地球科学进展 ›› 2020, Vol. 35 ›› Issue (4): 331 -349. doi: 10.11867/j.issn.1001-8166.2020.036

综述与评述    下一篇

大气边界层数值模拟研究与未来展望
王蓉 1, 2( ),张强 1, 3( ),岳平 4,黄倩 1   
  1. 1.兰州大学大气科学学院半干旱气候变化教育部重点实验室, 甘肃 兰州 730000
    2.甘肃省人工影响 天气办公室, 甘肃 兰州 730020
    3.甘肃省气象局, 甘肃 兰州 730020
    4.中国气象局兰州干旱 气象研究所, 甘肃省干旱气候变化与减灾重点实验室, 甘肃 兰州 730020
  • 收稿日期:2020-02-20 修回日期:2020-03-25 出版日期:2020-04-10
  • 通讯作者: 张强 E-mail:zhangqiang@cma.gov.cn
  • 基金资助:
    国家自然科学基金重点项目“我国夏季风影响过渡区陆—气相互作用及其对夏季风响应研究”(41630426);国家自然科学基金青年科学基金项目“半干旱区边界层顶的界面交换过程及其对边界层发展的影响”(41905011)

Summary and Prospects of Numerical Simulation Research of the Atmospheric Boundary Layer

Rong Wang 1, 2( ),Qiang Zhang 1, 3( ),Ping Yue 4,Qian Huang 1   

  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
    2.Gansu Weather Modification Office, Lanzhou 730020, China
    3.Gansu Meteorological Bureau, Lanzhou 730020, China
    4.Key Laboratory of Arid Climate Change and Reducing Disaster of Gansu Province, Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
  • Received:2020-02-20 Revised:2020-03-25 Online:2020-04-10 Published:2020-05-08
  • Contact: Qiang Zhang E-mail:zhangqiang@cma.gov.cn
  • About author:Wang Rong (1989-), female, Dingxi County, Gansu Province, Ph.D student. Research areas include numerical simulation of atmospheric boundary layer. E-mail: 13679418316@163.com
  • Supported by:
    the National Natural Science Foundation of China "Study on interaction between land-atmosphere over Typical Summer Monsoon Edgy region and its response to summer monsoon characteristics"(41630426);"Study on the interface exchange at the top of boundary layer and its impacts on the boundary layer development in semi-arid region"(41905011)

大气边界层作为连接下垫面和自由大气的重要桥梁,不仅影响局地的各种天气过程的发展和演变,而且在区域和全球的天气和气候变化中也扮演着关键角色。鉴于大气边界层自身的复杂性,对其数值模拟一直以来都是大气数值模拟研究中的热点和难点。通过归纳近几十年来大气边界层数值模式发展经历的3个阶段,梳理了干旱半干旱区、青藏高原地区和城市复杂下垫面3个陆地气候关键区边界层过程,以及海洋上特殊的台风边界层数值模拟研究取得的重要进展;总结出当前大气边界层数值模拟研究所面临的5个亟待解决的关键科学问题:云与边界层相互作用、边界层参数化、模式分辨率、边界层资料同化以及边界层发展机制。并明确了该领域未来需要在加强不同类型大气边界层过程的认识、边界层底和顶界面交换过程的理解、特殊地区边界层发展机制的解释、边界层参数化方案的改进、大涡模拟在边界层模拟中优势的充分发挥等5个方面开展重点研究,以期能为今后更系统地开展大气边界层数值模拟及相关研究提供参考依据。

As an important bridge between the underlying surface and the free atmosphere, the atmospheric boundary layer is not only closely related to the development of various weather processes, but also plays a key role in local and regional weather and climate changes. In view of the complexity of the atmospheric boundary layer, the numerical simulation of the atmospheric boundary layer has always been a hotspot and difficulty in the numerical simulation research of the atmosphere. In this paper, the three numerical model development stages of the atmospheric boundary layer in recent decades were summarized and the important advances in arid and semi-arid areas, Tibet Plateau, urban complex underlying surface, and special typhoon boundary layer were reviewed. At present, there are still five scientific problems to be solved urgently, including cloud and boundary layer interaction, boundary layer parameterization, model resolution, boundary layer data assimilation and boundary layer development mechanism. Moreover, it was pointed out that in this field we need to strengthen the understanding of different types of atmospheric boundary layer processes, boundary layer bottom and top interface exchange, boundary layer development mechanism in special regions, improve boundary layer parameterization scheme and give full play to the advantages of LES in boundary layer simulation.

中图分类号: 

图1 近几十年来大气边界层数值模式发展的3个阶段
Fig.1 Three stages of numerical model development of the atmospheric boundary layer in recent decades
表1 目前使用较广泛的几种模拟边界层的模式
Table 1 Several widely used models for simulating boundary layers
图2 青藏高原上空深厚大气边界层(a,冬季)和浅薄大气边界层(b,夏季)示意图[ 38 ]
Fig.2 Schematic diagram of deep atmospheric boundary layer (a, winter) and shallow atmospheric boundary layer (b, summer) over the Tibetan Plateau[ 38 ]
图3 边界层发展影响机制示意图
ZiZ分别为对流边界层发展高度和位势高度, Zi/ Z=1.0表示对流边界层顶高度
Fig.3 Schematic diagram of influence mechanism of boundary layer development
Zi and Z are the development height and potential height of convective boundary layer respectively, Zi/ Z=1.0 is the top height of convective boundary layer
1 Stull R B. An introduction to boundary layer meteorology[J]. Atmospheric Sciences Library, 1988, 8(8):89.
2 Liu Huizhi, Jianwu Fen, Wang Lei, et al. Overview of recent studies on atmospheric boundary layer physics at LAPC [J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 467-476.
