地球科学进展 ›› 2018, Vol. 33 ›› Issue (2): 131 -140. doi: 10.11867/j.issn.1001-8166.2018.02.0131

综述与评述 上一篇    下一篇

全球业务化海洋预报进展与展望
刘娜( ), 王辉, 凌铁军, 祖子清   
  1. 国家海洋环境预报中心国家海洋局海洋灾害预报技术研究重点实验室,北京 100081
  • 收稿日期:2017-08-31 修回日期:2017-12-26 出版日期:2018-02-20
  • 基金资助:
    国家自然科学基金项目“两类ENSO对太平洋北赤道流分叉年际变化的影响”(编号: 41406013)和“中国周边海域SST日变化及其对区域气候的影响”(编号:41376016)资助

Review and Prospect of Global Operational Ocean Forecasting

Na Liu( ), Hui Wang, Tiejun Ling, Ziqing Zu   

  1. Key Laboratory of Research on Marine Hazards Forecasting, National Marine Environmental Forecasting Center, Beijing 100081, China
  • Received:2017-08-31 Revised:2017-12-26 Online:2018-02-20 Published:2018-04-02
  • About author:

    First author:Liu Na(1982-),female,Qingdao City,Shandong Province, Associate professor. Research areas include ocean circulation dynamics, theory and method of ocean forecasting.E-mail:liuna@nmefc.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Impacts of two types of ENSO on the interannual variability of North Equatorial Current bifurcation in the Pacific”(No.41406013) and “Diurnal variation of SST in China’s surrounding sea area and its influence on regional climate”(No.41376016)

海洋环境预报在经济发展和基础设施建设等方面发挥着越来越重要的作用,涉及到海上安全、海洋能源开发与保护、远洋运输和海洋渔业等许多领域和方面。近年来,各国的全球海洋预报取得了显著的进展。全球海洋数据同化实验(GODAE)OceanView计划为各国提供协调和技术支持,发展并建立全球业务化海洋预报系统,将全球海洋预报的概念实现业务化运行。全球业务化海洋预报系统以海洋动力数值模式作为动力框架,将近实时高质量的观测输入场通过资料同化融入到模式中,实现对全球范围多时空尺度的海洋状况提供未来演替的预测,并对产品表现不间断地进行监测以保证预报服务的质量。简要介绍和回顾GODAE OceanView所涵盖的全球海洋预报系统的发展历程和现状,并对全球海洋预报未来发展的难点与问题给予展望。

The marine environmental forecast plays an increasingly important role in economic growth and infrastructure development, and touches upon many fields and aspects, including marine security, energy resources development and protection, ocean shipping and fisheries. Global Ocean Data Assimilation Experiment (GODAE) OceanView supports the national research groups providing them with coordination and technical support among the partners. Forecasting centers develop and establish global operational ocean forecast systems. The global operational ocean forecasting system uses the ocean dynamic numerical model as the dynamic framework, and the near real-time high-quality observation input field is integrated into the model by data assimilation to realize the future environmental forecasts of the marine conditions covering the multi-time scale. The products are routinely validated with observations in order to assess their quality. This paper briefly introduced and reviewed the development process and current situation of the global ocean forecasting system covered by GODAE OceanView, and outlined the future development of global ocean forecasting.

中图分类号: 

