地球科学进展 ›› 2013, Vol. 28 ›› Issue (6): 695 -702. doi: 10.11867/j.issn.1001-8166.2013.06.0695

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

青藏公路沿线热喀斯特湖分布特征及其热效应研究
牛富俊 1,董 晟 2,林战举 1,鲁嘉濠 1,罗 京 1   
  1. 1.中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000;2.北京工业大学建筑工程学院,北京 100124
  • 收稿日期:2012-11-19 修回日期:2013-04-08 出版日期:2013-06-10
  • 基金资助:

    中国科学院寒区旱区环境与工程研究所人才基金项目“青藏工程走廊内热融湖时空演化研究”;国家重点基础研究发展计划项目“高原工程走廊内冻土变化及其灾害时空演化规律”(编号:2012CB02610)资助.

Distribution of Thermokarst Lakes and Its Thermal Influence on  Permafrost along Qinghai-Tibet Highway

Niu Fujun, Dong  Cheng, Lin Zhanju, Lu Jiahao, Luo Jing   

  1. 1.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000,China; 2.The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2012-11-19 Revised:2013-04-08 Online:2013-06-10 Published:2013-06-10

热喀斯特湖的出现和发育是多年冻土变暖的指示器,研究热喀斯特湖发育及其热效应是应对青藏高原气候变化和人类活动诱发冻土灾害的基础工作。基于SPOT5卫星影像资料,在ArcGIS平台下解译遥感影像,获取了青藏公路沿线楚玛尔河至风火山段热喀斯特湖的数量和分布特征,这些热喀斯特湖以楚玛尔河高平原和北麓河盆地为主要分布区,且80%发育于高含冰量多年冻土区。热喀斯特湖通过竖向和侧向2种传热方式影响多年冻土,竖向传热会造成其下部多年冻土融穿,侧向传热会造成湖岸多年冻土增温,扩大热影响范围。通过北麓河地区一典型热喀斯特湖的数值计算,湖全年都在向湖岸放热。当热喀斯特湖离路基较近,将会对公路产生潜在或者直接的危害,其侧向热侵蚀往往会导致冻土路基温度升高,诱发路基病害。

The occurrence of thermokarst lake is an indicator implying the permafrost warming. A study of  thermokarst lake and their thermal effect will become an important basic work that responds to the permafrost hazards induced by the climate changes and the anthropogenic activities on the QinghaiTibet Plateau. Based on SPOT-5 satellite image data, we interpreted and obtained  the area and quantity of thermokarst lakes from Chumaerhe to Fenghuoshan Mountain section along the Qinghai-Tibet Highway under the ArcGIS platform in this paper. The result shows that these thermokarst lakes have mainly spread in Chumaerhe High Plains and Beiluhe Basin and approximately 80% lakes have been developing in rich-ice permafrost regions. The thermokarst lake influences  the permafrost through downward and lateral heat transfer. The downward heat transfer  accelerates the thawing of permafrost and the formation of an open-talik, the lateral heat erosion will cause the permafrost warming at lakeshore and expand the scope of the heat-affected. The modeled result of a typical thermokarst lake in Beiluhe Basin shows that the lake has always released the heat to lakeshore in a whole year. If the thermokarst lake is  close to the roadbed, it will cause influence on the  stability of roadbed, especially the lateral thermal erosion often leads to the temperature increases of frozen soil subgrade and induces  the embankment disease.

中图分类号: 

[1]Qiu Guoqing, Liu Jingren, Liu Hongxu, et al. Dictionary of Permafrost[M]. Lanzhou: Gansu Science and Technology  Press, 1994:275.[邱国庆, 刘经仁, 刘洪绪,等. 冻土学词典[M]. 兰州: 甘肃科学技术出版社, 1994:275.]

[2]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing:Science Press,2000:401-405.[周幼吾, 郭东信, 邱国庆,等. 中国冻土[M]. 北京: 科学出版社, 2000:401-405.]

[3]Liu Ge, Fan Kai, Zhang Jinzhao, et al. Permafrost changes under the influence of Qinghai-Tibet Highway[J]. Journal of China and Foreign Highway, 2008, 28(1): 25-27.[刘戈, 樊凯, 章金钊,等. 青藏公路工程条件下多年冻土的变化[J]. 中外公路, 2008,28(1): 25-27.]

[4]Lin Zhanju. Study of Thermokarst Lake and Its Influence on the Permafrost Environment and Engineering[D]. Beijing: University of Chinese Academy of Sciences, 2011.[林战举. 多年冻土区热喀斯特湖特征及其对冻土环境与工程的影响研究[D]. 北京: 中国科学院大学, 2011.]