刘辉志, 冯健武, 王雷,等. 大气边界层物理研究进展[J]. 大气科学, 2013, 37(2):467-476.
3 Zhang Qiang. Review of atmospheric boundary layer meterology[J]. Journal of Arid Meteorology, 2003, 21(3):74-78.
张强. 大气边界层气象学研究综述[J]. 干旱气象, 2003, 21(3):74-78.
4 Liu Huizhi, Wang Lei, Du Qun. An overview of recent studies on atmospheric boundary layer physics at LAPC (2012-2017)[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4):823-832.
刘辉志, 王雷, 杜群. 大气边界层物理研究进展(2012—2017年)[J]. 大气科学, 2018, 42(4):823-832.
5 Liu Shuhua, Liu Zhenxin, Zheng Hui, et al. Multi-scale atmospheric boundary-layer and land surface physics process models[J]. Science in China(Series G), 2013, 43(10):1 332-1 355.
刘树华, 刘振鑫, 郑辉,等. 多尺度大气边界层与陆面物理过程模式的研究进展[J]. 中国科学:G辑, 2013, 43(10):1 332-1 355.
6 Ning Zhiyuan, Liu Houfeng. Domestic and abroad research status of atmospheric boundary layer[J]. Journal of Environmental Management College of China, 2017, 27(2):22-25.
宁志远, 刘厚凤. 大气边界层的国内外研究现状[J]. 中国环境管理干部学院学报, 2017, 27(2):22-25.
7 Andre J C, Goutorbe J P, Schmugge T, et al. HAPEX-MOBILHY: Results from a large-scale field experiment[M]//Remote Sensing and Large-scale Global Processes. Baltimore, MD:IAHS Publication,1989:13-20.
8 Bolle H J, Andre J C, Arrue J L, et al. EFEDA: European field experiment in a desertification-threatened area[C]//Annales Geophysicae. Copernicus, 1993,11(2/3): 173-189.
9 Koch G W, Scholes R J, Steffen W L, et al. The IGBP Terrestrial Transects: Science Plan[R]. Sweden:Global Change Report, 1995.
10 Sellers P J, Hall F G, Asrar G, et al. An overview of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE)[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D17): 18 345-18 371.
11 Sellers P, Hall F, Ranson K J, et al. The Boreal Ecosystem-Atmosphere Study (BOREAS): An overview and early results from the 1994 field year[J]. Bulletin of the American Meteorological Society, 1995,76(9): 1 549-1 577.
12 Yamazaki N, Kalahari H, Yatagai A. Current status of GAME reanalysis project and some preliminary results[C]//Internation GAME/HUBEX, Workshop. Sapporo, 2000: 12-14.
13 Hu Y Q, Yang X L, Zhang Q, et al. The characters of energy budget on the Gobi and desert surface in Hexi region[J]. Acta Meteorologica Sinica, 1992, 6(1):82-91.
14 Zhang Qiang, Wei Guoan, Huang Ronghui, et al. The Field Experiment on Local Surface Process of Dunhuang in Arid Region[M]. Beijing:China Meteorological Press, 2003: 157-177.
张强, 卫国安, 黄荣辉, 等. 西北干旱区敦煌戈壁区局地陆面过程野外试验研究[M]. 北京: 气象出版社, 2003: 157-177.
15 Feng Jianwu, Liu Huizhi, Wang Lei, et al. Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area[J]. Science in China(Series D), 2012, 55(2):254-261.
冯健武, 刘辉志, 王雷, 等.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征[J]. 中国科学:D辑, 2012, 55(2):254-261.
16 Hu Fei, Hong Zhongxiang, Chen Jiayi, et al. The field experiment of atmospheric boundary layer over Heterogeneous surface in Baiyangdian area—Introduction and prel iminary data analysis[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5):883-893.
胡非, 洪钟祥, 陈家宜,等. 白洋淀地区非均匀大气边界层的综合观测研究——实验介绍及近地层微气象特征分析[J]. 大气科学, 2006, 30(5):883-893.
17 Huang J, Zhang W, Zuo J, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences, 2008, 25: 906-921.
18 Zhang Qiang, Hu Xiangjun, Wang Sheng, et al. Some technologica land scientific issues about the experimental study of land surface processesin Chinese Loess Plateau(LOPEX) [J]. Advances in Earth Science, 2009,24(4):363-371.
张强, 胡向军, 王胜, 等.黄土高原陆面过程试验研究(LOPEX)有关科学问题[J]. 地球科学进展, 2009, 24(4):363-371.
19 Zhang Qiang, Yue Ping, Zhang Liang, et al. Land-atmosphere interaction over the summer monsoon transition zone in China: A review and prospets [J]. Acta Meteorologica Sinica, 2019,77(4):758-773.