图1 各国全球业务化海洋预报系统发展历程
Fig.1 Evolution of the development of the ocean forecasting systems in operation in the different countries
表1 国内外全球业务化海洋预报系统
Table 1 Global operational oceanography forecasting systems
[1] Tonani M, Balmaseda M, Bertino L, et al.Status and future of global and regional ocean prediction systems[J]. Journal of Operational Oceanography, 2015, 8(Suppl.2): s201-s220.
doi: 10.1080/1755876X.2015.1049892     URL    
[2] Schiller A, Brassington G B.Operational Oceanography in the 21st Century[M]. Dordrecht: Springer, 2011.
[3] Hernandez F, Bertino L, Brassington G B, et al.Validation and intercomparison studies within GODAE[J]. Oceanography, 2009, 22(3): 128-143.
doi: 10.5670/oceanog.2009.71     URL    
[4] Bell M J, Lefèbvre M, Le Traon P Y,et al. GODAE: The Global Ocean Data Assimilation experiment[J]. Oceanography, 2009, 22(3): 14-21.
doi: 10.5670/oceanog.2009.62     URL    
[5] Bell M J, Schiller A, Le Traon P Y,et al. An introduction to GODAE OceanView[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1): s2-s11.
doi: 10.1080/1755876X.2015.1022041     URL    
[6] Schiller A, Bell M J, Brassington G B, et al.Synthesis of new scientific challenges for GODAE OceanView[J]. Journal of Operational Oceanography, 2015, 8(Suppl.2): s259-s271.
doi: 10.1080/1755876X.2015.1049901     URL    
[7] Li Yinghong, Wang Fan, Ren Xiaobo.Development trend and strategy of ocean observing capability[J]. Advances in Earth Science, 2010, 25(7): 715-722.
[李颖虹, 王凡, 任小波. 海洋观测能力建设的现状、趋势与对策思考[J]. 地球科学进展, 2010, 25(7): 715-722.]
[8] Legler D M, Freeland H J, Lumpkin R, et al.The current status of the real-time in situ Global Ocean Observing System for operational oceanography[J]. Journal of Operational Oceanography, 2015, 8(Suppl.2): s189-s200.
doi: 10.1080/1755876X.2015.1049883     URL    
[9] Le Traon P Y, Antoine D, Bentamy A, et al. Use of satellite observations for operational oceanography: Recent achievements and future prospects[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1): s12-s27.
doi: 10.1080/1755876X.2015.1022050     URL    
[10] Lin Mingsen, Zhang Youguang, Yuan Xinzhe.The development course and trend of ocean remote sensing satellite[J]. Acta Oceanologica Sinica, 2015, 37(1): 1-10.
[林明森, 张有广, 袁欣哲. 海洋遥感卫星发展历程与趋势展望[J]. 海洋学报, 2015, 37(1): 1-10.]
[11] Chen Dake, Xu Jianping, Ma Jirui, et al.Argo global observation network and studies of upper ocean structure, variability and predictability[J]. Advances in Earth Science, 2008, 23(1): 1-7.
[陈大可, 许建平, 马继瑞, 等. 全球实时海洋观测网(Argo)与上层海洋结构、变异及预测研究[J]. 地球科学进展, 2008, 23(1): 1-7.]
doi: 10.3321/j.issn:1001-8166.2008.01.001     URL    
[12] Dombrowsky E, Bertino L, Brassington G B, et al.GODAE systems in operation[J]. Oceanography, 2009, 22(3): 80-95.
doi: 10.5670/oceanog.2009.68     URL    
[13] Wang Hui, Liu Na, Pang Renbo, et al.Global ocean forecasting and scientific big data[J]. Chinese Science Bulletin, 2015, 60(5/6): 479-484.
[王辉, 刘娜, 逄仁波, 等. 全球海洋预报与科学大数据[J]. 科学通报, 2015, 60(5/6): 479-484.]
[14] National Marine Environmental Forecasting Center. “13th Five-Year” Development Planning of National Marine Environmental Forecasting Center[Z]. 2017.
[国家海洋环境预报中心. 国家海洋环境预报中心“十三五”事业发展规划[Z]. 2017.]
[15] Li Hong, Xu Jianping.Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin, 2011, 30(4): 463-472.
[李宏, 许建平. 资料同化技术的发展及其在海洋科学中的应用[J]. 海洋通报, 2011, 30(4): 463-472.]
[16] Martin M J, Balmaseda M, Bertino L, et al.Status and future of data assimilation in operational oceanography[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1): s28-s48.
doi: 10.1080/1755876X.2015.1022055     URL    
[17] Wu Xinrong, Wang Xidong, Li Wei, et al.Review of the application of ocean data assimilation and data fusion techniques[J]. Journal of Ocean Technology, 2015, 34(3): 97-103.
[吴新荣, 王喜冬, 李威, 等. 海洋数据同化与数据融合技术应用综述[J]. 海洋技术学报, 2015, 34(3): 97-103.]
