Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (5): 459-464    DOI: 10.11867/j.issn.1001-8166.2017.05.0459
综述与评述     
青藏高速公路修筑对冻土工程走廊的热力影响及环境效应
马巍1, 穆彦虎1, 谢胜波1, 2, 毛云程1, 陈敦1
1. 冻土工程国家重点实验室 中国科学院西北生态环境资源研究院(筹),甘肃 兰州 730000;
2.沙漠与沙漠化重点实验室 中国科学院西北生态环境资源研究院(筹),甘肃 兰州 730000
Thermal-mechanical Influences and Environmental Effects of Expressway Construction on the Qinghai-Tibet Permafrost Engineering Corridor
Ma Wei1, Mu Yanhu1, Xie Shengbo1, 2, Mao Yuncheng1, Chen Dun1
1.State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2.Key Laboratory of Desert and Desertification/ Dunhuang Gobi and Desert Research Station/Gansu Center for Sand Hazard Reduction Engineering and Technology, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(982 KB)   HTML
摘要: 青藏工程走廊是连接西藏与内地的战略通道,已建数条重大工程聚集于这一狭窄地质环境脆弱敏感带内。随着西藏自治区新一轮的经济发展,包括青藏高速公路、铁路复线、高压输变电线路等重大线性工程已纳入到国家相关发展规划中,尤其青藏高速公路的建设迫在眉睫。廊内控制性环境地质问题是冻土,重大工程建设在受到冻土地质环境制约的同时,也将产生显著的环境效应,且随着走廊工程布局的日益密集,构筑物群相互热影响及对走廊冻土地质环境的扰动将日益突显。面对这一问题,在国家自然科学基金重点项目支持下,开展“青藏高速公路修筑对冻土工程走廊的热力影响及环境效应”研究。从项目的研究意义、拟解决的关键科学问题、主要研究内容和预期目标4个方面进行介绍,以期为相关科研、工程技术人员提供参考。
关键词: 青藏工程走廊工程活动热力格局相互作用冻土地质环境    
Abstract: The Qinghai-Tibet Engineering Corridor (QTEC) is a strategic passage between Tibet and central China. In the past half century, several major projects have been built in this narrow corridor with vulnerable geoenvironment. Along with a new round of economic development of the Tibet autonomous region, some major linear projects including expressway, double-tracking railway, high voltage power transmission line have been incorporated into the national development planning within the corridor, and especially the expressway construction is imminent now. In the QTEC, permafrost is a controlling factor of geological environment, which will impose great restrictions on engineering construction. In turn, engineering construction will induce significant effects on permafrost geological environment. With more and more linear infrastructures crowding into the QTEC, the thermal interaction among permafrost engineering and engineering disturbance on permafrost thermal-mechanical regime will be more significant. With respect to this issue, a research program focusing on thermal-mechanical influences and environmental effects of expressway construction on the Qinghai-Tibet permafrost engineering corridor was started and supported by the National Natural Science Foundation of China. In this paper, the research significance, key scientific issues, main research contents and goals of the program are introduced so as to provide some references for related researchers and engineers.
Key words: Engineering activities    Qinghai-Tibet engineering corridor    Thermal-force regime.    Permafrost geologic environment    Interaction
收稿日期: 2017-01-20 出版日期: 2017-05-20
ZTFLH:  P642.14  
基金资助: 国家自然科学基金重点项目“青藏高速公路修筑对冻土工程走廊的热力影响及环境效应”(编号:41630636); 国家重点基础研究发展计划项目“青藏高原重大冻土工程的基础研究”(编号:2012CB026100)资助
作者简介: 马巍(1963-),男,甘肃天水人,研究员,主要从事冻土力学与寒区工程研究.E-mail:mawei@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
穆彦虎
陈敦
马巍
谢胜波
毛云程

引用本文:

马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.

Ma Wei, Mu Yanhu, Xie Shengbo, Mao Yuncheng, Chen Dun. Thermal-mechanical Influences and Environmental Effects of Expressway Construction on the Qinghai-Tibet Permafrost Engineering Corridor. Advances in Earth Science, 2017, 32(5): 459-464.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.05.0459        http://www.adearth.ac.cn/CN/Y2017/V32/I5/459

[1] Xu Xuezu, Wang Jiacheng, Zhang Lixin. Frozen Soil Physics[M]. Beijing: Science Press, 2001.
. 北京: 科学出版社, 2001.]
[2] Wu Ziwang, Ma Wei. Strength and Creep of Frozen Soil[M]. Lanzhou: Lanzhou University Press, 1994.
