[1] |
Washburn A L.Geocryology: A Survey of Periglacial Processes and Environments[M]. New York: Halsted Press, 1980: 406.
|
[2] |
Qiu Guoqing, Liu Jingren, Liu Hongxu, et al.Dictionary of Permafrost[M]. Lanzhou: Gansu Science and Technology Press, 1994:275.
|
|
[邱国庆, 刘经仁,刘洪绪,等.冻土学词典[M].兰州:甘肃科学技术出版社,1994: 275.]
|
[3] |
Black R F, Barksdale W L.Oriented lakes of northern Alaska[J]. The Journal of Geology,1949, 57:105-118.
doi: 10.1086/625590
URL
|
[4] |
Sellmann P V, Brown J, Lewellen R L,et al.The Classification and Geomorphic Implications of Thaw Lakes on the Arctic Coastal Plain, Alaska[R].CRREL Research Report 344,1975:36.
|
[5] |
Ling Feng, Zhang Tingjun.Numerical simulation of permafrost thermal regime and talik development under shallow thermokarst lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research,2003, 108(D16).DOI:10.1029/2002JD003014.
doi: 10.1029/2002JD003014
URL
|
[6] |
Hinkel K M, Frohn R, Nelson F E, et al.Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic coastal plain, Alaska[J]. Permafrost Periglacial Processes,2005, 16: 327-341.
doi: 10.1002/ppp.532
URL
|
[7] |
Mackay J R.A full-scale field experiment (1978-1995) on the growth of permafrost by means of lake drainage, Western Arctic Coast: A discussion of the method and some results[J]. Canadian Journal of Earth Sciences,1997, 34: 17-33.
doi: 10.1139/e17-002
URL
|
[8] |
Burn C R.Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada[J]. Canadian Journal of Earth Sciences,2002, 39(6): 1 281-1 298.
doi: 10.1139/e02-035
URL
|
[9] |
Ling Feng, Zhang Tingjun.Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research,2004, 109(D1).DOI:10.1029/2003JD003886.
doi: 10.1029/2003JD003886
URL
|
[10] |
Zimov S A, Voropaev Y V, Semiletov I P, et al.North Siberian lake: A methane source fueled by Pleistocene carbon[J]. Science, 1997, 277: 800-802.
doi: 10.1126/science.277.5327.800
URL
|
[11] |
Brouchkov A, Fukuda M, Fedorov A, et al.Thermokarst as a short-term permafrost disturbance, Central Yakutia[J]. Permafrost Periglacial Processes, 2004, 15(1): 81-87.
doi: 10.1002/ppp.473
URL
|
[12] |
Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China[M]. Beijing: Science Press, 2000: 398.
|
|
[周幼吾, 郭东信,邱国庆,等. 中国冻土[M].北京: 科学出版社,2000: 398.]
|
[13] |
Bian D, Yang Z, Li D, et al.The response of lake area change to climate variations in North Tibetan Plateau during last 30 years[J]. Journal of Geographical Science, 2006, 61(5): 510-519.
|
[14] |
Liu J, Wang S, Yu S, et al.Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau[J]. Global and Planetary Change, 2009, 67: 209-217.
doi: 10.1016/j.gloplacha.2009.03.010
URL
|
[15] |
Cheng G D, Wu T. Responses of permafrost to climate change and their environmental significant, Qinghai-Tibet Plateau[J]. Journal of Geophysical Research, 2007, 112: F02S03.DOI:10.1029/2006JF000631.
doi: 10.1029/2006JF000631
URL
|
[16] |
Lin Zhanju, Niu Fujun, Xu Zhiying, et al.Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(3):315-324.
doi: 10.1002/ppp.692
URL
|
[17] |
Lin Zhanju, Niu Fujun, Liu Hong, et al.Hydrothermal processes of Alpine Tundra Lakes, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2011, 65(3): 446-455.
doi: 10.1016/j.coldregions.2010.10.013
URL
|
[18] |
Niu F J, Lin Z J, Liu H, et al.Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3): 222-233.
doi: 10.1016/j.geomorph.2011.05.011
URL
|
[19] |
Nelson F E, Anisimov O A, Shiklomanov N L.Subsidence risk from thawing permafrost[J]. Nature, 2001, 410: 889-890.
doi: 10.1038/35073746
URL
pmid: 11309605
|
[20] |
Niu Fujun, Dong Cheng, Lin Zhanju, et al.Distribution of thermokarst lakes and its thermal influence on permafrost along Qinghai-Tibet Highway[J]. Advances in Earth Science, 2013, 28(6): 335-342.