张强, 岳平, 张良, 等. 夏季风过渡区的陆—气相互作用:评述与展望[J]. 气象学报, 2019,77(4):758-773.
20 Ma Y M, Kang S C, Zhu L P, et al. Tibetan observation and research platform atmosphere-land interaction over a heterogeneous landscape[J]. Bulletin of the American Meteorological Society, 2008, 89(10): 1 487-1 492.
21 Yang K, Hui W U, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global & Planetary Change, 2014, 112(1):79-91.
22 Li Yueqing. The observational basis of the 3rd Tibetan Plateau atmospheric scientific experiment[J].Plateau and Mountain Meteorology,2011,31(3):77-82.
李跃清.第三次青藏高原大气科学试验的观测基础[J].高原山地气象研究,2011,31(3):77-82.
23 Zhang Qiang, Zhang Liang, Huang Jing, et al. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment[J]. Science in China(Series D), 2014, 44(9):2 062-2 076.
张强, 张良, 黄菁, 等. 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系[J]. 中国科学:D辑, 2014, 44(9):2 062-2 076.
24 Su Yanren, Shihua Lü, Fan Guangzhou. The characteristics analysis on the summer atmospheric boundary layer height and surface heat fluxes over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(6):1 470-1 485.
苏彦人, 吕世华, 范广洲.青藏高原夏季大气边界层高度与地表能量输送变化特征分析[J]. 高原气象, 2018, 37(6):1 470-1 485.
25 Zhang Qiang, Zhao Yingdong, Wang Sheng, et al. A study on atmospheric thermal boundary layer structure in extremely arid desert and gobi region on the clear day in summer[J]. Advances in Earth Science, 2007, 22(11): 1 150-1 159.
张强, 赵映东, 王胜, 等. 极端干旱荒漠区典型晴天大气热力边界层结构分析[J]. 地球科学进展, 2007, 22(11): 1 150-1 159.
26 Yue Ping, Zhang Qiang, Zhao Wen, et al. Characteristics of turbulence transfer in surface layer over semi-arid grassland in Loess Plateau in summer[J]. Plateau Meteorology, 2015, 34(1):21-29.
岳平, 张强, 赵文, 等. 黄土高原半干旱草地近地层湍流温湿特征及总体输送系数[J]. 高原气象, 2015, 34(1):21-29.
27 Yao Tong, Zhang Qiang, Yin Han. The annual variation and its influencing mechanism of surface roughness length of Yuzhong in semi-arid areas[J]. Journal of Apply Meteorology,2014, 25(4):454-462.
姚彤, 张强, 尹晗. 半干旱区榆中地表粗糙度年变化及影响机理[J]. 应用气象学报, 2014, 25(4):454-462.
28 Zhang Wenyu, Zhang Yu, Lu Xiaojing, et al. Analysis on heterogeneous underlying surface roughness length in semi-arid mountains area of Loess Plateau[J]. Plateau Meteorology, 2009,28(4):763-768.
张文煜, 张宇, 陆晓静, 等. 黄土高原半干旱区非均一下垫面粗糙度分析[J]. 高原气象, 2009, 28(4):763-768.
29 Zhou Mingyu, Xu Xiangde, Bian Lin'gen, et al. Observational Nanlysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau[M]. Beijing: Meteorological Press, 2000: 68-72.
周明煜, 徐详德, 卞林根, 等. 青藏高原大气边界层观测分析与动力研究[M]. 北京: 气象出版社, 2000: 68-72.
30 Zhao Jianhua, Zhang Qiang, Wang Sheng. A simulative study of the thermal mechanism fordevelopment of the convective boundary layer in the arid zone of Northwest China[J]. Acta Meteorologica Sinica, 2011,69(6):1 029-1 037.
赵建华, 张强, 王胜. 西北干旱区对流边界层发展的热力机制模拟研究[J]. 气象学报, 2011, 69(6):1 029-1 037.
31 Estoque M A. A numerical model of the atmospheric boundary layer[J]. Journal of Geophysical Research, 1963,68(4):1 103-1 113.
32 Wang Zhenghong, Wang Jiemin. Development of numerical model of atmospheric boundary layer[J]. Atmospheric Information, 1995,15(2):1-4, 9.
王政宏, 王介民. 大气边界层数值模式的发展[J]. 大气情报, 1995, 15(2):1-4, 9.
33 Zhong Shiyuan, Li Xingsheng. On the methods of numerical simulation of the atmospheric boundary layer[J]. Chinese Journal of Atmospheric Sciences, 1986, 10(3):266-276.
钟世远, 李兴生. 论大气边界层的数值模拟方法[J]. 大气科学, 1986, 10(3):266-276.
34 Cheng Linsheng. The current status of mesoscale numerical model development and its application prospects[J]. Plateau Meteorology, 1999, 18(3):350-360.
程麟生. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 1999, 18(3):350-360.
35 Huang Jing, Zhang Qiang. Mesoscale atmospheric numerical simulation and its progress[J]. Arid Zone Research, 2012, 29(2):273-283.
黄菁, 张强. 中尺度大气数值模拟及其进展[J]. 干旱区研究, 2012, 29(2):273-283.
