[1] |
Bony S, Dufresne J L.Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models[J]. Geophysical Research Letters, 2005, 32(20),doi: 10.1029/2005gl023851.
|
[2] |
Wang Xiaoqing, Liu Jian, Wang Zhiyuan.Comparison of simulated and reconstructed temperature in China during the past 2000 years[J].Advances in Earth Science,2015, 30(12):1 318-1 327.
|
|
[王晓青,刘健,王志远.过去2000年中国区域温度模拟与重建的对比分析[J].地球科学进展,2015,30(12):1 318-1 327.]
|
[3] |
Randall D, Khairoutdinov M, Arakawa A, et al.Breaking the cloud parameterization deadlock[J].Bulletin of the American Meteorological Society,2003,84(11):1 547-1 564, doi: 10.1175/BAMS-84-11-1547.
|
[4] |
Bennartz R, Lauer A, Brenguier J L.Scale-aware integral constraints on autoconversion and accretion in regional and global climate models[J]. Geophysical Research Letters,2011, 38(10),doi:10.1029/2011GL047618.
|
[5] |
Masumoto Y, Sasaki H, Kagimoto T, et al.A fifty-year eddy-resolving simulation of the world ocean-Preliminary outcomes of OFES (OGCM for the Earth Simulator)[J]. Journal of the Earth Simulator, 2004, 1: 35-56.
|
[6] |
Maltrud M, McClean J L. An eddy resolving global 1/10 degree ocean simulation[J]. Ocean Modelling, 2005, 8: 31-54, doi: 10.1016/j.ocemod.2003.12.001.
|
[7] |
Thoppil P G, Richman J G, Hogan P J.Energetics of a global ocean circulation model compared to observations[J]. Geophysical Research Letters, 2011, 38, doi: 10.1029/2011GL048347.
|
[8] |
Fang G H, Wang Y G, Wei Z X, et al.Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009,47(1/3):55-72.
|
[9] |
Xu D Z, Zhu J, Qi Y Q, et al.The impact of mean dynamic topography on a sea-level anomaly assimilation in the South China Sea based on an eddy-resolving model[J]. Acta Oceanologica Sinica, 2012,31(5):11-25.
|
[10] |
Smedstad O M, Hurlburt H E, Metzger E J, et al.An operational eddy resolving 1/16 degrees global ocean nowcast/forecast system[J]. Journal of Marine Systems, 2003, 40: 341-361.
|
[11] |
Shriver J F, Hurlburt H E, Smedstad O M, et al.1/32° real-time global ocean prediction and value-added over 1/16° resolution[J]. Journal of Marine Systems, 2007, 65: 3-26, doi: 10.1016/j.jmarsys.2005.11.021.
|
[12] |
Zhang X H, Liang X.A numerical world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1989, 6(1):43-61.
|
[13] |
Zhang X H, Chen K M, Jin X Z, et al.Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model[J]. Theoretical and Applied Climatology, 1996, 55(1): 65-87.
|
[14] |
Jin X Z, Zhang X H, Zhou T J.Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model[J]. Advances in Atmospheric Sciences, 1999, 16(2):197-215.
|
[15] |
Liu Hailong, Yu Yongqiang, Li Wei, et al.LASG/IAP Climate System Ocean Model (LICOM 1.0) Reference Manual[M].Beijing: Science Press, 2014.
|
|
[刘海龙,俞永强,李薇,等.LASG/IAP气候系统海洋模式(LICOM 1.0)参考手册[M].北京:科学出版社,2004.]
|
[16] |
Liu H L, Lin P F, Yu Y Q, et al.The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0[J]. Acta Meteorologica Sinica, 2012, 26(3): 318-329.
|
[17] |
Yu Y Q, Liu H L, Lin P F.A quasi-global 1/10° eddy-resolving ocean general circulation model and its preliminary results[J]. Chinese Science Bulletin, 2012, 57(30): 3 908-3 916, doi: 10.1007/s11434-012-5234-8.
|
[18] |
Feng X, Liu H, Wang F, et al.Indonesian throughflow in an eddy-resolving ocean model[J]. Chinese Science Bulletin, 2013, 58(35): 4 504-4 514, doi: 10.1007/s11434-013-5988-7.
|
[19] |
Satoh M, Matsuno T, Tomita H, et al.Nonhydrostatic Icosahedral Atmospheric Model (NICAM) for global cloud resolving simulations[J]. Journal of Computational Physics, 2008, 227(7): 3 486-3 514.
|
[20] |
Miura H, Satoh M, Nasuno T, et al.A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model[J]. Science, 2007,318(5 857): 1 763-1 765, doi: 10.1126/science.1148443.
|
[21] |
Miyakawa T, Satoh M, Miura H, et al.Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer[J]. Nature Communications,2014,5:3 769, doi: 10.1038/ Ncomms4769.