|
|
[牛富俊,董晟,林战举, 等. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6):335-342.]
|
[21] |
Jorgenson M T, Shur Y. Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle[J]. Journal of Geophysical Research,2007, 112: F02S17. DOI:10.1029/2006JF000531.
doi: 10.1029/2006JF000531
URL
|
[22] |
Kokelj S V, Lantz T C, Kanigan E, et al.Origin and polycyclic behavior of Tundra Thaw Slumps, Mackenzie Delta Region, Northwest Territories, Canada[J]. Permafrost and Periglacial Processes, 2009, 20: 173-184.
doi: 10.1002/ppp.642
URL
|
[23] |
Phelps A R, Peterson K, Jeffries M O.Methane efflux from high-latitude lakes during spring ice melt[J]. Journal of Geophysical Research, 1998, 103(D22): 29 029-29 036.
doi: 10.1029/98JD00044
URL
|
[24] |
Jeffries M O, Zhang T, Frey K, et al.Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope[J]. Journal of Glaciology,1999, 45(3): 315-324.
doi: 10.1017/S0022143000001817
URL
|
[25] |
Brouchkov A, Fukuda M.Preliminary measurements on methane content in permafrost, Central Yakutia, and some experimental Data[J]. Permafrost and Periglacial Processes,2002, 13(3): 187-197.
doi: 10.1002/ppp.422
URL
|
[26] |
Roy-Leveillee P, Burn C R.Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon[J]. Journal of Geophysical Research,2017, 122: 1 070-1 089.
doi: 10.1002/2016JF004022
URL
|
[27] |
Walter K M, Zimov S A, Chanton J P, et al.Methane bubbling from Siberian thaw lakes as positive feedback to climate warming[J]. Nature,2006, 443(7): 71-75.
doi: 10.1038/nature05040
URL
pmid: 16957728
|
[28] |
Walter K M, Edwards M E, Grosse G, et al.Thermokarst lakes as a source of atmospheric CH4 during the Last deglaciation[J]. Science,2007, 318: 633-636.
doi: 10.1126/science.1142924
URL
pmid: 17962561
|
[29] |
Van Huissteden J, Berrittella C, Parmentier F W.Methane emissions from permafrost thaw lakes limited by lake drainage[J]. Nature Climate Change,2011,(1):119-123.DOI: 10.1038/NCLIMATE1101.
doi: 10.1038/nclimate1101
URL
|
[30] |
Lu Yi, Zhang Wen, Li Tingting, et al.Progress in the simulation of the impacts of sources and sinks on the tempo-spatial variations of the atmospheric[J]. Advances in Earth Science,2015, 30(7): 763-772.
|
|
[鲁易,张稳, 李婷婷, 等. 大气甲烷浓度变化的源汇因素模拟研究进展[J]. 地球科学进展,2015,30(7): 763-772.]
doi: 10.11867/j.issn.1001-8166.2015.07.0763
|
[31] |
Marsh P, Neumann N.Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada[J]. Hydrological Processes,2001, 15: 3 433-3 446.
doi: 10.1002/hyp.1035
URL
|
[32] |
Hinkel K M, Eisner W R, Bockheim J G, et al.Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska[J]. Arctic, Antarctic, and Alpine Research, 2003, 35(3): 291-300.
doi: 10.1657/1523-0430(2003)035[0291:SEAACS]2.0.CO;2
URL
|
[33] |
Smith L C, Sheng Y, MacDonald G M,et al. Disappearing Arctic lakes[J]. Science,2005, 308(5 727): 1 429.
doi: 10.1126/science.1108142
URL
|
[34] |
Kokelj S V, Jorgenson M T.Advances in thermokarst research[J]. Permafrost and Periglacial Processes,2013, 24: 108-119.
doi: 10.1002/ppp.1779
URL
|
[35] |
Ling Feng, Wu Qingbai, Zhang Tingjun, et al.Modeling talik development and permafrost lateral thaw under a thermokarst lake, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes,2012, 23(4): 321-312.
doi: 10.1002/ppp.1754
URL
|
[36] |
Ling Feng, Fu Shouzhong, Chen Shumin, et al.Numerical Computation Methods (Second Edition)[M]. Beijing: National Defence Industry Press, 2015: 158.
|
|
[令锋,傅守忠,陈树敏,等. 数值计算方法(第2版)[M]. 北京:国防工业出版社, 2015: 158.]