36 Li D, Katul G G, Bou-Zeid E. Turbulent energy spectra and cospectra of momentum and heat ?uxes in the stable atmospheric surface layer[J]. Boundary-Layer Meteorology, 2015, 157:1-21.
37 Ma M, Pu Z, Wang S, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J]. Boundary-Layer Meteorology, 2011, 140(1):163-176.
38 Chen X, ?kerlak B, Rotach M W. Reasons for the extremely high-ranging planetary boundary layer over the Western Tibetan Plateau in winter[J]. Journal of the Atmospheric Sciences, 2016, 73:2 021-2 038.
39 Zhao Cailing, Shihua Lü, Li Zhaoguo, et al. Numerical simulation of influence of land surface thermal condition on Badain Jaran Desert atmospheric boundary layer height in summer[J]. Plateau Meteorology, 2014, 33(6):1 526-1 533.
赵采玲, 吕世华, 李照国, 等. 夏季巴丹吉林沙漠陆面热状况对边界层高度影响的模拟实验[J]. 高原气象, 2014, 33(6):1 526-1 533.
40 Gao Yanhong, Shihua Lü. Numerical simulation of local climatic effect of heterogeneous underlying surface[J]. Plateau Meteorology, 2001, 20(4):354-361.
高艳红, 吕世华. 非均匀下垫面局地气候效应的数值模拟[J]. 高原气象, 2001, 20(4):354-361.
41 Li Jianglin, Chen Yuchun, Shihua Lü, et al. Numerical simulation of winter lake effect in valley city of Lanzhou using RAMS model[J]. Plateau Meteorology, 2009, 28(5):13-23.
李江林, 陈玉春, 吕世华, 等. 利用RAMS模式对山谷城市兰州冬季湖泊效应的数值模拟[J]. 高原气象, 2009, 28(5):13-23.
42 Zhang Lu, Yang Xiuqun, Tang Jianping, et al. Simulation of urban heat island effect and its impact on atmospheric boundary layer structure over Yangtze River Delta region in summer[J].Journal of the Meteorological Sciences,2011,31(4): 431-440.
张璐, 杨修群, 汤剑平, 等. 夏季长三角城市群热岛效应及其对大气边界层结构影响的数值模拟[J]. 气象科学, 2011,31(4):431-440.
43 LeMone M A, Angevine W M, Bretherton C S, et al. 100 years of progress in boundary layer meteorology[J]. Meteorological Monographs, 2019, 59: 9.1-9.85.
44 Deardorff J M. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1972, 39:91.
45 Deardorff J W. Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer[J]. Boundary-Layer Meteorology, 1974, 7:81-106.
46 Sommeria G. Three-dimensional simulation of turbulent processes in an undisturbed trade-wind boundary layer[J]. Journal of the Atmospheric Sciences, 1976, 33: 216-241.
47 Mason P J, Derbyshire S H. Large eddy simulation of the stably-strati?ed atmospheric boundary layer[J]. Boundary-Layer Meteorology, 1990, 53: 117-162.
48 Jiang Weimei, Miao Shiguang. Large eddy simulation and atmospheric boundary layer research: A review and prospect of 30 years[J]. Natural Science Progress, 2004, 14(1):11-19.
蒋维楣, 苗世光. 大涡模拟与大气边界层研究——30年回顾与展望[J]. 自然科学进展, 2004, 14(1):11-19.
49 Gray M E B, Petch J, Derbyshire S H, et al. Version 2.3 of the Met. Office Large Eddy Model [M]. Exeter, UK:The Met Office, 2001.
50 Tian W S, Parker D J. Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(584):1 929-1 952.
51 Wang Minzhong, Xu Hongxiong, Wang Yinjun, et al. Large-eddy simulation of summer clear sky convective boundary layer in the Taklimakan desert[J]. Journal of Desert Research, 2018, 38(6):161-172.
王敏仲, 徐洪雄, 王寅钧, 等. 塔克拉玛干沙漠夏季晴空对流边界层大涡模拟[J]. 中国沙漠, 2018, 38(6):161-172.
52 Honnert R, Masson V, Couvreux F. A diagnostic for evaluating the representation of turbulence in atmospheric models at kilometric scale[J]. Journal of the Atmospheric Sciences, 2011, 68: 3 112-3 131.
53 Beare R J. A length scale de?ning partially-resolved boundary-layer turbulence simulations[J]. Boundary-Layer Meteorology, 2014, 15: 139-155.
54 Shin H H, Dudhia J. Evaluation of PBL parameterization in WRF at sub-kilometer resolution: Turbulence statistics in the convective boundary layer[J]. Monthly Weather Review, 2016, 144: 1 161-1 177.
55 Sun Xuejin, Li Yan, Zhang Yanhong, et al. Near-surface wind simulation over acrid lakeshore area and sensitivity studies using the WRF-LES[J]. Plateau Meteorology, 2017, 36(3): 835-844.
孙学金, 李岩, 张燕鸿,等. 基于WRF-LES 的干旱湖区近地面风场模拟与敏感性研究[J].高原气象,2017, 36(3): 835-844.