URL    
[18] Metzger E J, Smedstad O M, Thoppil P G, et al.US navy operational global ocean and Arctic ice prediction systems[J]. Oceanography, 2014, 27(3): 32-43.
doi: 10.5670/oceanog.2014.66     URL    
[19] Metzger E J, Smedstad O M, Thoppil P, et al.Validation Test Report for the Global Ocean Prediction System V3.0-1/12° HYCOM/NCODA: Phase I[R]. Naval Research Laboratory, Oceanography Division,Stennis Space Center, 2008.
[20] Metzger E J, Smedstad O M, Thoppil P, et al.Validation Test Report for the Global Ocean Forecast System V3. 0-1/12° HYCOM/NCODA: Phase II[R]. Naval Research Laboratory, Oceanography Division,Stennis Space Center, 2010.
[21] Wang Hui, Wan Liying, Qin Yinghao, et al.Development and application of the Chinese global operational oceanography forecasting syste[J]. Advances in Earth Science, 2016, 31(10): 1 090-1 104.
[王辉, 万莉颖, 秦英豪, 等. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1 090-1 104.]
doi: 10.11867/j.issn.1001-8166.2016.10.1090     URL    
[22] Liu Na, Wang Hui, Ling Tiejun, et al. Development of global ocean general circulation numerical forecasting system in China[J]. Marine Science Bulletin, 2018,in press.
[刘娜, 王辉, 凌铁军, 等. 一个基于MOM的全球海洋数值同化预报系统[J]. 海洋通报, 2018,待刊.]
[23] Large W G, McWilliams J C, Doney S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization[J].Reviews of Geophysics, 1994, 32: 363-403.
doi: 10.1029/94RG01872     URL    
[24] Cummings J A.Operational multivariate ocean data assimilation[J].Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3 583-3 604.
doi: 10.1256/qj.05.105     URL    
[25] Cummings J A, Smedstad O M.Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications(Vol. II)[M]. Berlin Heidelberg: Springer, 2013.
[26] Kalnay E, Kanamitsu M, Baker W E.Global numerical weather prediction at the National Meteorological Center[J].Bulletin of the American Meteorological Society, 1990, 71: 1 410-1 428.
doi: 10.1175/1520-0477(1990)0712.0.CO;2     URL    
[27] Zhu Yaping, Cheng Zhoujie, He Xiyu.Overview of US naval operational ocean forecasting system[J]. Marine Forecasts, 2015, 32(5): 98-105.
[朱亚平, 程周杰, 何锡玉. 美国海军海洋业务预报纵览[J]. 海洋预报, 2015, 32(5): 98-105.]
doi: 10.11737/j.issn.1003-0239.2015.05.012     URL    
[28] Madec G. NEMO Reference Manual, Ocean Dynamics Component: NEMO-OPA. Preliminary Version[R]. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL),France, 2008.
[29] Brasseur P, Bahurel P, Bertino L, et al.Data assimilation in operational ocean forecasting systems: The MERCATOR and MERSEA developments[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(613): 3 561-3 582.
doi: 10.1256/qj.05.142     URL    
[30] Tranchant B, Testut C E, Ferry N, et al.SAM2: The second generation of Mercator assimilation system[C]∥II Proceeding of the 4th international Conference on EUROGOOS. Brest,2005.
[31] Large W G, Yeager S G.Diurnal to decadal global forcing for ocean and sea ice models: The data sets and flux climatologies[R].NCAR Technical Note/TN-460+STR.DOI:10.5065/D6KK98Q6.
[32] Hunke E C, Lipscomb W H.CICE: The Los Alamos Sea Ice model[R].Documentation and software users manual, Version 4.1 (LA-CC-06-012), T-3 Fluid Dynamics Group, Los Alamos,2010.
[33] Mogensen K S, Balmaseda M A, Weaver A.The NEMOVAR Ocean Data Assimilation System as Implemented in the ECMWF Ocean Analysis for System 4[R].ECMWF Technical Memorand um,2012.
[34] Mogensen K, Alonso-Balmaseda M, Weaver A, et al.A variational data assimilation system for the NEMO ocean model[J]. ECMWF Newsletter, 2009, 20: 17-22.
URL    
[35] Martin M J, Hines A, Bell M J.Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 59-89.
doi: 10.1002/qj.74     URL    
[36] Blockley E W, Martin M J, McLaren A J,et al. Recent development of the Met Office operational ocean forecasting system: An overview and assessment of the new Global FOAM forecasts[J]. Geoscientific Model Development, 2013, 6(7): 6 219-6 278.
