov A, Fukuda M, Fedorov A, et al.Thermokarst as a short-term permafrost disturbance, Central Yakutia[J]. Permafrost Periglacial Processes, 2004, 15(1): 81-87.
doi: 10.1002/ppp.473     URL    
[12] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Science Press, 2000: 398.
[周幼吾, 郭东信,邱国庆,等. 中国冻土[M].北京: 科学出版社,2000: 398.]
[13] Bian D, Yang Z, Li D, et al.The response of lake area change to climate variations in North Tibetan Plateau during last 30 years[J]. Journal of Geographical Science, 2006, 61(5): 510-519.
[14] Liu J, Wang S, Yu S, et al.Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau[J]. Global and Planetary Change, 2009, 67: 209-217.
doi: 10.1016/j.gloplacha.2009.03.010     URL    
[15] Cheng G D, Wu T. Responses of permafrost to climate change and their environmental significant, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112: F02S03.DOI:10.1029/2006JF000631.
doi: 10.1029/2006JF000631     URL    
[16] Lin Zhanju, Niu Fujun, Xu Zhiying, et al.Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(3):315-324.
doi: 10.1002/ppp.692     URL    
[17] Lin Zhanju, Niu Fujun, Liu Hong, et al.Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2011, 65(3): 446-455.
doi: 10.1016/j.coldregions.2010.10.013     URL    
[18] Niu F J, Lin Z J, Liu H, et al.Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3): 222-233.
doi: 10.1016/j.geomorph.2011.05.011     URL    
[19] Nelson F E, Anisimov O A, Shiklomanov N L.Subsidence risk from thawing permafrost[J]. Nature, 2001, 410: 889-890.
doi: 10.1038/35073746     URL     pmid: 11309605
[20] Niu Fujun, Dong Cheng, Lin Zhanju, et al.Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet Highway[J]. Advances in Earth Science, 2013, 28(6): 335-342.
[牛富俊,董晟,林战举, 等. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6):335-342.]
[21] Jorgenson M T, Shur Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle[J]. Journal of Geophysical Research,2007, 112: F02S17. DOI:10.1029/2006JF000531.
doi: 10.1029/2006JF000531     URL    
[22] Kokelj S V, Lantz T C, Kanigan E, et al.Origin and polycyclic behavior of Tundra Thaw Slumps, Mackenzie Delta Region, Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2009, 20: 173-184.
doi: 10.1002/ppp.642     URL    
[23] Phelps A R, Peterson K, Jeffries M O.Methane efflux from high-latitude lakes during spring ice melt[J]. Journal of Geophysical Research, 1998, 103(D22): 29 029-29 036.
doi: 10.1029/98JD00044     URL    
[24] Jeffries M O, Zhang T, Frey K, et al.Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope[J]. Journal of Glaciology,1999, 45(3): 315-324.
doi: 10.1017/S0022143000001817     URL    
[25] Brouchkov A, Fukuda M.Preliminary measurements on methane content in permafrost, Central Yakutia, and some experimental Data[J]. Permafrost and Periglacial Processes,2002, 13(3): 187-197.
doi: 10.1002/ppp.422     URL    
[26] Roy-Leveillee P, Burn C R.Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon[J]. Journal of Geophysical Research,2017, 122: 1 070-1 089.
doi: 10.1002/2016JF004022     URL    
[27] Walter K M, Zimov S A, Chanton J P, et al.Methane bubbling from Siberian thaw lakes as positive feedback to climate warming[J]. Nature,2006, 443(7): 71-75.
doi: 10.1038/nature05040     URL     pmid: 16957728
[28] Walter K M, Edwards M E, Grosse G, et al.Thermokarst lakes as a source of atmospheric CH4 during the Last deglaciation[J]. Science,2007, 318: 633-636.
doi: 10.1126/science.1142924     URL     pmid: 17962561
[29] Van Huissteden J, Berrittella C, Parmentier F W.Methane emissions from permafrost thaw lakes limited by lake drainage[J]. Nature Climate Change,2011,(1):119-123.DOI: 10.1038/NCLIMATE1101.
doi: 10.1038/nclimate1101     URL    
[30] Lu Yi, Zhang Wen, Li Tingting, et al.Progress in the simulation of the impacts of sources and sinks on the tempo-spatial variations of the atmospheric[J]. Advances in Earth Science,2015, 30(7): 763-772.