. 兰州: 兰州大学出版社, 1994.]
[3] Ma Wei, Wang Dayan. Frozen Soil Mechanics[M]. Beijing: Science Press, 2014.
. 北京:科学出版社,2014.]
[4] Ma Wei, Niu Fujun, Mu Yanhu. Basic research on the major permafrost projects in the Qinghai-Tibet Plateau[J]. Advances in Earth Science ,2012, 27(11): 1 185-1 191.
. 地球科学进展, 2012, 27(11): 1 185-1 191.]
[5] Wang Sijing. Interaction between human engineering activity and geoenvironment and its environmental effects[J]. Journal of Geological Hazards and Environment Preservation ,1997, 8(1): 19-26.
. 地质灾害与环境保护, 1997, 8(1): 19-26.]
[6] Wang Shaoling, Mi Haizhen. Changes of permafrost after the pavementof asphaltic surface along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology ,1993, 15(4):566-573.
. 冰川冻土, 1993, 15(4): 566-573.]
[7] Wu Qingbai, Mi Haizhen. Predications and control proposals of frozen ground under asphalt pavement at the high ground temperature section of the Qinghai-Xizang Highway[J]. Hydrogeology and Engineering Geology ,2000, 27(2): 14-17.
. 水文地质与工程地质,2000, 27(2): 14-17.]
[8] Cheng Guodong, Zhao Lin. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau[J]. Quaternary Sciences ,2000, 20(6): 521-531.
. 第四纪研究, 2000, 20(6): 521-531.]
[9] Wu Qingbai, Liu Yongzhi, Zhang Jianming, et al . A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China[J]. Permafrost and Periglacial Processes ,2002, 13:199-205,doi:10.1002/999.420.
[10] Jin Huijun, Yu Qihao, Wang Shaoling, et al .Changes in permafrost environments along the Qinghai-Tibet engineering corridor induced by anthropogenic activities and climate change[J]. Cold Regions Science and Technology ,2008, 53(3): 317-333.
[11] He Ruixia, Jin Huijun, Chang Xiaoli, et al. Environmental effect on Golmud-Lhasa oil product pipeline[J]. Oil & Gas Storage and Transportation ,2009, 28(9):75-78.
. 油气储运, 2009, 28(9): 75-78.]
[12] Yang Jianping, Ding Yongjian, Chen Rensheng, et al . Permafrsot change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers[J]. Journal of Mountain Science ,2004, 22(3): 278-285.
. 山地学报, 2004, 22(3): 278-285.]
[13] Wang Genxu, Yao Jinzhong, Guo Zhenggang, et al . Changes in permafrost ecosystem under the influences of human engineering activities and its enlightenment to the railway construction[J]. Chinese Science Bulletin ,2004, 49(16): 1 741-1 750.
[14] Wang Yibo, Wang Genxu, Chang Juan. Impacts of human activity on permafrost environment of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology ,2004, 26(5):523-527.
. 冰川冻土, 2004, 26(5):523-527.]
[15] Guo Zhenggang, Niu Fujun, Zhan Hu, et al. Changes of grassland ecosystem due to degradation of permafrost frozen soil in the Qinghai-Tibet Plateau[J]. Aata Ecologica Sinica ,2007, 27(8):3 294-3 301.
. 生态学报, 2007, 27(8): 3 294-3 301.]
[16] Wang Genxu, Hu Hongchang, Wang Yibo, et al .Response of alpine cold ecosystem biomass to climate changes in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology ,2007, 29(5):671-679.
. 冰川冻土, 2007, 29(5): 671-679.]
[17] Xie Shengbo, Qu Jianjun, Liu Bing, et al . Advances in research on the sand hazards and its controls along the Qinghai-Tibet Railway[J]. Journal of Desert Research , 2014, 34(1):42-48.
. 中国沙漠, 2014, 34(1):42-48.]
[18] Zhang Kecun, Qu Jianjun, Yao Zhengyi, et al . Sand damage and its control along the Golha section of Qinghai-Tibet Railway[J]. Arid Land Geography ,2014, 37(1):74-80.
. 干旱区地理, 2014, 37(1):74-80.]
[19] Mu Yanhu, Ma Wei, Niu Fujun, et al . Study on geothechnical hazards to roadway engineering in permafrost regions[J]. Journal of Disaster Prevention and Mitigation Engineering ,2014, 34(3): 259-267.
. 防灾减灾学报, 2014, 34(3): 259-267.]
[20] Cheng Guodong, Wu Qingbai, Ma Wei. Innovative designs of permafrost roadbed for the Qinghai-Tibet Railway[J]. Science in China ( Series E ),2009, 52(2): 530-538.