|
[37] |
Lunardini V J.Heat Transfer in Cold Climates[M]. New York: Van Nostrand Reinhold, 1981: 731.
|
[38] |
Lachenbruch A H, Marshall B V.Changing climate: Geothermal evidence from permafrost in the Alaskan Arctic[J]. Science, 1986, 234: 689-696.
doi: 10.1126/science.234.4777.689
URL
pmid: 17744468
|
[39] |
Li S X, Cheng G D, Guo D X.The future thermal regime of numerical simulating permafrost on Qinghai-Xizang (Tibet) Plateau, China, under climate warming[J]. Science in China (Series D),1996, 39(4): 434-441.
|
[40] |
Ling Feng, Zhang Tingjun.A numerical model for surface energy balance and thermal regime of the active layer and permafrost containing unfrozen water[J]. Cold Regions Science and Technology,2004, 38(1): 1-15.
doi: 10.1016/S0165-232X(03)00057-0
URL
|
[41] |
Taylor G S, Luthin J N.A model for coupled heat and moisture transfer during soil freezing[J]. Canadian Geotechnical Journal,1978, 15(5): 548-555.
doi: 10.1139/t78-058
URL
|
[42] |
Comini G, Guidice S D, Lewis R W, et al.Finite element solution of non-linear heat conduction problem with special reference to phase change[J]. International Journal for Numerical Methods in Engineering,1973, 8(6): 613-624.
doi: 10.1002/nme.1620080314
URL
|
[43] |
Kong Xiangqian.Applications of Finite Element Method in Heat Transfer[M].Beijing: Science Press,1998:372.
|
|
[孔祥谦. 有限单元法在传热学中的应用[M].北京:科学出版社,1998: 372.]
|
[44] |
Romanovsky V E, Osterkamp T E.Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost[J]. Permafrost and Periglacial Processes,2000, 11: 219-239.
doi: 10.1002/(ISSN)1099-1530
URL
|
[45] |
West J J, Plug L J.Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice[J]. Journal of Geophysical Research,2008, 113: 1-18.
doi: 10.1029/2006JF000696
URL
|
[46] |
Ling Feng, Wu Qingbai.Nonlinear analysis of talik development differences under thaw lakes with different radiuses on the Qinghai-Tibet Plateau[J]. Mathematics in Practice and Theory,2014, 44(21): 250-257.
|
|
[令锋, 吴青柏. 青藏高原不同半径热融湖下融区发展差异的非线性分析[J]. 数学的实践与认识,2014, 44(21): 250-257.]
URL
|
[47] |
Yang Zhen, Wen Zhi, Ma Wei, et al.Numerical simulation on the dynamic evolution process of thermokarst lake based on the moving mesh technology[J]. Journal of Glaciology and Geocryology,2015,37(1):183-191.
|
|
[杨振,温智,马巍, 等. 基于移动网格技术的热融湖动态演化过程数值模拟[J]. 冰川冻土,2015,37(1):183-191.]
doi: 10.7522/j.issn.1000-0240.2015.0021
URL
|
[48] |
Carson C E, Hussey K M.The oriented lakes of Arctic Alaska[J]. Journal of Geology,1962, 70: 417-439.
doi: 10.1086/626927
URL
|
[49] |
Pelletier J D.Formation of oriented thaw lakes by thaw slumping[J].Journal of Geophysical Research,2005,110(F02018):1-11.
doi: 10.1029/2004JF000158
URL
|
[50] |
Hinkel K.Comment on “Formation of oriented thaw lakes by thaw slumping” by Jon D. Pelletier[J]. Journal of Geophysical Research,2006, 111: F01021. DOI:10.1029/2005JF000377.
doi: 10.1029/2005JF000377
URL
|
[51] |
Pelletier J D.Reply to comment by Kenneth Hinkel on “Formation of oriented thaw lakes by thaw slumping”[J]. Journal of Geophysical Research,2006, 111: F01022. DOI:10.1029/2005JF000417.
doi: 10.1029/2005JF000417
URL
|
[52] |
Plug L J, West J J.Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement[J]. Journal of Geophysical Research,2009, 114(F01002): 1-11.
doi: 10.1029/2006JF000740
URL
|
[53] |
Matell N, Anderson R S,Overeem I, et al.Modeling the subsurface thermal impact of Arctic thaw lakes in a warming climate[J]. Computer & Geosciences,2013, 53: 69-79.
