地球科学进展 ›› 2016, Vol. 31 ›› Issue (3): 258 -268. doi: 10.11867/j.issn.1001-8166.2016.03.0258.

上一篇    下一篇

全球高分辨率气候系统模式研究进展
栾贻花 1, 2( ), 俞永强 1,,A; *( ), 郑伟鹏 1   
  1. 1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG), 北京 100029
    2.中国科学院气候变化研究中心,北京 100029
  • 收稿日期:2015-11-24 修回日期:2016-02-25 出版日期:2016-03-20
  • 通讯作者: 俞永强 E-mail:luanyh@mail.iap.ac.cn;yyq@lasg.iap.ac.cn
  • 基金资助:
    国家重点基础研究发展计划项目“海洋多尺度变化过程、机理及可预测性研究”(编号:2013CB956204);国家自然科学基重点项目“全球高分辨率气候系统模式研制和应用”(编号:41530426)资助

Review of Development and Application of High Resolution Global Climate System Model

Yihua Luan 1, 2( ), Yongqiang Yu 1, *( ), Weipeng Zheng 1   

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, China
  • Received:2015-11-24 Revised:2016-02-25 Online:2016-03-20 Published:2016-03-10
  • Contact: Yongqiang Yu E-mail:luanyh@mail.iap.ac.cn;yyq@lasg.iap.ac.cn
  • About author:

    First author:Luan Yihua (1983-), female, Laiwu City, Shandong Province, Assistant Scientist. Research areas include the climate numerical simulation and the modeling study of paleoclimate.E-mail:luanyh@mail.iap.ac.cn

    Corresponding author:Yu Yongqiang (1968-), male,Dalian City, Liaoning Province, Professor. Research areas include the climate model and the air-sea interaction.E-mail:yyq@lasg.iap.ac.cn

  • Supported by:
    Project supported by the National Key Basic Research Program of China “Study on the process and mechanism of ocean multi-scale changes and predictability” (No.2013CB956204);the National Natural Science Foundation of China “Development and application of a high Resolution global climate system model” (No.41530426)

气候模式是定量研究气候演变规律、预测或预估未来气候变化的重要工具。提高气候模式空间分辨率并改进相应的物理参数化过程,是改善模式性能的重要途径之一, 对于认识气候变化规律、提高气候预测能力具有重要作用。在阐述发展全球高分辨率气候系统模式重要性的基础上,对当今国内外高分辨率气候系统模式的研究进展进行总结,介绍全球高分辨率气候系统模式研发和评估的现状及其存在的问题,并着重讨论了制约当前高分辨率气候系统模式发展的关键科学问题和技术瓶颈,其中包括高分辨率海洋和大气模式动力框架的研制和大规模高性能并行计算、次网格物理参数化过程的改进,以及中尺度海气相互作用等。同时,还介绍了国际耦合模式比较计划第六阶段中的高分辨率模式比较子计划的科学目标及其试验设计方案。最后对未来我国全球高分辨率气候系统模式的发展和评估进行了展望。

Climate models have been used as an important tool to quantitatively study climate variability and to predict or project climate change in the future. One of the most important pathways for development and improvement of climate system model is to increase the spatial resolution and improve the corresponding physical parameterization schemes, which is very important for understanding climate change and improving climate prediction skill. Based on a brief introduction of the importance of developing high-resolution global climate system model, a review of recent progresses in the development and application of high-resolution models was summarized. The paper also introduced the current situation and problems for the development and evaluation of high-resolution models and focused on the key scientific and technical bottlenecks which restrict the development of high-resolution models, including the development of dynamic framework of the high-resolution ocean and atmospheric models and massive high performance parallel computing, the improvement of the sub-grid physical parameterization scheme, and mesoscale air-sea interaction. Meanwhile, the scientific objects and experiments design of the international high resolution climate model intercomparison project (HiResMIP) of the coupled model intercomparison project phase 6 (CMIP6) was introduced. Finally, we prospect the future developments and evaluations of high-resolution climate models in China was proposed.