|
[22] |
Satoh M, Oouchi K, Nasuno T, et al.The intra-Seasonal Oscillation and its control of tropical cyclones simulated by high-resolution global atmospheric models[J]. Climate Dynamics,2012,39(9):2 185-2 206.
|
[23] |
Yamada Y, Satoh M.Response of ice and liquid water paths of tropical cyclones to global warming simulated by a global nonhydrostatic model with explicit cloud microphysics[J]. Journal of Climate,2013,26:9 931-9 945, doi:10.1175/JCLI-D-13-00182.1.
|
[24] |
Miyamoto Y, Satoh M, Tomita H, et al.Gradient wind balance in tropical cyclones in high-resolution global experiments[J]. Monthly Weather Review,2014,142:1 908-1 926.
|
[25] |
Oouchi K, Noda A T, Satoh M, et al.Asian summer monsoon simulated by a global cloud-system-resolving model: Diurnal to intra-seasonal variability[J].Geophysical Research Letters,2009,36(11): L11815,doi:10.1029/2009GL038271.
|
[26] |
Rajendran K, Kitoh A, Srinivasan J,et al.Monsoon circulation interaction with Western Ghats orography under changing climate Projection by a 20-km mesh AGCM[J].Theoretical Applied Climatology,2012,110(4): 555-571.
|
[27] |
Kodama C, Yamada Y, Noda A T, et al.A 20-year climatology of a NICAM AMIP-type simulation[J].Journal of the Meteorological Society of Japan, 2015, 93(4): 393-424.
|
[28] |
Gadgil S, Sajani S.Monsoon precipitation in the AMIP runs[J]. Climate Dynamics,1998,14(9): 659-689.
|
[29] |
Lau K H, Kim J H, Sud Y.Intercomparison of hydrologic processes in AMIP GCMs[J]. Bulletin of the American Meteorological Society,1996, 77: 2 209-2 227.
|
[30] |
Xie Shangping, Xu Haiming, Saji N H, et al.Role of Narrow Mountains in large-scale organization of Asian Monsoon convection[J]. Journal of Climate, 2006, 19: 3 420-3 429.
|
[31] |
Shao Xie, Huang Ping, Huang Ronghui.A review of the South China Sea summer monsoon onset[J]. Advances in Earth Science, 2014, 29(10): 1 126-1 137.
|
|
[邵勰,黄平,黄荣辉.南海夏季风爆发的研究进展[J].地球科学进展,2014, 29(10): 1 126-1 137.]
|
[32] |
Li JianPing, Zhang Li. Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models[J]. Climate Dynamics, 2009, 32(7/8): 935-968.
|
[33] |
Sperber K, Annamalai H, Kang I, et al.The Asian summer monsoon: An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century[J]. Climate Dynamics, 2013,41(9/10):2 711-2 744.
|
[34] |
Kajikawa Y, Yamaura T, Tomita H, et al.Impact of tropical disturbance on the Indian summer monsoon onset simulated by a global cloud-system-resolving model[J]. SOLA,2015,11: 80-84.
|
[35] |
Sato T, Miura H, Satoh M, et al.Diurnal cycle of precipitation in the tropics simulated in a Global Cloud-Resolving Model[J]. Journal of Climate,2009,22(18):4 809-4 826.
|
[36] |
Lin S J, Rood R B.Multidimensional flux from semi-Lagrangian transport schemes[J]. Monthly Weather Review, 1996, 124: 2 046-2 070.
|
[37] |
Gall J S, Ginis I, Lin S J, et al.Experimental tropical cyclone prediction using the GFDL 25-km-resolution global atmospheric model[J]. Weather and Forecasting, 2011, 26(6):1 008-1 019.
|
[38] |
Chen J H, Lin S J.Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model[J]. Journal of Climate, 2013, 26(2): 380-398, doi: 10.1175/JCLI-D-12-00061.1.
|
[39] |
Evans K J, Lauritzen P H, Mishra S K, et al.AMIP simulation with the CAM4 spectral element dynamical core[J]. Journal of Climate, 2013, 26(3): 689-709, doi: 10.1175/JCLI-D-11-00448.1.
|
[40] |
Chen Dehui, Shen Xueshun.Recent progress on GRAPES research and application[J]. Journal of Applied Meterological Science, 2006, 17(6):773-777.
|
|
[陈德辉, 沈学顺. 新一代数值预报系统GRAPES研究进展[J].应用气象报, 2006, 17(6): 773-777.]
|
[41] |
Chen Dehui, Xue Jishan, Yang Xuesheng, et al.The overall design of the new generation global/regional assimilation and prediction system GRAPES[J]. Chinese Science Bulletin,2008,53(20):2 396-2 407.
|
|
[陈德辉, 薛纪善, 杨学胜, 等 GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究[J]. 科学通报,2008,53(20):2 396-2 407.]