[21] Ma Wei, Cheng Guodong, Wu Qingbai.Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet Railroad[J]. Cold Regions Science and Technology ,2009, 59(1):3-11.
[22] Ma Wei, Mu Yanhu, Wu Qingbai, et al . Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions[J]. Cold Regions Science and Technology , 2011, 67(3):178-186.
[23] Niu Fujun, Liu Minghao, Cheng Guodong, et al . Long-term thermal regimes of the Qinghai-Tibet Railway embankments in plateau permafrost regions[J]. Science in China ( Series D ),2015, 58(9): 1 669-1 676.
[24] Niu Fujun, Ma Wei, Wu Qingbai. Thermal stability of roadbeds of the Qinghai-Tibet Railway in permafrost regions and the main freezing-thawing hazards[J]. Journal of Earth Science and Environment , 2011, 33(2):196-207.
. 地球科学与环境学报, 2011, 33(2): 196-207.]
[25] Niu Fujun, Lin Zhanju, Lu Jiahao, et al . Study of the influencing factors or roadbed settlement in embankment-bridge transition section along Qinghai-Tibet Railway[J]. Rock and Soil Mechanics , 2011, 33(Suppl.2): 372-377.
. 岩土力学, 2011, 33(增刊2): 372-377.]
[26] Xie Shengbo, Qu Jianjun, Zu Ruiping, et al . New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin ,2012, 57(6): 838-842.
. 科学通报, 2012, 57(6): 393-396.]
[27] Yu Wenbing, Liu Weibo, Chen Lin, et al . Evaluation of cooling effects of crushed rock under sand-filling and climate warming scenarios on the Tibet Plateau[J]. Applied Thermal Engineering , 2016, 92(5):130-136.
[28] You Yanhui, Yang Mingbin, Yu Qihao, et al . Investigation of an icing near a tower foundation along the Qinghai-Tibet Transmission Line[J]. Cold Regions Science and Technology , 2016, 121:250-257,doi:10.1016/j.coldregions.2015.05.025.
[29] Ma Wei. Permafrost related geotechnical problems of Qinghai-Tibet Railway construction[C]∥Proceedings of the Ninth Symposium on Soil Mechanics and Geotechnical Engineering. Beijing:Tsinghua University Press, 2003:155-162.
∥中国土木工程学会第九届土力学及岩土工程学术会议论文集.北京:清华大学出版社,2003:155-162.]
[30] Cheng Guodong. Construction of Qinghai-Tibet Railway with cooled roadbed[J]. China Railway Science ,2003, 24(3): 1-4.
. 中国铁道科学, 2003, 24(3):1-4.]
[31] Cheng Guodong. Interaction between Qinghai-Tibet railway engineering and permafrost and environmental effects[J]. Bulletin of Chinese Academy of Sciences ,2002,(1):21-25.
. 中国科学院院刊, 2002,(1): 21-25.]
[1] 杨韵, 李建平, 谢飞, 冯娟, 孙诚. 热带北大西洋模态年际变率的研究进展与展望[J]. 地球科学进展, 2018, 33(8): 808-817.
[2] 卢龙飞, 张锐, 徐杰, 焦念志. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018, 33(3): 225-235.
[3] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[4] 李国平, 李山山, 黄楚惠. 高原切变线与高原低涡相互作用的研究现状与展望[J]. 地球科学进展, 2017, 32(9): 919-925.
[5] 张强, 张红丽, 张良, 岳平. 论我国夏季风影响过渡区及其陆—气相互作用问题[J]. 地球科学进展, 2017, 32(10): 1009-1019.
[6] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[7] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[8] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.
[9] 李春. “风应力强迫下北太平洋副热带环流与大气环流耦合调整的过程与机理”研究成果介绍[J]. 地球科学进展, 2013, 28(9): 1064-1066.
[10] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[11] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[12] 赵栋梁. 海洋飞沫及其对海—气相互作用影响的研究进展[J]. 地球科学进展, 2012, 27(6): 624-632.
[13] 李海龙,万力,焦赳赳. 海岸带水文地质学研究中的几个热点问题[J]. 地球科学进展, 2011, 26(7): 685-694.
[14] 高抒. 长江三角洲对流域输沙变化的响应:进展与问题[J]. 地球科学进展, 2010, 25(3): 233-241.
[15] 陆日宇,富元海. 夏季东亚和西北太平洋地区的气候变异及其机理[J]. 地球科学进展, 2009, 24(2): 123-131.