中图分类号: 

图1 周平均海表高度的标准差 [ 17 ]
(a)卫星高度计资料MSLA(2000年1月2日至2007年12月19日);(b)0.1°×0.1°分辨率LICOM(2000年1月1日至2007年12月31日)和(c)1°×1°分辨率LICOM (1°×1°分辨率LICOM使用的是逐日的海表高度输出)
Fig.1 The STD of weekly SSHA [ 17 ]
(a)A satellite altimeter during 2000-01-02 to 2007-12-19 (MSLA),(b)Eddy-resolving LICOM (0.1°) and (c) coarse-resolution LICOM (1°) during 2000-01-01 to 2007-12-31.The daily SSHA is also used in the coarse-resolution OGCM
图2 观测和模拟的夏季(6~8月)平均的降水率 [ 25 ]
(a)和(b)区域为印度—中国季风区,(c)和(d)为全球热带区域。观测降水(a,c)来源于TRMM_3B42,模式数据(b,d)为水平分辨率7 km的模式试验,单位为mm/d
Fig.2 Observed and simulated precipitation rate as June-July-August average [ 25 ]
(a) and (b) over the Indo-China monsoon region, (c) and (d) over global tropics. The observed precipitation (a and c) is from TRMM_3B42, and the simulation (b and d) is for 7 km-mesh run. Units: mm/d
图3 高通滤波表面风速和海表温度的时间相关 [ 52 ]
图中打点区域代表t检验显著性超过95%置信水平;(a)1°海洋和0.5°大气(实验1);(b)0.1°海洋和0.5°大气(实验2);(c)0.1°海洋和0.25°大气(实验3);(d)卫星观测。模式结果分析用4年的月平均输出(48个月),观测为2002—2006年的AMSR和OuikSCAT数据
Fig.3 Temporal correlation of high-pass filtered surface wind speed with SST [ 52 ]
Locations where ice appeared have been masked and stippling indicates statistical significance at the 95% level calculated using a two-sided t-test (a) 1.0° ocean and 0.5° atmosphere (experiment 1); (b) 0.1° ocean and 0.5° atmosphere (experiment 2); (c) 0.1° ocean and 0.25° atmosphere (experiment 3);(d) Satellite observations. Model analysis computed using four years of monthly averaged output (48 months), observational analysis using AMSR and OuikSCAT data for 2002-2006
[1] Bony S, Dufresne J L.Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models[J]. Geophysical Research Letters, 2005, 32(20),doi: 10.1029/2005gl023851.
[2] Wang Xiaoqing, Liu Jian, Wang Zhiyuan.Comparison of simulated and reconstructed temperature in China during the past 2000 years[J].Advances in Earth Science,2015, 30(12):1 318-1 327.
[王晓青,刘健,王志远.过去2000年中国区域温度模拟与重建的对比分析[J].地球科学进展,2015,30(12):1 318-1 327.]
[3] Randall D, Khairoutdinov M, Arakawa A, et al.Breaking the cloud parameterization deadlock[J].Bulletin of the American Meteorological Society,2003,84(11):1 547-1 564, doi: 10.1175/BAMS-84-11-1547.
[4] Bennartz R, Lauer A, Brenguier J L.Scale-aware integral constraints on autoconversion and accretion in regional and global climate models[J]. Geophysical Research Letters,2011, 38(10),doi:10.1029/2011GL047618.
[5] Masumoto Y, Sasaki H, Kagimoto T, et al.A fifty-year eddy-resolving simulation of the world ocean-Preliminary outcomes of OFES (OGCM for the Earth Simulator)[J]. Journal of the Earth Simulator, 2004, 1: 35-56.
[6] Maltrud M, McClean J L. An eddy resolving global 1/10 degree ocean simulation[J]. Ocean Modelling, 2005, 8: 31-54, doi: 10.1016/j.ocemod.2003.12.001.
[7] Thoppil P G, Richman J G, Hogan P J.Energetics of a global ocean circulation model compared to observations[J]. Geophysical Research Letters, 2011, 38, doi: 10.1029/2011GL048347.
[8] Fang G H, Wang Y G, Wei Z X, et al.Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009,47(1/3):55-72.
[9] Xu D Z, Zhu J, Qi Y Q, et al.The impact of mean dynamic topography on a sea-level anomaly assimilation in the South China Sea based on an eddy-resolving model[J]. Acta Oceanologica Sinica, 2012,31(5):11-25.
