地球科学进展 ›› 2016, Vol. 31 ›› Issue (3): 269 -276. doi: 10.11867/j.issn.1001-8166.2016.03.0269.

上一篇    下一篇

信息通信技术在空域协同管理决策中的应用——以危险天气条件下风险规避分析为例
杜欣儒 1( ), 路紫 2,,A; *( )   
  1. 1.河北师范大学资源与环境科学学院,河北 石家庄 050024
    2.河北师范大学旅游学院,河北 石家庄 050024
  • 收稿日期:2016-01-04 修回日期:2016-02-24 出版日期:2016-03-20
  • 通讯作者: 路紫 E-mail:duxinru0224@126.com;luzi1960@126.com
  • 基金资助:
    国家自然科学基金项目“社会性网络服务社区中人际节点空间关系研究”(编号:41271142)资助

Application of ICTs in Airspace Management and Collaborative Decision-Making—Analyzing the Risk Avoidance in the Condition of Risky Weather as an Example

Xinru Du 1( ), Zi Lu 2, *( )   

  1. 1.School of Resource and Environment,Hebei Normal University, Shijiazhuang 050024,China
    2.School of Tourism,Hebei Normal University, Shijiazhuang 050024,China
  • Received:2016-01-04 Revised:2016-02-24 Online:2016-03-20 Published:2016-03-10
  • Contact: Zi Lu E-mail:duxinru0224@126.com;luzi1960@126.com
  • About author:

    First author:Du Xinru(1989-), female, Jinzhong City, Shanxi Province, Master student. Research areas include human geography and regional development.E-mail:duxinru0224@126.com

    Corresponding author:Lu Zi (1960-), male, Beijing City, Professor. Research areas include regional development and management.E-mail:luzi1960@126.com

  • Supported by:
    Project supported by the National Nature Science Foundation of China “The spatial relationship of interpersonal node in social networking services community”(No.41271142)

信息通信技术的应用使空域资源充分开发和有效利用发生了结构性变革,新一代航空运输体系提出应用全新自动化信息支持交通管制决策的概念,由此学界和业界在空中交通管制员工作站业务中积极开发集成了自动信息决策支持工具,以此改变以往空中交通管制员手动集成与决策过程。空域危险天气条件下空中交通安全保障能力降低,对空域系统产生危害,因而对新的信息通信技术的需求迫切。在概述新一代航空运输体系的信息化组成与支持的基础上,并在回顾空域协同决策技术发展及危险天气规避研究的基础上,通过危险天气条件下空域协同管理决策的应用论证信息通信技术支持的新特点,包括基础应用:空域协同管理决策的数据输入—航线输出;普遍应用:风险规避一般概率网的选择;特殊应用:由位置与方向组成的航线管理。研究认为,建立在信息通信技术基础上的空域协同管理决策具有精准的时间计划特征,并通过时间精准实现空间精准;基于地理信息系统技术的空域协同管理决策的可视化,实现了移动数据的飞行轨迹地图快速生成。这项研究对未来国家空域资源充分开发利用、危险天气条件下保证飞行安全、降低空中交通管制员工作负荷等均有一定的应用价值。

The application of ICTs makes structural change of the development and effective utilization of airspace. Next generation air transportation system (NextGen) includes new automation concepts with automated information to support the traffic control decision-making. As a result, in the field of academia and industry, air traffic controllers integrate information automatically while making decisions to change the previous manually integrated and decided pattern. The safety ability of airspace is reduced and airspace system is endangered under risky weather conditions of airspace. So there is an urgent demand for new information and communication technologies. The paper is an overview of the information constitution and support of NextGen and provides the study of the development of technique of airspace collaborative decision-makings to confirm the new features based on ICTs. It contains basic application-the input of data and output of the routes of airspace management and collaborative decision-making, and general application-the choose of probability nets of avoiding risky weather, and special application-the affection in the management of the air routes, which are made up of position and direction. The research shows the accurate schedule characteristics of airspace management and collaborative decision-making based on ICTs, which made the space accurate by time accurate. Second, the visualization of airspace management and collaborative decision-making based on ICTs made the maps of flight path under mobile data quickly generated. This could make the fully development and utilization of national airspace, ensure safety, and reduce air traffic controllers’ workload and the costs in delaying and operating in risky weather.