doi: 10.5194/gmdd-6-6219-2013     URL    
[37] Waters J, Lea D J, Martin M J, et al.Implementing a variational data assimilation system in an operational 1/4 degree global ocean model[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 141(687): 333-334.
doi: 10.1002/qj.2388     URL    
[38] Waters J, Lea D, Martin M J, et al.Describing the Development of the New Foam-nemovar System in the Global 1/4 Degree Configuration[R]. Technical Report 578, Met Office, 2013.
[39] Toyoda T, Fujii Y, Yasuda T, et al.Data assimilation of sea ice concentration into a global ocean-sea ice model with corrections for atmospheric forcing and ocean temperature fields[J]. Journal of Oceanography, 2016, 72(2): 235-262.
doi: 10.1007/s10872-015-0326-0     URL    
[40] Toyoda T, Fujii Y, Yasuda T, et al.Improved analysis of seasonal-interannual fields using a global ocean data assimilation system[J]. Theoretical and Applied Mechanics Japan, 2013, 61: 31-48.
doi: 10.11345/nctam.61.31     URL    
[41] Usui N, Ishizaki S, Fujii Y, et al.Meteorological research institute Multivariate Ocean Variational Estimation (MOVE) system: Some early results[J]. Advances in Space Research, 2006, 37(4): 806-822.
doi: 10.1016/j.asr.2005.09.022     URL    
[42] Brassington G B, Pugh T, Spillman C, et al.BLUElink> development of operational oceanography and servicing in Australia[J]. Journal of Research and Practice in Information Technology, 2007, 39(2): 151-164.
[43] Griffies S M, Harrison M J, Pacanowski R C, et al. A Technical Guide to MOM4[R]. GFDL Ocan Group Techniaal Report No.5,2004.
[44] Schiller A, Oke P R, Brassington G B, et al.Eddy-resolving ocean circulation in the Asian-Australian region inferred from an ocean reanalysis effort[J]. Progress in Oceanography, 2008, 76(3): 334-365.
doi: 10.1016/j.pocean.2008.01.003     URL    
[45] Sandery P A, Brassington G B, Freeman J.Adaptive nonlinear dynamical initialization[J].Journal of Geophysical Research, 2010, 116(C01021).DOI:10.1029/2010JC006260.
[46] Oke P R, Griffin D A, Schiller A, et al.Evaluation of a near-global eddy-resolving ocean model[J]. Geoscientific Model Development, 2013, 6(3): 591-615.
doi: 10.5194/gmd-6-591-2013     URL    
[47] Xiao Xianjun, He Na, Zhang Zuqiang, et al.Variation assimilation using satellite data of sea surface temperature and altimeter[J]. Journal of Tropical Oceanography, 2011, 30(3): 1-8.
[肖贤俊, 何娜, 张祖强, 等. 卫星遥感海表温度资料和高度计资料的变分同化[J]. 热带海洋学报, 2011, 30(3): 1-8.]
[48] Xiao X J, Wang D X, Yan C X, et al.Evaluation of a 3dVAR system for the South China Sea[J]. Progress in Natural Science, 2008, 18: 547-554.
doi: 10.1016/j.pnsc.2007.12.007     URL    
[49] Wang D X, Qin Y H, Xiao X J, et al.Preliminary results of a new global ocean reanalysis[J]. Chinese Science Bulletin, 2012, 57: 3 509-3 517.
doi: 10.1007/s11434-012-5232-x     URL    
[50] Winton M.A reformulated three-layer sea ice model[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17(4): 525-531.
doi: 10.1175/1520-0426(2000)0172.0.CO;2     URL    
[51] Greatbatch R J, Lu Y, Cai Y.Relaxing the boussinesq approximation in ocean circulation models[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18: 1 911-1 923.
doi: 10.1175/1520-0426(2001)0182.0.CO;2     URL    
[52] Gent P R, McWilliams J C. Isopycnal mixing in ocean circulation models[J].Journal of Physical Oceanography, 1990, 20: 150-155.
doi: 10.1175/1520-0485(1990)0202.0.CO;2     URL    
[53] Dupont F, Higginson S, Bourdallé-Badie R, et al.A high-resolution ocean and sea-ice modelling system for the Arctic and North Atlantic oceans[J]. Geoscientific Model Development, 2015, 8(5): 1 577-1 594.
doi: 10.5194/gmdd-8-1-2015     URL    