|
[42] |
Zhou L, Liu Y, Bao Q, et al.Computational performance of the high-resolution Atmospheric Model FAMIL[J]. Atmospheric and Oceanic Science Letters,2012,5(5):355-359.
|
[43] |
Zhou L, Bao Q, Liu Y, et al.Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1)[J]. Journal of Advances in Modeling Earth Systems,2015,7(1): 1-20,doi:10.1002/2014 MS000349.
|
[44] |
Wang X, Liu Y, Lin S J, et al.The application of Flux-Form Semi-Lagrangian transport scheme in a spectral atmospheric model[J].Advances in Atmospheric Sciences,2013,30(1):89-100, doi: 10.1007/s00376-012-2039-2.
|
[45] |
Navarra A, Gualdi S, Masina S, et al.Atmospheric horizontal resolution affects tropical climate variability in coupled models[J]. Journal of Climate,2008,21:730-750.
|
[46] |
Gent P R, Yeager S G, Neale R B, et al.Improvements in a half degree atmosphere/land version of the CCSM[J]. Climate Dynamics,2010,34:819-833.
|
[47] |
Hack J J, Caron J M, Danabasoglu G, et al.CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution[J]. Journal of Climate,2006,19:2 267-2 289.
|
[48] |
Kirtman B P, Bitz C, Bryan F,et al.Impact of ocean model resolution on CCSM climate simulations[J]. Climate Dynamics, 2012,39(6):1 303-1 328,doi:10.1007/s00382-012-1500-3.
|
[49] |
Delworth T L, Rosati A, Anderson W, et al.Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model[J]. Journal of Climate, 2012, 25: 2 755-2 781.
|
[50] |
Sakamoto T, Komuro Y, Nishimura T, et al.MIROC4h—A new high-resolution atmosphere-ocean coupled general circulation model[J]. Journal of the Meteorological Society of Japan, 2012,90(3):325-359.
|
[51] |
McClean J L, Bader D C, Bryan F O, et al. A prototype two-decade fully-coupled fine-resolution CCSM simulation[J]. Ocean Modelling, 2011, 39(1/2): 10-30, doi: 10.1016/j.ocemod.2011.02.011.
|
[52] |
Bryan F O, Tomas R, Dennis J M, et al.Frontal scale air-sea interaction in high-resolution coupled climate models[J]. Journal of Climate, 2010, 23(23): 6 277-6 291, doi: 10.1175/2010JCLI3665.1.
|
[53] |
Murray R J.Explicit generation of orthogonal grids for ocean models[J].Journal of Computational Physics,1996, 126(2): 251-273.
|
[54] |
Wang Bin, Ji Zhongzhen.New Numerical Methods and Application in Atmospheric Science[M].Beijing: Science Press, 2006.
|
|
[王斌,季仲贞.大气科学中的数值新方法及其应用[M].北京:科学出版社,2006.]
|
[55] |
Sadourny R, Arakawa A, Mintz Y.Integration of the nondivergent barotropic vorticity equation with an icosahedral hexagonal grid for the sphere[J]. Monthly Weather Review,1968, 96(6): 351-356.
|
[56] |
McGregor J L. Semi-Lagrangian advection on conformal-cubic grids[J].Monthly Weather Review, 1996, 124: 1 311-1 322.
|
[57] |
Dudhia J, Bresch J F.A global version of PSU-NCAR mesoscale model[J]. Monthly Weather Review, 2002, 130(12): 2 989-3 007.
|
[58] |
Klinker E, Sardesmukh P D.The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements[J].Journal of the Atmospheric Sciences, 1992, 49: 608-627.
|
[59] |
Randall D, Branson M, Wang M, et al.A community atmosphere model with superparameterized clouds[J]. Eos, 2013, 94(25): 221-228.
|
[60] |
Xie S P.Satellite observations of cool ocean-atmosphere interaction[J]. Bulletin of the American Meteorological Society, 2004, 85: 195-208,doi:10.1175/BAMS-85-2-195.
|
[61] |
Chelton D B, Schlax M G, Freilich M H, et al.Satellite measurements reveal persistent small-scale features in ocean winds[J]. Science, 2004, 303(5 660): 978-983.
|
[62] |
Maloney E D, Chelton D B.An assessment of sea surface temperature influence on surface winds in numerical weather prediction and climate models[J]. Journal of Climate, 2006, 19(12): 2 743-2 762.
|
[63] |
Wallace J M, Mitchell T P, Deser C.The influence of sea surface temperature on sea surface wind in the eastern equatorial Pacific: Seasonal and interannual variability[J]. Journal of Climate, 1989, 2(12): 1 492-1 499.
|
[64] |
Lindzen R S, Nigam S.On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics[J]. Journal of the Atmospheric Sciences, 1987, 44(17): 2 418-2 435.
|