中图分类号: 

图1 基于ICTs的空域协同管理决策的概式
Fig.1 The sketch of airspace management and collaborative decision-making based on ICTs
图2 指定机场间的概率网与飞行轨迹示意 [ 25 ]
Fig.2 Probability-nets and flight paths in given airports [ 25 ]
图3 危险天气对航线的分等评估
(a)危险天气相关的航线;(b)不同等级的航线与影响区域(据参考文献[31]修改)
Fig.3 Assess the classification of routes in risky weather
图4 影响空域72小时内不同高度层不同浓度值的分布(据参考文献[31]修改)
Fig.4 Distribution of different levels and different thresholds in 72 hours of the influenced airspace (modified after reference[31])
[1] Yousefi A, Zadeh A N.Dynamic allocation and benefit assessment of NextGen flow corridors[J]. Transportation Research Part C: Emerging Technologies,2013, 33: 297-310,doi:10.1016/j.trc.2012.04.016.
[2] Lu Zi, Du Xinru.The theoretical sources, innovation of methodologies and practice of the exploitation and utilization of airspace in western countries[J]. Advances in Earth Science,2015, 30(11): 1 260-1 267.
[路紫, 杜欣儒. 国外空域资源开发利用的理论基础、方法论变革与实践[J]. 地球科学进展, 2015, 30(11): 1 260-1 267.]
[3] Finke C, Butts J, Mills R, et al.Enhancing the security of aircraft surveillance in the next generation air traffic control system[J].International Journal of Critical Infrastructure Protection,2013, 6(1):3-11.
[4] Air Traffic Control Association (ATCA). Next generation air transportation system transformation (special edition)[J]. Journal of Air Traffic Control,2006, 48(1): 1-64.
[5] Collins R L.Mastering the Systems: Air Traffic Control and Weather[M]. New York: Macmillan Publishing Company, 1991.
[6] Wong D K Y, Pitfield D E, Caves R E, et al. Quantifying and characterising aviation accident risk factors[J]. Journal of Air Transport Management,2006, 12(6): 352-357.
[7] Ahlstrom U, Friedman-Berg F J. Using eye movement activity as a correlate of cognitive workload[J]. International Journal of Industrial Ergonomics,2006, 36(7): 623-636.
[8] Harrington J.Weather services in the NextGen Era[J].Aviation International News,2009, 41(1): 34-38.
[9] Sherali H D, Hobeika A G, Kangwalklai S.Time-dependent, label-constrained shortest path problems with applications[J]. Transportation Science,2003, 37(3): 278-293.
[10] Sherali H D, Staats R W, Trani A A.An airspace planning and collaborative decision-making model: Part I—Probabilistic conflicts, workload, and equity considerations[J]. Transportation Science,2003, 37(4): 434-456.
[11] Sherali H D, Staats R W, Trani A A.An airspace-planning and collaborative decision-making model: Part II—Cost model, data considerations, and computations[J].Transportation Science,2006, 40(2): 147-164.
[12] Abramson B, Brown J, Edwards W, et al.Hailfinder: A Bayesian system for forecasting severe weather[J].International Journal of Forecasting,1996, 12(1): 57-71.
[13] Hall T, Brooks H E, Doswell III C A. Precipitation forecasting using a neural network[J].Weather and Forecasting, 1999, 14(3): 338-345.
[14] Marzban C, Stumpf G J.A neural network for tornado prediction based on Doppler radar-derived attributes[J]. Journal of Applied Meteorology,1996, 35(5): 617-626.
[15] Riordan D, Hansen B K.A fuzzy case-based system for weather prediction[J].Engineering Intelligent Systems for Electrical Engineering and Communications,2002, 10(3): 139-146.
[16] Alonso A, Escudero L F, Ortuno M T.A stochastic 0-1 program based approach for the air traffic flow management problem[J]. European Journal of Operational Research,2000, 120(1): 47-62.
[17] Bertsimas D, Stock S.The multi-airport flow management problem with en route capacities[J].Operations Research,1998, 46(3): 406-422.
[18] Nilim A, El Ghaoui L, Duong V, et al.Trajectory-based air traffic management (tb-atm) under weather uncertainty[C]∥Proceedings of the 4th USA/Europe Air Traffic Management R&D seminar. Santa Fe, New Mexico,2001.