[鲁易,张稳, 李婷婷, 等. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展,2015,30(7): 763-772.]
doi: 10.11867/j.issn.1001-8166.2015.07.0763    
[31] Marsh P, Neumann N.Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada[J]. Hydrological Processes,2001, 15: 3 433-3 446.
doi: 10.1002/hyp.1035     URL    
[32] Hinkel K M, Eisner W R, Bockheim J G, et al.Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska[J]. Arctic, Antarctic, and Alpine Research, 2003, 35(3): 291-300.
doi: 10.1657/1523-0430(2003)035[0291:SEAACS]2.0.CO;2     URL    
[33] Smith L C, Sheng Y, MacDonald G M,et al. Disappearing Arctic lakes[J]. Science,2005, 308(5 727): 1 429.
doi: 10.1126/science.1108142     URL    
[34] Kokelj S V, Jorgenson M T.Advances in thermokarst research[J]. Permafrost and Periglacial Processes,2013, 24: 108-119.
doi: 10.1002/ppp.1779     URL    
[35] Ling Feng, Wu Qingbai, Zhang Tingjun, et al.Modeling talik development and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes,2012, 23(4): 321-312.
doi: 10.1002/ppp.1754     URL    
[36] Ling Feng, Fu Shouzhong, Chen Shumin, et al.Numerical Computation Methods (Second Edition)[M]. Beijing: National Defence Industry Press, 2015: 158.
[令锋,傅守忠,陈树敏,等. 数值计算方法(第2版)[M]. 北京:国防工业出版社, 2015: 158.]
[37] Lunardini V J.Heat Transfer in Cold Climates[M]. New York: Van Nostrand Reinhold, 1981: 731.
[38] Lachenbruch A H, Marshall B V.Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic[J]. Science, 1986, 234: 689-696.
doi: 10.1126/science.234.4777.689     URL     pmid: 17744468
[39] Li S X, Cheng G D, Guo D X.The future thermal regime of numerical simulating permafrost on Qinghai-Xizang (Tibet) Plateau, China, under climate warming[J]. Science in China (Series D),1996, 39(4): 434-441.
[40] Ling Feng, Zhang Tingjun.A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology,2004, 38(1): 1-15.
doi: 10.1016/S0165-232X(03)00057-0     URL    
[41] Taylor G S, Luthin J N.A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal,1978, 15(5): 548-555.
doi: 10.1139/t78-058     URL    
[42] Comini G, Guidice S D, Lewis R W, et al.Finite element solution of non-linear heat conduction problem with special reference to phase change[J]. International Journal for Numerical Methods in Engineering,1973, 8(6): 613-624.
doi: 10.1002/nme.1620080314     URL    
[43] Kong Xiangqian.Applications of Finite Element Method in Heat Transfer[M].Beijing: Science Press,1998:372.
[孔祥谦. 有限单元法在传热学中的应用[M].北京:科学出版社,1998: 372.]
[44] Romanovsky V E, Osterkamp T E.Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost[J]. Permafrost and Periglacial Processes,2000, 11: 219-239.
doi: 10.1002/(ISSN)1099-1530     URL    
[45] West J J, Plug L J.Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice[J]. Journal of Geophysical Research,2008, 113: 1-18.
doi: 10.1029/2006JF000696     URL    
[46] Ling Feng, Wu Qingbai.Nonlinear analysis of talik development differences under thaw lakes with different radiuses on the Qinghai-Tibet Plateau[J]. Mathematics in Practice and Theory,2014, 44(21): 250-257.
[令锋, 吴青柏. 青藏高原不同半径热融湖下融区发展差异的非线性分析[J]. 数学的实践与认识,2014, 44(21): 250-257.]
URL    
[47] Yang Zhen, Wen Zhi, Ma Wei, et al.Numerical simulation on the dynamic evolution process of thermokarst lake based on the moving mesh technology[J]. Journal of Glaciology and Geocryology,2015,37(1):183-191.
[杨振,温智,马巍, 等. 基于移动网格技术的热融湖动态演化过程数值模拟[J]. 冰川冻土,2015,37(1):183-191.]
doi: 10.7522/j.issn.1000-0240.2015.0021     URL    
[48] Carson C E, Hussey K M.The oriented lakes of Arctic Alaska[J]. Journal of Geology,1962, 70: 417-439.
doi: 10.1086/626927     URL    
[49] Pelletier J D.Formation of oriented thaw lakes by thaw slumping[J].Journal of Geophysical Research,2005,110(F02018):1-11.
doi: 10.1029/2004JF000158     URL    
[50] Hinkel K.Comment on “Formation of oriented thaw lakes by thaw slumping” by Jon D. Pelletier[J]. Journal of Geophysical Research,2006, 111: F01021. DOI:10.1029/2005JF000377.