56 Liu Y, Warner T, Liu Y, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4):308-319.
57 Wang Tengjiao, Zhang Lei, Zhao Shiqiang, et al. WRF simulation of SACOL summer boundary layer structure and comparison of different boundary layer schemes[C]//The 28th Annual Meeting of the Chinese Meteorological Society in 2011. Beijing:Meteorological Press, 2011. [
王腾蛟,张镭,赵世强,等. WRF模拟SACOL夏季边界结构及不同边界层方案的对比[C]//2011年第二十八届中国气象学会年会. 北京:气象出版社, 2011]
58 Huang Qian, Wang Rong, Tian Wenshou, et al. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation[J]. Acta Meteorologica Sinica, 2014,72(1):100-115.
黄倩, 王蓉, 田文寿,等. 风切变对边界层对流影响的大涡模拟研究[J]. 气象学报, 2014, 72(1):100-115.
59 Wang Rong, Huang Qian, Tian Wenshou, et al. Study of a large eddy simulation of the effects of boundary layer convection tracer uplift and transmission[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4):731-746.
王蓉, 黄倩, 田文寿,等. 边界层对流对示踪物抬升和传输影响的大涡模拟研究[J]. 大气科学, 2015, 39(4):731-746.
60 Zhang Junxia, Huang Qian, Tian Wenshou, et al. Large eddy simulation study of effects of convective cold pools on dust-uplift and transportion of black storm[J]. Plateau Meteorology, 2018, 37(3):850-862.
张君霞, 黄倩, 田文寿, 等. 对流冷池对黑风暴沙尘抬升和传输影响的大涡模拟研究[J]. 高原气象, 2018, 37(3):850-862.
61 Zhao Cailing, Shihua Lü, Han Bo, et al. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer[J]. Plateau Meteorology, 2016, 35(4):1 004-1 014.
赵采玲, 吕世华, 韩博, 等. 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J]. 高原气象, 2016, 35(4):1 004-1 014.
62 Huang Q,Marsham J H, Parker D J, et al. Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer[J]. Journal of Geophysical Research: Atmospheres, 2010, 115:D05201. DOI:10.1029/2009JD012689.
doi: 10.1029/2009JD012689    
63 Marsham J H, Parker D J, Grams C M, et al. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J]. Atmospheric Chemistry & Physics Discussions, 2008, 8(23):8 817-8 846.
64 Liang Jiening, Zhang Lei, Tian Pengfei, et al. Impact of low-level jet on turbulent in nocturnal boundary layer over complex terrain of the Loess Plateau[J]. Chinese Journal of Geophysics, 2014, 57(5):1 387-1 398.
梁捷宁, 张镭, 田鹏飞, 等. 黄土高原复杂地形上边界层低空急流对近地层湍流的影响[J]. 地球物理学报, 2014, 57(5):1 387-1 398.
65 Mahmood R, Hubbard K G. Simulating sensitivity of soil moisture and evapotranspiration under heterogeneous soils and land uses[J]. Journal of Hydrology, 2003, 280(1/4):0-90.
66 Ebel A, Elbern H, Hendricks J, et al. Stratosphere-troposphere exchange and its impact on the structure of the lower stratosphere[J]. Journal of Geomagnetism & Geoelectricity, 1996, 48(1):135-144.
67 Chen X, A?el Juan A, Su Z,et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2): e56909.
68 Yaqiong Lü, Ma Yaoming, Li Maoshan, et al. Numerical simulation of typical atmospheric boundary layer characteristics over lake Namco region,Tibetan Plateau in summer[J]. Plateau Meteorology, 2008, 27(4):733-740.
吕雅琼, 马耀明, 李茂善,等. 纳木错湖夏季典型大气边界层特征的数值模拟[J].高原气象, 2008, 27(4):733-740.
69 Wang Yanjun.Contrast the Simulation Result of WRF Model to Bounder Layer Observation at Southeast Tibetan Plateau[D]. Nanjing:Nanjing University of Information Science and Technology, 2011.
王寅钧. 青藏高原东南部WRF边界层模拟与观测对比探讨研究[D]. 南京:南京信息工程大学, 2011.
70 Li Maoshan, Ma Yaoming, Shihua Lü, et al. Modeling of near surface energy and characteristic of boundary layer in the northern Tibetan Plateau[J]. Plateau Meteorology, 2008,27(1):36-45.
李茂善, 马耀明, 吕世华, 等. 藏北高原地表能量和边界层结构的数值模拟[J]. 高原气象, 2008,27(1):36-45.
71 Li Fei, Zou Han, Zhou Libo, et al. Study of boundary layer parameterization schemes, applibility of WRF model over complex underlying surfaces in Southeast Tibet[J]. Plateau Meteorology, 2017, 36(2):340-357.
李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017, 36(2):340-357.
72 Xu Lujun, Liu Huizhi, Xu Xiangde, et al. Evaluation of the WRF model to atmospheric boundary layer over Nagqu area in the Tibetan Plateau[J]. Acta Meteorological Sinica, 2018, 76(6):125-137.
许鲁君, 刘辉志, 徐祥德, 等. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J]. 气象学报, 2018, 76(6):125-137.