[10] Smedstad O M, Hurlburt H E, Metzger E J, et al.An operational eddy resolving 1/16 degrees global ocean nowcast/forecast system[J]. Journal of Marine Systems, 2003, 40: 341-361.
[11] Shriver J F, Hurlburt H E, Smedstad O M, et al.1/32° real-time global ocean prediction and value-added over 1/16° resolution[J]. Journal of Marine Systems, 2007, 65: 3-26, doi: 10.1016/j.jmarsys.2005.11.021.
[12] Zhang X H, Liang X.A numerical world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1989, 6(1):43-61.
[13] Zhang X H, Chen K M, Jin X Z, et al.Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model[J]. Theoretical and Applied Climatology, 1996, 55(1): 65-87.
[14] Jin X Z, Zhang X H, Zhou T J.Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1999, 16(2):197-215.
[15] Liu Hailong, Yu Yongqiang, Li Wei, et al.LASG/IAP Climate System Ocean Model (LICOM 1.0) Reference Manual[M].Beijing: Science Press, 2014.
[刘海龙,俞永强,李薇,等.LASG/IAP气候系统海洋模式(LICOM 1.0)参考手册[M].北京:科学出版社,2004.]
[16] Liu H L, Lin P F, Yu Y Q, et al.The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0[J]. Acta Meteorologica Sinica, 2012, 26(3): 318-329.
[17] Yu Y Q, Liu H L, Lin P F.A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results[J]. Chinese Science Bulletin, 2012, 57(30): 3 908-3 916, doi: 10.1007/s11434-012-5234-8.
[18] Feng X, Liu H, Wang F, et al.Indonesian throughflow in an eddy-resolving ocean model[J]. Chinese Science Bulletin, 2013, 58(35): 4 504-4 514, doi: 10.1007/s11434-013-5988-7.
[19] Satoh M, Matsuno T, Tomita H, et al.Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations[J]. Journal of Computational Physics, 2008, 227(7): 3 486-3 514.
[20] Miura H, Satoh M, Nasuno T, et al.A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model[J]. Science, 2007,318(5 857): 1 763-1 765, doi: 10.1126/science.1148443.
[21] Miyakawa T, Satoh M, Miura H, et al.Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer[J]. Nature Communications,2014,5:3 769, doi: 10.1038/ Ncomms4769.
[22] Satoh M, Oouchi K, Nasuno T, et al.The intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models[J]. Climate Dynamics,2012,39(9):2 185-2 206.
[23] Yamada Y, Satoh M.Response of ice and liquid water paths of tropical cyclones to global warming simulated by a global nonhydrostatic model with explicit cloud microphysics[J]. Journal of Climate,2013,26:9 931-9 945, doi:10.1175/JCLI-D-13-00182.1.
[24] Miyamoto Y, Satoh M, Tomita H, et al.Gradient wind balance in tropical cyclones in high-resolution global experiments[J]. Monthly Weather Review,2014,142:1 908-1 926.
[25] Oouchi K, Noda A T, Satoh M, et al.Asian summer monsoon simulated by a global cloud-system-resolving model: Diurnal to intra-seasonal variability[J].Geophysical Research Letters,2009,36(11): L11815,doi:10.1029/2009GL038271.
[26] Rajendran K, Kitoh A, Srinivasan J,et al.Monsoon circulation interaction with Western Ghats orography under changing climate Projection by a 20-km mesh AGCM[J].Theoretical Applied Climatology,2012,110(4): 555-571.
[27] Kodama C, Yamada Y, Noda A T, et al.A 20-year climatology of a NICAM AMIP-type simulation[J].Journal of the Meteorological Society of Japan, 2015, 93(4): 393-424.
[28] Gadgil S, Sajani S.Monsoon precipitation in the AMIP runs[J]. Climate Dynamics,1998,14(9): 659-689.
[29] Lau K H, Kim J H, Sud Y.Intercomparison of hydrologic processes in AMIP GCMs[J]. Bulletin of the American Meteorological Society,1996, 77: 2 209-2 227.