doi: 10.1029/2005JF000377     URL    
[51] Pelletier J D.Reply to comment by Kenneth Hinkel on “Formation of oriented thaw lakes by thaw slumping”[J]. Journal of Geophysical Research,2006, 111: F01022. DOI:10.1029/2005JF000417.
doi: 10.1029/2005JF000417     URL    
[52] Plug L J, West J J.Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement[J]. Journal of Geophysical Research,2009, 114(F01002): 1-11.
doi: 10.1029/2006JF000740     URL    
[53] Matell N, Anderson R S,Overeem I, et al.Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate[J]. Computer & Geosciences,2013, 53: 69-79.
doi: 10.1016/j.cageo.2011.08.028     URL    
[54] Liston G E, Hall D K.An energy-balance model of lake-ice evolution[J]. Journal of Glaciology,1995, 41:373-382.
doi: 10.1017/S0022143000016245     URL    
[55] Liston G E, Hall D K.Sensitivity of lake freeze-up and break-up to climate change: A physically based modeling study[J]. Annals of Glaciology,1995, 21:387-393.
doi: 10.1017/S0260305500016116     URL    
[56] Roering J J, Kirchner J W, Dietrich W E.Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J]. Journal of Geophysical Research,2001, 106(B8): 16 499-16 513.
doi: 10.1029/2001JB000323     URL    
[57] Duguay C R, Flato G M, Jeffries M O, et al.Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrology Processes,2003, 17(17): 3 465-3 483.
doi: 10.1002/hyp.1394     URL    
[58] Painter S L, Moulton J D, Wilson C J.Modeling challenges for predicting hydrologic response to degrading permafrost[J]. Hydrogeology Journal,2013, 21: 221-224.
doi: 10.1007/s10040-012-0917-4     URL    
[59] Li S, Zhan H, Lai Y,et al.The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming[J]. Journal of Geophysical Research,2014, 119: 836-853.
doi: 10.1002/2013JF002930     URL    
[60] Ling Feng, Wu Qingbai.Numerical simulation of influence of thermokarst lake horizontal expansion rate on talik development beneath thermokarst lakes on Qinghai-Tibet Plateau[J]. Journal Glaciology and Geocryology,2017, 39(2): 328-335.
[令锋,吴青柏. 青藏高原热融湖横向扩张速率对湖下融区发展影响的数值模拟[J]. 冰川冻土,2017, 39(2):328-335.]
[61] Wen Zhi, Yang Zhen, Yu Qihao,et al.Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method[J]. Cold Regions Science and Technology, 2016, 121(1):84-92.
doi: 10.1016/j.coldregions.2015.10.012     URL    
[62] Batina J T.Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal,1990, 28(8):1 381-1 388.
doi: 10.2514/3.25229     URL    
[63] Yang Zhen, Wen Zhi, Niu Fujun, et al.Research on thermokarst lakes in permafrost regions: Present state and prospect[J]. Journal Glaciology and Geocryology, 2013, 35(6): 1 519-1 526.
[杨振,温智,牛富俊,等.多年冻土区热融湖研究现状与展望[J]. 冰川冻土,2013, 35(6): 1 519-1 526.]
[64] Utili S, Crosta G B.Modeling the evolution of natural cliffs subject to weathering: 2. Discrete element approach[J]. Journal of Geophysical Research,2011, 116(F01017): 1-17. DOI:10.1029/2009JF001559.
doi: 10.1029/2009JF001559     URL    
[65] Zhou W, Huang S L.Modeling impacts of thaw lakes to ground thermal regime in northern Alaska[J]. Journal of Cold Regions Engineering,2004, 18(2): 70-87.
doi: 10.1061/(ASCE)0887-381X(2004)18:2(70)     URL    
[66] Zhang Tingjun, Jeffries M O.Modeling inter-decadal variations of lake-ice thickness and sensitivity to climatic change in northernmost Alaska[J]. Annuals of Glaciology,2000, 31: 339-347.
doi: 10.3189/172756400781819905     URL    
[67] Zhang Tingjun, Osterkamp T E.Influence of depth hoar layer and of the seasonal snow cover on the ground thermal regime[J]. Water Resource Research,1996, 32(7): 2 075-2 086.
doi: 10.1029/96WR00996     URL    
[68] Paola C.In modelling, simplicity isn’t simple[J]. Nature,2011, 469(7 328): 38.
doi: 10.1038/469038a     URL     pmid: 21209652
[69] Xu Xuezu, Deng Yusheng.The Experimental Research on Moisture Transfer in Frozen Soil[M]. Beijing: Science Press, 1991: 41-87.