73 Zhao Wenjing. Effect of Urban Clusters on the Regional Boundary Layer and on the Cloud and Precipitation in the Yangtze River Delta Area[D]. Nanjing: Nanjing University, 2014.
赵文静. 长江三角洲城市群对区域边界层结构及云和降水的影响[D]. 南京:南京大学, 2014.
74 Chen Yan,Xu Xiazhen,Jiang Weimei. Numerical study on the impact of urban development on atmospheric boundary layer[C]//2007 Annual Meeting of the Chinese Meteorological Society. Beijing: Meteorological Press, 2007. [
陈燕,许遐祯,蒋维楣. 城市发展对大气边界层影响的数值研究[C]//2007年中国气象学会年会.北京:气象出版社, 2007.]
75 Yang Shengpeng, Shihua Lü, Chen Yuchun, et al. Simulation of afforestation effect on urban boundary layer structure of valley city in winter[J]. Journal of Desert Research, 2010, 30(3):691-698.
杨胜朋, 吕世华, 陈玉春,等. 绿化对冬季山谷城市边界层结构影响的数值模拟研究[J]. 中国沙漠, 2010, 30(3):691-698.
76 He Xiaofeng, Jiang Weimei, Chen Yan, et al. Numerical simulation of the impacts of anthropogenic heat on the structure of the urban boundary layer[J]. Chinese Journal of Geophysics, 2007, 50(1):74-82.
何晓凤, 蒋维楣, 陈燕, 等. 人为热源对城市边界层结构影响的数值模拟研究[J]. 地球物理学报, 2007, 50(1):74-82.
77 Wang Yongwei, Ren Xia, Zhai Xuefei, et al. Numerical study of the three-dimensional thermal environment over a complex underlying surface in Nanjing[J]. Journal of Atmospheric Sciences, 2016, 39(4):525-535.
王咏薇, 任侠, 翟雪飞, 等. 南京复杂下垫面条件下的三维城市热环境模拟[J].大气科学学报, 2016, 39(4):525-535.
78 Grossmanclarke S, Liu Y B, Zehnder J A, et al. Simulations of the urban planetary boundary layer in an arid metropolitan area[J]. Journal of Applied Meteorology and Climatology, 2008, 47(3):752-768.
79 Zhang N, Wang X, Peng Z. Large-Eddy simulation of mesoscale circulations forced by inhomogeneous urban heat island[J]. Boundary-Layer Meteorology, 2014, 151(1):179-194.
80 Guoyi J, Ryuichiro Y. Large-eddy simulation of flow and pollutant dispersion in a 3D urban street model located in an unstable boundary layer[J]. Building and Environment, 2018, 142:47-57.
81 Li H, Cui G, Zhang Z. A new scheme for the simulation of microscale flow and dispersion in urban areas by coupling large-eddy simulation with mesoscalemodels[J]. Boundary-Layer Meteorology, 2018, 167:145-170.
82 Chen Lianshou, Meng Zhiyong. An overview on Tropical cyclone research progress in China during the past ten years[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(3):420-432.
陈联寿, 孟智勇. 我国热带气旋研究十年进展[J]. 大气科学, 2001, 25(3):420-432.
83 Zhao Kun, Wang Mingyun, Zhu Kefeng, et al. An analysis of the CINRAD-98D observations for the landfalling typhoon boundary layer wind profiles and their characteristics[J]. Acta Meteorological Sinica, 2015, 73(5):837-852.
赵坤, 王明筠, 朱科锋, 等. 登陆台风边界层风廓线特征的地基雷达观测[J]. 气象学报, 2015, 73(5):837-852.
84 Wu Liguang, Liu Qingyuan, Zhou Xingyang.A review on fine-scale structures in tropical cyclone boundary layer[J].Journal of the Meteorological Sciences, 2020, 40(1):1-10.
吴立广,刘青元,周星阳.热带气旋边界层精细结构研究综述[J]. 气象科学, 2020, 40(1):1-10.
85 Fang J, Tang J, Wu R. The effete of surface frietion on the development of tropical cyclones[J]. Advances in Atmospherie Sciences, 2009,26(6):1 146-1 156.
86 Deng Guo, Zhou Yushu, Wang Angsheng, et al. Preliminary results analysis of the process of typhoon boundary layer using mesoscale numerical model[C]// 2003 Annual Meeting of the Chinese Meteorological Society. 2003.
邓国, 周玉淑, 王昂生, 等. 利用中尺度数值模式研究台风边界层过程的初步结果分析[C]// 2003年中国气象学会年会. 2003.
87 Zhou P. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies[J]. Journal of Geophysical Research, 2008, 113(D17).DOI:10.1029/2007JD009643.
doi: 10.1029/2007JD009643    
88 Wurman J, Winslow J. Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran[J]. Science, 1998, 280(5 363):555-557.
89 Wu L, Liu Q, Li Y. Tornado-scale vortices in the tropical cyclone boundary layer: Numerical simulation with the WRF-LES framework[J]. Atmospheric Chemistry and Physics, 2019, 19:2 477-2 487.
90 Aberson S D, Black M, Montgomery M T, et al. Hurricane Isabel(2003):New insights into the physics of intense storms. Part II:Extreme localized wind[J]. Bulletin of the American Meteorological Society, 2006, 87:1 349-1 354.