doi: 10.1016/j.cageo.2011.08.028
URL
|
[54] |
Liston G E, Hall D K.An energy-balance model of lake-ice evolution[J]. Journal of Glaciology,1995, 41:373-382.
doi: 10.1017/S0022143000016245
URL
|
[55] |
Liston G E, Hall D K.Sensitivity of lake freeze-up and break-up to climate change: A physically based modeling study[J]. Annals of Glaciology,1995, 21:387-393.
doi: 10.1017/S0260305500016116
URL
|
[56] |
Roering J J, Kirchner J W, Dietrich W E.Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology and equilibrium adjustment timescales[J]. Journal of Geophysical Research,2001, 106(B8): 16 499-16 513.
doi: 10.1029/2001JB000323
URL
|
[57] |
Duguay C R, Flato G M, Jeffries M O, et al.Ice-cover variability on shallow lakes at high latitudes: Model simulations and observations[J]. Hydrology Processes,2003, 17(17): 3 465-3 483.
doi: 10.1002/hyp.1394
URL
|
[58] |
Painter S L, Moulton J D, Wilson C J.Modeling challenges for predicting hydrologic response to degrading permafrost[J]. Hydrogeology Journal,2013, 21: 221-224.
doi: 10.1007/s10040-012-0917-4
URL
|
[59] |
Li S, Zhan H, Lai Y,et al.The coupled moisture-heat process of permafrost around a thermokarst pond in Qinghai-Tibet Plateau under global warming[J]. Journal of Geophysical Research,2014, 119: 836-853.
doi: 10.1002/2013JF002930
URL
|
[60] |
Ling Feng, Wu Qingbai.Numerical simulation of influence of thermokarst lake horizontal expansion rate on talik development beneath thermokarst lakes on Qinghai-Tibet Plateau[J]. Journal Glaciology and Geocryology,2017, 39(2): 328-335.
|
|
[令锋,吴青柏. 青藏高原热融湖横向扩张速率对湖下融区发展影响的数值模拟[J]. 冰川冻土,2017, 39(2):328-335.]
|
[61] |
Wen Zhi, Yang Zhen, Yu Qihao,et al.Modeling thermokarst lake expansion on the Qinghai-Tibetan Plateau and its thermal effects by the moving mesh method[J]. Cold Regions Science and Technology, 2016, 121(1):84-92.
doi: 10.1016/j.coldregions.2015.10.012
URL
|
[62] |
Batina J T.Unsteady Euler airfoil solutions using unstructured dynamic meshes[J]. AIAA Journal,1990, 28(8):1 381-1 388.
doi: 10.2514/3.25229
URL
|
[63] |
Yang Zhen, Wen Zhi, Niu Fujun, et al.Research on thermokarst lakes in permafrost regions: Present state and prospect[J]. Journal Glaciology and Geocryology, 2013, 35(6): 1 519-1 526.
|
|
[杨振,温智,牛富俊,等.多年冻土区热融湖研究现状与展望[J]. 冰川冻土,2013, 35(6): 1 519-1 526.]
|
[64] |
Utili S, Crosta G B.Modeling the evolution of natural cliffs subject to weathering: 2. Discrete element approach[J]. Journal of Geophysical Research,2011, 116(F01017): 1-17. DOI:10.1029/2009JF001559.
doi: 10.1029/2009JF001559
URL
|
[65] |
Zhou W, Huang S L.Modeling impacts of thaw lakes to ground thermal regime in northern Alaska[J]. Journal of Cold Regions Engineering,2004, 18(2): 70-87.
doi: 10.1061/(ASCE)0887-381X(2004)18:2(70)
URL
|
[66] |
Zhang Tingjun, Jeffries M O.Modeling inter-decadal variations of lake-ice thickness and sensitivity to climatic change in northernmost Alaska[J]. Annuals of Glaciology,2000, 31: 339-347.
doi: 10.3189/172756400781819905
URL
|
[67] |
Zhang Tingjun, Osterkamp T E.Influence of depth hoar layer and of the seasonal snow cover on the ground thermal regime[J]. Water Resource Research,1996, 32(7): 2 075-2 086.
doi: 10.1029/96WR00996
URL
|
[68] |
Paola C.In modelling, simplicity isn’t simple[J]. Nature,2011, 469(7 328): 38.
doi: 10.1038/469038a
URL
pmid: 21209652
|
[69] |
Xu Xuezu, Deng Yusheng.The Experimental Research on Moisture Transfer in Frozen Soil[M]. Beijing: Science Press, 1991: 41-87.