[30] Xie Shangping, Xu Haiming, Saji N H, et al.Role of Narrow Mountains in large-scale organization of Asian Monsoon convection[J]. Journal of Climate, 2006, 19: 3 420-3 429.
[31] Shao Xie, Huang Ping, Huang Ronghui.A review of the South China Sea summer monsoon onset[J]. Advances in Earth Science, 2014, 29(10): 1 126-1 137.
[邵勰,黄平,黄荣辉.南海夏季风爆发的研究进展[J].地球科学进展,2014, 29(10): 1 126-1 137.]
[32] Li JianPing, Zhang Li. Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models[J]. Climate Dynamics, 2009, 32(7/8): 935-968.
[33] Sperber K, Annamalai H, Kang I, et al.The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century[J]. Climate Dynamics, 2013,41(9/10):2 711-2 744.
[34] Kajikawa Y, Yamaura T, Tomita H, et al.Impact of tropical disturbance on the Indian summer monsoon onset simulated by a global cloud-system-resolving model[J]. SOLA,2015,11: 80-84.
[35] Sato T, Miura H, Satoh M, et al.Diurnal cycle of precipitation in the tropics simulated in a Global Cloud-Resolving Model[J]. Journal of Climate,2009,22(18):4 809-4 826.
[36] Lin S J, Rood R B.Multidimensional flux from semi-Lagrangian transport schemes[J]. Monthly Weather Review, 1996, 124: 2 046-2 070.
[37] Gall J S, Ginis I, Lin S J, et al.Experimental tropical cyclone prediction using the GFDL 25-km-resolution global atmospheric model[J]. Weather and Forecasting, 2011, 26(6):1 008-1 019.
[38] Chen J H, Lin S J.Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model[J]. Journal of Climate, 2013, 26(2): 380-398, doi: 10.1175/JCLI-D-12-00061.1.
[39] Evans K J, Lauritzen P H, Mishra S K, et al.AMIP simulation with the CAM4 spectral element dynamical core[J]. Journal of Climate, 2013, 26(3): 689-709, doi: 10.1175/JCLI-D-11-00448.1.
[40] Chen Dehui, Shen Xueshun.Recent progress on GRAPES research and application[J]. Journal of Applied Meterological Science, 2006, 17(6):773-777.
[陈德辉, 沈学顺. 新一代数值预报系统GRAPES研究进展[J].应用气象报, 2006, 17(6): 773-777.]
[41] Chen Dehui, Xue Jishan, Yang Xuesheng, et al.The overall design of the new generation global/regional assimilation and prediction system GRAPES[J]. Chinese Science Bulletin,2008,53(20):2 396-2 407.
[陈德辉, 薛纪善, 杨学胜, 等 GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究[J]. 科学通报,2008,53(20):2 396-2 407.]
[42] Zhou L, Liu Y, Bao Q, et al.Computational performance of the high-resolution Atmospheric Model FAMIL[J]. Atmospheric and Oceanic Science Letters,2012,5(5):355-359.
[43] Zhou L, Bao Q, Liu Y, et al.Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1)[J]. Journal of Advances in Modeling Earth Systems,2015,7(1): 1-20,doi:10.1002/2014 MS000349.
[44] Wang X, Liu Y, Lin S J, et al.The application of Flux-Form Semi-Lagrangian transport scheme in a spectral atmospheric model[J].Advances in Atmospheric Sciences,2013,30(1):89-100, doi: 10.1007/s00376-012-2039-2.
[45] Navarra A, Gualdi S, Masina S, et al.Atmospheric horizontal resolution affects tropical climate variability in coupled models[J]. Journal of Climate,2008,21:730-750.
[46] Gent P R, Yeager S G, Neale R B, et al.Improvements in a half degree atmosphere/land version of the CCSM[J]. Climate Dynamics,2010,34:819-833.
[47] Hack J J, Caron J M, Danabasoglu G, et al.CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution[J]. Journal of Climate,2006,19:2 267-2 289.