91 Park S, Bretherton C S. The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model[J]. Journal of Climate, 2009, 22: 3 449-3 469.
92 Deng Tao, Zhang Lei, Chen Min, et al. The in fluence of high cloud and aerosol radiative effect on boundary layer[J] .Chinese Journal of Atmospheric Sciences, 2010, 34(5):979-987.
邓涛, 张镭, 陈敏, 等.高云和气溶胶辐射效应对边界层的影响[J] .大气科学, 2010, 34(5):979-987.
93 Change I P O C. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2014.
94 Zuo Hongchao, Shihua Lü, Hu Yinqiao,et al. A numerical study on the stratocumulus-topped planetary boundary layer part (Ⅰ):Model development[J]. Plateau Meteorology, 2003,(1):33-44.
左洪超, 吕世华, 胡隐樵, 等. 层积云覆盖的边界层数值模拟研究(Ⅰ):数值模式的建立[J]. 高原气象, 2003,(1):33-44.
95 Jiang Xiaofei. Influences of Sub-grid Shallow Convective and Boundary-layer Process on Cloud Forecast in GRAPES Global Model[D]. Beijing: Chinese Academy of Meteorological Sciences, 2015.
姜晓飞. GRAPES全球模式浅对流和边界层过程对低云预报的影响研究[D]. 北京:中国气象科学研究院,2015.
96 Koracin D, Lewis J, Thompson W T, et al. Transition of stratus into fog along the California Coast: Observations and modeling[J]. Journal of the Atmospheric Sciences, 2000, 58(13):1 714-1 731.
97 Yeom J M, Yum S S, Liu Y, et al. A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign[J]. Atmospheric Research, 2017, 194(9):89-99.
98 Li Yanying, Cai Ying, Zhang Chunyan, et al. Dynamic relationship between entrainment rate and summer monsoon in the transition area of monsoon in the East of Northwest China[J]. Advances in Earth Science, 2019, 34(1):1 316-1 327.
李岩瑛, 蔡英, 张春燕, 等. 西北东部季风过渡区夹卷率与夏季风的动力学关系[J]. 地球科学进展, 2019, 34(1):1 316-1 327.
99 Lu C, Liu Y, Zhang G J, et al. Improving parameterization of entrainment rate for shallow convection with aircraft measurements and large-eddy simulation[J]. Journal of the Atmospheric Sciences, 2016, 73(2):761-773.
100 Luan Yihua, Yu Yongqiang, Zheng Weipeng. Review of development and application of high resolution global climate system model[J]. Advances in Earth Science, 2016, 31(3) : 258-268.
栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
101 Weckwerth T M, Wilson J W, Wakimoto R M, et al. Horizontal convective rolls: Determining the environmental conditions supporting their existence and characteristics[J]. Monthly Weather Review, 1996, 125(4):505.
102 Conzemius R J. Dynamics of sheared convective boundary layer entrainment. Part II: Evaluation of bulk model predictions of entrainment flux[J]. Journal of the Atmospheric Sciences, 2006b, 63:1 179-1 199.
103 Ma Leiming, Bao Xuwei. Research progress on physical parameterization schemes in Numerical Weather Prediction Models[J]. Advances in Earth Science, 2017, 32(7):679-687.
马雷鸣, 鲍旭炜. 数值天气预报模式物理过程参数化方案的研究进展[J]. 地球科学进展, 2017, 32(7):679-687.
104 Wang Rong, Huang Qian, Yue Ping. Effect of large eddy horizontal resolution on simulation of entrainment and tracer vertical transport[J]. Journal of Arid Meteorology, 2019,37(1):50-58.
王蓉, 黄倩, 岳平. 大涡模式水平分辨率对边界层夹卷过程及示踪物垂直传输的影响[J]. 干旱气象, 2019,37(1):50-58.
105 Wang Rong, Huang Qian, Yue Ping, et al. Effect of large eddy vertical resolution on analysis of entrainment and tracer ertical transport simulation[J]. Meteorological Monthly, 2019,45(12):1 700-1 709.
王蓉, 黄倩, 岳平, 等.大涡模式垂直分辨率在夹卷及示踪物垂直传输模拟结果分析中的作用[J].气象, 2019,45(12):1 700-1 709.
106 Ren Yan, Huang Qian, Zhang Junxia, et al. Effect of large eddy resolution on simulation of structure and evolution of the marine trade-wind boundary layer[J]. Journal of Tropical Meteorologica, 2018,34(1):23-33.
任燕, 黄倩, 张君霞,等, 2018. 大涡模式分辨率对海洋信风区大气边界层结构和演变模拟的影响[J]. 热带气象学报, 2018,34(1):23-33.
107 Kaimal J C, Haugen D A, Coté O R, et al. Turbulence structure in the convective boundary layer[J]. Journal of the Atmospheric Sciences, 1976, 33:2 152-2 169.
108 Ludwig F L, Chow F K, Street R L. Effect of turbulence models and spatial resolution on resolved velocity and structure and momentum fluxes in large-eddy simulations of neutral boundary-layer ?ows[J]. Journal of Applied Meteorology & Climatology, 2009,48: 1 161-1 180.