[19] Thengvall B G, Bard J F, Yu G.A bundle algorithm approach for the aircraft schedule recovery problem during hub closures[J]. Transportation Science,2003, 37(4): 392-407.
[20] Shi Peijun, Kong Feng, Ye Qian, et al.Disaster risk science development and disaster risk reduction using science and technology[J]. Advances in Earth Science,2014, 29(11): 1 205-1 211.
[史培军, 孔锋, 叶谦, 等. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1 205-1 211.]
[21] Evans J E.Tactical weather decision support to complement “strategic” traffic flow management for convective weather[C]∥Proceedings of the 4th USA/Europe Air Traffic Management R&D Seminar. Santa Fe, New Mexico, 2001.
[22] Spirkovska L, Lodha S K.Context-aware intelligent assistant for decreasing pilot workload[J]. Journal of Aerospace Computing, Information, and Communication,2005, 2(9): 386-400.
[23] Antolik M S, Branch S M. Model Output Statistics (MOS)-Objective Interpretation of NWP Model Output University of Maryland USA[C].Maryland,2003.
[24] Pan Liujie, Zhang Hongfang, Wang Jianpeng.Progress on verification methods of numerical weather prediction[J]. Advances in Earth Science,2014, 29(3): 327-335.
[潘留杰,张宏芳,王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.]
[25] McCrea M V, Sherali H D, Trani A A. A probabilistic framework for weather-based rerouting and delay estimations within an airspace planning model[J]. Transportation Research Part C: Emerging Technologies,2008, 16(4): 410-431.
[26] Ahlstrom U, Jaggard E.Automatic Identification of Risky Weather Objects in Line of Flight (AIRWOLF)[J]. Transportation Research Part C: Emerging Technologies,2010, 18(2): 187-192.
[27] Haines E.Point in polygon strategies[M]∥Paul S, ed.Graphics Gems IV. San Diego: Academic Press, 1994.
[28] Jimenez J J, Segura R J, Feito F R.Efficient collision detection between 2D Polygons[J].Journal of WSCG,2004, 12(1/3): 191-198.
[29] Scaini C, Biasse S, Galderisi A, et al.A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes-Part 2: Vulnerability and impact[J]. Natural Hazards and Earth System Sciences,2014, 14(8): 2 289-2 312.
[30] Neteler M, Bowman M H, Landa M, et al.GRASS GIS: A multi-purpose open source GIS[J]. Environmental Modelling & Software,2012, 31: 124-130,doi:10.1016/j.envsoft.2011.11.014.
[31] Scaini C, Folch A, Bolic T, et al.A GIS-based tool to support air traffic management during explosive volcanic eruptions[J]. Transportation Research Part C: Emerging Technologies,2014, 49: 19-31,doi:10.1016/j.trc.2014.09.020.
[32] Andrienko G, Andrienko N, Heurich M.An event-based conceptual model for context-aware movement analysis[J].International Journal of Geographical Information Science,2011, 25(9): 1 347-1 370.
[33] Andrienko G, Andrienko N, Burch M, et al.Visual analytics methodology for eye movement studies[J]. Visualization and Computer Graphics,2012, 18(12): 2 889-2 898.
[34] Fekete J D, Plaisant C.Interactive information visualization of a million items[C]∥Baltimore: Information Visualization.Marland University,2002: 117-124.
[35] Scheepens R, Willems N, Van de Wetering H, et al. Composite density maps for multivariate trajectories[J]. Visualization and Computer Graphics,2011, 17(12): 2 518-2 527.
[36] Ahlstrom U.Work domain analysis for air traffic controller weather displays[J].Journal of Safety Research,2005, 36(2): 159-169.
[37] Ahlstrom U, Friedman-Berg F.Evaluation of storm forecast displays for air traffic control[J].International Journal of Applied Aviation Studies,2007, 7(1): 83-105.
[1] 路紫, 杜欣儒. 国外空域资源开发利用的理论基础、方法论变革与实践[J]. 地球科学进展, 2015, 30(11): 1260-1267.
阅读次数
全文


摘要