[48] Kirtman B P, Bitz C, Bryan F,et al.Impact of ocean model resolution on CCSM climate simulations[J]. Climate Dynamics, 2012,39(6):1 303-1 328,doi:10.1007/s00382-012-1500-3.
[49] Delworth T L, Rosati A, Anderson W, et al.Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model[J]. Journal of Climate, 2012, 25: 2 755-2 781.
[50] Sakamoto T, Komuro Y, Nishimura T, et al.MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model[J]. Journal of the Meteorological Society of Japan, 2012,90(3):325-359.
[51] McClean J L, Bader D C, Bryan F O, et al. A prototype two-decade fully-coupled fine-resolution CCSM simulation[J]. Ocean Modelling, 2011, 39(1/2): 10-30, doi: 10.1016/j.ocemod.2011.02.011.
[52] Bryan F O, Tomas R, Dennis J M, et al.Frontal scale air-sea interaction in high-resolution coupled climate models[J]. Journal of Climate, 2010, 23(23): 6 277-6 291, doi: 10.1175/2010JCLI3665.1.
[53] Murray R J.Explicit generation of orthogonal grids for ocean models[J].Journal of Computational Physics,1996, 126(2): 251-273.
[54] Wang Bin, Ji Zhongzhen.New Numerical Methods and Application in Atmospheric Science[M].Beijing: Science Press, 2006.
[王斌,季仲贞.大气科学中的数值新方法及其应用[M].北京:科学出版社,2006.]
[55] Sadourny R, Arakawa A, Mintz Y.Integration of the nondivergent barotropic vorticity equation with an icosahedral hexagonal grid for the sphere[J]. Monthly Weather Review,1968, 96(6): 351-356.
[56] McGregor J L. Semi-Lagrangian advection on conformal-cubic grids[J].Monthly Weather Review, 1996, 124: 1 311-1 322.
[57] Dudhia J, Bresch J F.A global version of PSU-NCAR mesoscale model[J]. Monthly Weather Review, 2002, 130(12): 2 989-3 007.
[58] Klinker E, Sardesmukh P D.The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements[J].Journal of the Atmospheric Sciences, 1992, 49: 608-627.
[59] Randall D, Branson M, Wang M, et al.A community atmosphere model with superparameterized clouds[J]. Eos, 2013, 94(25): 221-228.
[60] Xie S P.Satellite observations of cool ocean-atmosphere interaction[J]. Bulletin of the American Meteorological Society, 2004, 85: 195-208,doi:10.1175/BAMS-85-2-195.
[61] Chelton D B, Schlax M G, Freilich M H, et al.Satellite measurements reveal persistent small-scale features in ocean winds[J]. Science, 2004, 303(5 660): 978-983.
[62] Maloney E D, Chelton D B.An assessment of sea surface temperature influence on surface winds in numerical weather prediction and climate models[J]. Journal of Climate, 2006, 19(12): 2 743-2 762.
[63] Wallace J M, Mitchell T P, Deser C.The influence of sea surface temperature on sea surface wind in the eastern equatorial Pacific: Seasonal and interannual variability[J]. Journal of Climate, 1989, 2(12): 1 492-1 499.
[64] Lindzen R S, Nigam S.On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. Journal of the Atmospheric Sciences, 1987, 44(17): 2 418-2 435.
[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝, 吕萍, 李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[7] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[8] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[12] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[13] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[14] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
[15] 蔡树群,何建玲,谢皆烁. 近10年来南海孤立内波的研究进展[J]. 地球科学进展, 2011, 26(7): 703-710.
阅读次数
全文


摘要