[徐学祖,邓友生. 冻土中水分迁移的实验研究[M]. 北京: 科学出版社, 1991: 41-87.]
[70] Xu Xuezu, Wang Jiacheng, Zhang Lixin.Frozen Soil Physics[M]. Beijing: Science Press, 2010: 451-497.
[徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 451-497.]
[71] Li Shuxun, Wu Tonghua.Permafrost temperature regime: Study method and applied analysis[J]. Journal Glaciology and Geocryology, 2004, 26(4): 377-383.
[李述训,吴通华. 冻土温度状况研究方法和应用分析[J]. 冰川冻土,2004, 26(4): 377-383.]
[72] Woo M K, Guan X J.Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian high Arctic[J]. Permafrost and Periglacial Processes,2006,17(3):309-323.
doi: 10.1002/ppp.565     URL    
[73] Pan Xicai, You Yanhui, Roth Kurt, et al.Mapping permafrost features that influence the hydrological processes of a thermokarst lake on the Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Process,2014, 25(1): 60-68.
doi: 10.1002/ppp.1797     URL    
[74] You Y, Yu Q, Pan X, et al.Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau[J]. Hydrological Processes,2017, 31: 2 429-2 437.
doi: 10.1002/hyp.11193     URL    
[75] Yoshikawa K, Hinzman L D.Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost Periglacial Processes,2003, 14: 151-160.
doi: 10.1002/ppp.451     URL    
[76] Rowland J C, Travis B J, Wilson C J.The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost[J]. Geophysical Research Letters,2011, 38(L17504): 1-5.
doi: 10.1029/2011GL048497     URL    
[77] Qin Dahe.Climate change science and sustainable development[J]. Progress in Geography,2014, 33(7): 874-883.
[秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883.]
doi: 10.11820/dlkxjz.2014.07.002     URL    
[78] Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge & New York: Cambridge University Press, 2007.
[79] Mackay J R, Burn C R.The first 20 years (1978-1979 to 1998-1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada[J]. Canadian Journal of Earth Sciences,2002, 39: 1 657-1 674.
doi: 10.1139/e02-068     URL    
[80] Burn C R, Smith C A S. Observation of “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada[J]. Arctic,1988, 41(1): 99-104.
doi: 10.14430/arctic1700     URL    
[81] Shang Songhao, Mao Xiaomin, Lei Zhidong, et al.Dynamic Simulation Models of Soil Moisture and Its Applications[M]. Beijing: Science Press,2009:65-77.
[尚松浩,毛晓敏,雷志栋,等. 土壤水分动态模拟模型及其应用[M]. 北京:科学出版社,2009: 65-77.]
[82] Mao Xuesong, Ma Biao, Wang Binggang.Study on Stability of Roadbed in Permafrost Regions Based on the Coupled Heat and Moisture Effect[M]. Beijing: China Communication Press, 2011: 136-148.
[毛雪松,马骉,王秉刚. 基于水热耦合效应的冻土路基稳定性研究[M]. 北京:人民交通出版社,2011: 1 136-148.]
[83] Istok J D.Groundwater Modeling by the Finite Element Method[M]. Washington: American Geophysical Union, 1989: 495.
[84] Hinkel K M, Lenters J D, Sheng Y, et al.Thermokarst lakes on the Arctic Coastal Plain of Alaska: Spatial and temporal variability in summer water temperature[J]. Permafrost Periglacial Processes,2012, 23: 207-217.
doi: 10.1002/ppp.1743     URL    
[85] Lin Zhanju, Niu Fujun, Liu Hua, et al.Numerical simulation of permafrost degradation under the influence of thaw lakes on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica,2013, 87(5): 737-746.
[林占举,牛富俊,刘华,等. 热融湖影响下多年冻土退化的数值模拟[J]. 地质学报, 2013, 87(5): 737-746.]
doi: 10.3969/j.issn.0001-5717.2013.05.011     URL    
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[4] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[5] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[6] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[7] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[8] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[9] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[10] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[11] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
[12] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.
[13] 吴青柏,程国栋. 多年冻土区天然气水合物研究综述[J]. 地球科学进展, 2008, 23(2): 111-119.
[14] 宋新山,邓伟,夏永云. 潜流构建湿地氮素转化运移的理论模型研究[J]. 地球科学进展, 2007, 22(10): 1041-1047.
[15] 马蔚纯,陈立民,李建忠,高效江,林卫青. 水环境非点源污染数学模型研究进展[J]. 地球科学进展, 2003, 18(3): 358-366.
阅读次数
全文


摘要