109 Chen Jiong, Ma Zhanshan, Su Yong. Boundary layer coupling to Charney-Phillips vertical grid in GRAPES model[J]. Journal of Applied Meteorological Science, 2017, 28(1):52-61.
陈炯, 马占山, 苏勇. 适用于GRAPES模式C-P边界层方案的设计和实现[J]. 应用气象学报, 2017, 28(1):52-61.
110 van Hooft J A, Popinet S, Heerwarrden van C C, et al.Towards adaptive grids for atmospheric boundary-layer simulations[J]. Boundary-Layer Meteorology, 2018, 167: 421-443.
111 Meng Zhiyong, Zhang Fuqing, Luo Dehai, et al. Review of Chinese atmospheric science research over the past 70 years: Synoptic meteorology[J]. Science in China(Series D), 2019, 49: 1 875-1 918.
孟智勇, 张福青, 罗德海, 等. 新中国成立70年来的中国大气科学研究: 天气篇[J]. 中国科学: D辑, 2019, 49: 1 875-1 918.
112 Chen Jianping, Zhou Weican, Guan Yuanhong, et al. Overview of using satellite data on four-dimensional variational data assimilation on Lateral Layer[J]. Meteorology and Disaster Reduction Research, 2007, 30(1):53-59.
陈建萍, 周伟灿, 官元红, 等. 使用卫星资料进行边界层四维变分同化研究综述[J]. 气象与减灾研究, 2007, 30(1):53-59.
113 Chen Xiaoju. Quality Control for Surface Observation Data and Data Assimilation[D]. Nanjing:Nanjing University of Information Science and Technology,2007.
陈小菊. 地面资料质量控制技术与资料同化[D]. 南京:南京信息工程大学, 2007.
114 Zhang Honghua, Wang Guichen, Zeng Mingjian, et al. Application of wind profile and wind tower data in surface wind field prediction[J]. Meteorological Science and Technology, 2014, 42(3):451-459.
张红华, 王桂臣, 曾明剑, 等. 风廓线与测风塔资料在地面风场预报中的应用研究[J]. 气象科技, 2014, 42(3):451-459.
115 Chen Dongsheng, Shen Tongli, Ma Gelan, et al. Advances in the meteorlogical data assimilation[J]. Journal of Atmospheric Sciences, 2004, 27(4):550-564.
陈东升, 沈桐立, 马革兰, 等. 气象资料同化的研究进展[J]. 大气科学学报, 2004, 27(4):550-564.
116 Sullivan P P, Moeng C H, Stevens B, et al. Structure of the entrainment zone capping the convective atmospheric boundary layer[J]. Journal of Atmospheric Sciences, 1998, 55(19):3 042-3 064.
117 Kim S W, Park S U, Moeng C H. Entrainment processes in the convective boundary layer with varying wind shear[J]. Boundary-Layer Meteorology, 2003, 108(2):221-245.
118 Zhang Qiang, Wang Rong, Yue Ping, et al. Several scientific issues about the land-atmosphere interaction under complicated conditions[J]. Acta Meteorologica Sinica, 2017,75(1):39-56.
张强, 王蓉, 岳平,等. 复杂条件陆—气相互作用研究领域有关科学问题探讨[J]. 气象学报, 2017, 75(1):39-56.
119 Vivoni E R, Moreno H A, Mascaro G, et al. Observed relation between evapotranspiration and soil moisture in the North American monsoon region[J]. Geophysical Research Letters, 2008, 35(22):659-662.
120 Ma Yingsai, Meng Xianhong, Han Bo, et al. Observations of soil moisture influence on surface energy dynamics and planetary boundary layer characteristics over the Loess Plateau[J]. Plateau Meteorology, 2019,38(4):705-715.
马英赛, 孟宪红, 韩博, 等.黄土高原土壤湿度对地表能量和大气边界层影响的观测研究[J]. 高原气象, 2019, 38(4):705-715.
121 Sun Wenqi, Li Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018, 38(3):11-19.
孙文奇, 李昌义. 数值模式中的大气边界层参数化方案综述[J]. 海洋气象学报, 2018, 38(3):11-19.
122 Arthur R S, Mirocha J D, Lundquist K A, et al. Using a canopy model framework to improve large-eddy simulations of the neutral atmospheric boundary layer in the Weather Research and Forecasting Model[J]. Monthly Weather Review, 2018, 31(147):31-52.
123 Bou-Zeid E, Meneveau C, Parlange M. A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent ?ows[J]. Physics of Fluids,2005, 17: 025105.
[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[5] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[6] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[7] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[8] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[9] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[10] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[11] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[12] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
[13] 孙运宝, 赵铁虎, 秦柯. 南海北部白云凹陷沉积压实作用对浅水流超压演化影响数值模拟[J]. 地球科学进展, 2014, 29(9): 1055-1064.
[14] 刘彦华,张述文,毛璐,薛宏宇. 评估两类模式对陆面状态的模拟和估算[J]. 地球科学进展, 2013, 28(8): 913-922.
[15] 薛羽君,白爱娟,李 典. 四川盆地降水日变化特征分析和个例模拟[J]. 地球科学进展, 2012, 27(8): 885-894.
阅读次数
全文


摘要