|
|
[徐学祖,邓友生. 冻土中水分迁移的实验研究[M]. 北京: 科学出版社, 1991: 41-87.]
|
[70] |
Xu Xuezu, Wang Jiacheng, Zhang Lixin.Frozen Soil Physics[M]. Beijing: Science Press, 2010: 451-497.
|
|
[徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2010: 451-497.]
|
[71] |
Li Shuxun, Wu Tonghua.Permafrost temperature regime: Study method and applied analysis[J]. Journal Glaciology and Geocryology, 2004, 26(4): 377-383.
|
|
[李述训,吴通华. 冻土温度状况研究方法和应用分析[J]. 冰川冻土,2004, 26(4): 377-383.]
|
[72] |
Woo M K, Guan X J.Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian high Arctic[J]. Permafrost and Periglacial Processes,2006,17(3):309-323.
doi: 10.1002/ppp.565
URL
|
[73] |
Pan Xicai, You Yanhui, Roth Kurt, et al.Mapping permafrost features that influence the hydrological processes of a thermokarst lake on the Qinghai-Tibet Plateau, China[J]. Permafrost and Periglacial Process,2014, 25(1): 60-68.
doi: 10.1002/ppp.1797
URL
|
[74] |
You Y, Yu Q, Pan X, et al.Thermal effects of lateral supra-permafrost water flow around a thermokarst lake on the Qinghai-Tibet Plateau[J]. Hydrological Processes,2017, 31: 2 429-2 437.
doi: 10.1002/hyp.11193
URL
|
[75] |
Yoshikawa K, Hinzman L D.Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost Periglacial Processes,2003, 14: 151-160.
doi: 10.1002/ppp.451
URL
|
[76] |
Rowland J C, Travis B J, Wilson C J.The role of advective heat transport in talik development beneath lakes and ponds in discontinuous permafrost[J]. Geophysical Research Letters,2011, 38(L17504): 1-5.
doi: 10.1029/2011GL048497
URL
|
[77] |
Qin Dahe.Climate change science and sustainable development[J]. Progress in Geography,2014, 33(7): 874-883.
|
|
[秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014, 33(7): 874-883.]
doi: 10.11820/dlkxjz.2014.07.002
URL
|
[78] |
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge & New York: Cambridge University Press, 2007.
|
[79] |
Mackay J R, Burn C R.The first 20 years (1978-1979 to 1998-1999) of active-layer development, Illisarvik experimental drained lake site, western Arctic coast, Canada[J]. Canadian Journal of Earth Sciences,2002, 39: 1 657-1 674.
doi: 10.1139/e02-068
URL
|
[80] |
Burn C R, Smith C A S. Observation of “thermal offset” in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada[J]. Arctic,1988, 41(1): 99-104.
doi: 10.14430/arctic1700
URL
|
[81] |
Shang Songhao, Mao Xiaomin, Lei Zhidong, et al.Dynamic Simulation Models of Soil Moisture and Its Applications[M]. Beijing: Science Press,2009:65-77.
|
|
[尚松浩,毛晓敏,雷志栋,等. 土壤水分动态模拟模型及其应用[M]. 北京:科学出版社,2009: 65-77.]
|
[82] |
Mao Xuesong, Ma Biao, Wang Binggang.Study on Stability of Roadbed in Permafrost Regions Based on the Coupled Heat and Moisture Effect[M]. Beijing: China Communication Press, 2011: 136-148.
|
|
[毛雪松,马骉,王秉刚. 基于水热耦合效应的冻土路基稳定性研究[M]. 北京:人民交通出版社,2011: 1 136-148.]
|
[83] |
Istok J D.Groundwater Modeling by the Finite Element Method[M]. Washington: American Geophysical Union, 1989: 495.
|
[84] |
Hinkel K M, Lenters J D, Sheng Y, et al.Thermokarst lakes on the Arctic Coastal Plain of Alaska: Spatial and temporal variability in summer water temperature[J]. Permafrost Periglacial Processes,2012, 23: 207-217.
doi: 10.1002/ppp.1743
URL
|
[85] |
Lin Zhanju, Niu Fujun, Liu Hua, et al.Numerical simulation of permafrost degradation under the influence of thaw lakes on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica,2013, 87(5): 737-746.
|
|
[林占举,牛富俊,刘华,等. 热融湖影响下多年冻土退化的数值模拟[J]. 地质学报, 2013, 87(5): 737-746.]
doi: 10.3969/j.issn.0001-5717.2013.05.011
URL
|