[5]Lawson D E. Response of permafrost terrain to disturbance: A synthesis of observation from permafrost in the Alaska[J]. Arctic and Alpine Research,1986,18(1): 1-17.

[6]Ling F, Zhang T. Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic and Coastal Plain[J]. Journal of Geophysical Research, 2003,108(D16),doi:10.1029/2002JD003014.

[7]Wang Shaoling.Thermokarst along the Qinghai-Tibet Highway[C]∥Geographical Society of China and China Civil Engineering Society, Proceeding of Second National Conference on Permafrost. Lanzhou: Gansu People’s Publishing House, 1983: 58-64.[王绍令. 青藏公路沿线的热喀斯特[C]∥中国地理学会中国土木工程学会第二届全国冻土学术会议论文选集.兰州:甘肃人民出版社, 1983: 58-64.]

[8]Pan Weidong, Zhu Yuanlin, Wu Yaping, et al. The effect of harmful features related to frozen ground on railway construction in permafrost area of Qinghai-Tibet Plateau[J]. Journal of Lanzhou University (Natural Sciences), 2002, 38: 127-131.[潘卫东, 朱元林, 吴亚平,等. 青藏高原多年冻土地区不良现象对铁路间色和的影响[J]. 兰州大学学报:自然科学版, 2002,38: 127-131.]

[9]Yu Shaoshui, Pan Weidong, Shi Conghui, et al. Investigation and mechanism analysis of the major secondary harmful frozen-soil phenomena along Qinghai-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(6): 1 082-1 085.[余绍水, 潘卫东, 史聪慧,等. 青藏铁路沿线主要次生不良冻土现象的调查和机理分析[J]. 岩石力学与工程学报, 2005,24(6): 1 082-1 085.]

[10]Ma Xiaojie, Zhang Jianming, Chang Xiaoxiao, et al. Experimental study on creep of warm and ice-rich frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 848-852.[马小杰, 张建明, 常小晓,等. 高温—高含冰量冻土蠕变试验研究[J]. 岩土工程学报, 2007, 29(6): 848-852.]

[11]Lunardini V J. Climatic warming and the degradation of warm permafrost[J]. Permafrost Periglacial Processes, 1996, 7: 311-320.

[12]Xu Jian, Niu Fujun, Lin Zhanju. Numerical analysis of rheological character of embankment with warm and ice-rich frozen soil[J]. China Railway Science, 2008, 29(5): 13-19.[许健, 牛富俊, 林战举. 高温高含冰量冻土路基流变特性数值分析[J]. 中国铁道科学, 2008, 29(5): 13-19.]

[13]Zhang J, Ma X, Zheng B. Experimental study on mechanism of subgrade deformation in permafrost regions along Qinghai-Tibetan Railway[C]∥Proceeding of the Ninth International Conference on Permafrost. Fairbanks: University of Alaska Fairbanks, 2008:2 043-2 048.

[14]Wang Shaoling. Permafrost changes and environmental problems along Qinghai-Tibetan Railway[J]. China Environmental Sciences, 1993, 13(5): 344-349.[王绍令. 青藏公路沿线多年冻土的变化及环境问题[J]. 中国环境科学, 1993, 13(5): 344-349.]

[15]Jin Huijun, Yu Qihao, Wang Shaoling, et al. Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate warming[J]. Cold Regions Science and Technology, 2008, 53(3): 317-333.

[16]Yang Shiming,Tao Wenshuan. Heat Transfer: Fourth Version[M]. Beijing: Higher Education Press, 2006: 10-63.[杨世铭, 陶文栓. 传热学:第四版[M]. 北京: 高等教育出版社, 2006: 10-63.]

[17]Lin Zhanju, Niu Fujun, Liu Hu, et al. Disturbance-related thawing of a ditch and its influence on roadbeds on permafrost[J]. Cold Regions Science and Technology, 2011, doi: 10.1016/j.coldregions.2011.01.006.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[4] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[5] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[6] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[7] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[8] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[9] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[10] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[11] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[12] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[13] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[14] 黄鹏, 陈立奇, 蔡明刚. 全球海洋人为碳储量估算及时空分布研究进展[J]. 地球科学进展, 2015, 30(8): 952-959.
[15] 刘军, 于志刚, 臧家业, 孙涛, 赵晨英, 冉祥滨. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30(5): 564-578.
阅读次数
全文


摘要