[54] Dupont F, Chittibabu P, Fortin V, et al.Assessment of a NEMO-based hydrodynamic modelling system for the Great Lakes[J]. Water Quality Research Journal of Canada, 2012, 47(3/4): 198-214.
doi: 10.2166/wqrjc.2012.014     URL    
[55] Francis P A, Vinayachandran P N, Shenoi S S.The Indian ocean forecast system[J].Current Science, 2013, 104(10): 1 354-1 368.
doi: 10.1371/journal.pone.0063867     URL    
[56] Hallberg R.Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects[J].Ocean Modelling, 2013, 72: 92-103.
doi: 10.1016/j.ocemod.2013.08.007     URL    
[57] Smedstad O M, Hurlburt H E, Metzger E J, et al. An operational Eddy resolving 1/16° global ocean nowcast/forecast system[J]. Journal of Marine Systems, 2003, 40/41: 341-361.
doi: 10.1109/OCEANS.2002.1192067     URL    
[58] Bernard B, Madec G, Penduff T, et al.Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy permitting resolution[J]. Ocean Dynamics, 2006, 56: 543-567.
doi: 10.1007/s10236-009-0180-y     URL    
[59] Drévillon M, Bourdallé-Badie R, Derval C, et al.The GODAE/Mercator-Ocean global ocean forecasting system: Results, applications and prospects[J]. Journal of Operational Oceanography, 2008, 1(1): 51-57.
doi: 10.1080/1755876X.2008.11020095     URL    
[60] Storkey D, Blockley E W, Furner R, et al.Forecasting the ocean state using NEMO: The new FOAM system[J]. Journal of Operational Oceanography, 2010, 3(1): 3-15.
doi: 10.1080/1755876X.2010.11020109     URL    
[61] Ferry N, Parent L, Garric G, et al.Mercator Global Eddy Permitting Ocean reanalysis GLORYS1V1: Description and results[J]. Mercator Ocean Quarterly Newsleter, 2010, 36: 15-27.
URL    
[62] McWilliams J C, Sullivan P P, Moeng C H. Langmuir turbulence in the ocean[J]. Journal of Fluid Mechanics, 1997, 334: 1-30.
doi: 10.1017/S0022112096004375     URL    
[63] Crawford G, Large W G.A numerical investigation of resonant inertial response of the ocean to wind events[J]. Journal of Physical Oceanography, 1996, 26: 873-891.
doi: 10.1175/1520-0485(1996)0262.0.CO;2     URL    
[64] Firing E, Lien R-C, Muller P.Observations of strong inertial oscillations after the passage of Tropical Cyclone Ofa[J]. Journal of Geophysical Research, 1997, 102: 3 317-3 322.
doi: 10.1029/96JC03497     URL    
[65] McWilliams J C, Danabasoglu G. Eulerian and eddyinduced meridional overturning circulations in the tropics[J].Journal of Physical Oceanography, 2002, 32: 2 054-2 071.
doi: 10.1175/1520-0485(2002)0322.0.CO;2     URL    
[66] Molemaker M J, McWilliams J C, Capet X. Balanced and unbalanced routes to dissipation in an equilibrated Eady flow[J]. Journal of Fluid Mechanics, 2010, 654: 35-63.
doi: 10.1017/S0022112009993272     URL    
[67] Oke P R, Brassington G B, Griffin D A, et al.The Bluelink Ocean Data Assimilation System (BODAS)[J]. Ocean Modelling, 2008, 21(1): 46-70.
doi: 10.1016/j.ocemod.2007.11.002     URL    
[68] Gehlen M, Barciela R, Bertino L, et al.Building the capacity for forecasting marine biogeochemistry and ecosystems: Recent advances and future developments[J]. Journal of Operational Oceanography, 2015, 8(Suppl.1): s168-s187.
doi: 10.1080/1755876X.2015.1022350     URL    
[69] Wu Mingchuan, Huang Lei, Liu Ying, et al.An OpenCL compiler for the Homegrown Heterogeneous Many-core Processor on the Sunway Taihu light[J]. Supercomputer, 2017, 40(146):1-16.
[伍明川, 黄磊, 刘颖, 等. 面向神威·太湖之光的国产异构众核处理器OpenCL 编译系统[J].计算机学报, 2017, 40(146):1-16.]
[70] Wang Bin, Zhou Tianjun, Yu Yongqiang, et al.A perspective on earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6): 857-869.
[王斌,周天军,俞永强,等. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6): 857-869.]
doi: 10.3321/j.issn:0577-6619.2008.06.002     URL    
[1] 王辉, 万莉颖, 秦英豪, 王毅, 杨学联, 刘洋, 邢建勇, 陈莉, 王彰贵, 仉天宇, 刘桂梅, 杨清华, 吴湘玉, 刘钦燕, 王东晓. 中国全球业务化海洋学预报系统的发展和应用[J]. 地球科学进展, 2016, 31(10): 1090-1104.
阅读次数
全文


摘要