地球科学进展 ›› 2016, Vol. 31 ›› Issue (8): 800 -810. doi: 10.11867/j.issn.1001-8166.2016.08.0800.

综述与评述 上一篇    下一篇

海上风能资源观测与评估研究进展
李正泉 1, 2, 宋丽莉 2*, *, 马浩 1, 冯涛 1, 王阔 1   
  1. 1.浙江省气候中心,浙江 杭州 310017;
    2.中国气象局 风能太阳能资源中心,北京 100081
  • 收稿日期:2016-06-15 修回日期:2016-07-25 出版日期:2016-08-20
  • 通讯作者: 宋丽莉(1963-),女,山东乳山人,研究员,主要从事工程气象研究.E-mail:songll@cma.gov.cn
  • 基金资助:
    公益性行业科研专项“多源测风资料融合技术研究及其在风能资源评估中的应用”(编号:GYHY201306050); 中国气象局气候变化专项“气候变化对中国东南近海风场影响研究”(编号:CCSF201427)资助

Review of Methodologies for Offshore Wind Resource Observation and Assessment

Li Zhengquan 1, 2, Song Lili 2, *, Ma Hao 1, Feng Tao 1, Wang Kuo 1   

  1. 1. Zhejiang Climate Center,Hangzhou 310017, China;
    2. Wind and Solar Energy Resources Center, China Meteorological Administration, Beijing 100081, China
  • Received:2016-06-15 Revised:2016-07-25 Online:2016-08-20 Published:2016-08-20
  • Contact: Song Lili (1963- ), female, Rushan City, Shandong Province, Professor. Research areas include engineering meteorology.E-mail:songll@cma.gov.cn
  • Supported by:
    Project supported by the Special Fund of National Public Welfare Industry “Research on the multi-source wind data fusion and its application in wind energy resource assessment” (No.GYHY201306050); Special Fund of Climate Change of CMA“Study on the influence of climate change on the wind over the Southeast China Sea” (No.CCSF201427)
风能资源观测评估是风电开发建设的前提基础,海上风电投资成本巨大,更需准确评估风能资源以减少风电投资风险。从传统气象站观测到多平台遥感探测,从简单数理统计到耦合模式数值模拟,观测数据的丰富和技术方法的成熟,使得海上风能资源评估的可靠性越来越高。站位资料匮乏、遥感资料丰富是海上风场观测数据特点。运用多尺度耦合模式,同化多源遥感探测资料和站位观测资料,以多方式技术融合形式开展海上风能资源评估,是区域风能资源评估方法的主流发展方向。风电场风能资源评估应着重注意观测数据质量、数据插补订正、重现期风速推算及风能参数长年代修正等方式方法的选择,这些因素可直接影响未来风电场运行效益。
Observation and assessment of wind resources is a prerequisite for wind farm construction. Due to the investment cost of offshore wind farm is very expensive, more accurate assessment of wind resources is needed to reduce their investment risks. From traditional field observation to multi-platform remote sensing and from ordinary mathematical statistics to coupled numerical model simulation, abundant offshore wind data and evolving assessment methods make the results of offshore wind resource assessment more and more reliable. Poor station observations and rich remote sensing data are distinct characteristics of offshore wind data. Technology integration of applying multi-scale coupled models to assimilate multi-source remote sensing and station data is a mainstream development direction of offshore wind resource assessment methods. The wind resource assessment for offshore wind farm should focus on data quality and method selections of data interpolation, wind speed calculation of return period and wind energy parameters adjusted for a long term condition because these factors can significantly affect the operating efficiency of future wind farm.

中图分类号: 

[1] GWEC. Global Wind Report-2015[M]. Brussels: Global Wind Energy Council, 2016: 8-53.
[2] EEA. Europe’s Onshore and Offshore Wind Energy Potential[M]. Copenhagen: European Environment Agency, 2009: 18-25.
[3] Musial W, Ram B. Large Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers[M]. Colorado: National Renewable Energy Laboratory, 2010: 53-68.
[4] Song Lili, Zhou Rongwei, Yang Zhenbin, et al . Meteorological technology application and development in wind energy resources utilization[J]. Engineering Sciences , 2012,14(9): 96-101.
. 中国工程科学, 2012, 14(9): 96-101.]
[5] Alexis G, Frank M, Cyrus F, et al . Offshore Wind in Europe: Walking the Tightrope to Success[M]. UK: Ernst & Young Global Limited Entity, 2015: 7-12.
[6] GWEC.Global Wind Report-2012[M]. Brussels: Global Wind Energy Council, 2013: 30-33.
[7] Shi Pengfei, Zhu Ruizhao, Lou Huiying, et al . Methodology of Wind Energy Resource Assessment for Wind Farm:GB/T18710-2002[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, 2002.
. 北京: 国家质量监督检验检疫总局, 2002.]
[8] Li Zechun, Zhu Rong, He Xiaofeng, et al. Study on the assessment technology of wind energy resource[J]. Acta Meteorologica Sinica , 2007, 65(5): 708-717.
. 气象学报, 2007, 65(5): 708-717.]
[9] Wind and Solar Energy Resources Center. Assessment of Wind Energy Resources in China[M]. Beijing: China Meteorological Press, 2010:125-151.
. 北京: 气象出版社, 2010: 125-151.]
[10] Yang Zhongen, Li Zhengquan. Wind Energy Resource in Zhejiang Province[M]. Beijing: China Meteorological Press, 2013: 35-58.
. 北京: 气象出版社, 2013: 35-58.]
[11] Zhong Jian, Huang Sixun, Zhang Liang. Research on the development of surface wind retrieval from microwave scatterometer[J]. Scientia Meteorologica Sinica , 2010, 30(1): 137-142.
. 气象科学, 2010, 30(1): 137-142.]
[12] Jiang Zhuhui, Huang Sixun, Liu Gang, et al . Research on the development of surface wind speed retrieval from satellite radar altimeter[J]. Marine Science Bulletin , 2011, 30(5): 588-594.
. 海洋通报, 2011, 30(5): 588-594.]
[13] Sun Qiang, Lü Daren. Analysis on the performance of microwave radiometer on monitoring sea surface wind under non-precipitation conditions[J]. Remote Sensing Technology and Application , 2016, 31(1): 109-118.
. 遥感技术与应用, 2016, 31(1): 109-118.]
[14] Hasager C B, Badger M. SAR-based wind resource statistics in the Balticsea[J]. Remote Sensing , 2011, 3(12): 117-144.
[15] Laura C S, Vicente D C. Floating Offshore Wind Farms[M]. Switzerland: Springer International Publishing, 2016: 121-141.
[16] Atlas R, Hoffman R N, Ardizzone J V, et al . A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications[J]. Bulletin of the American Meteorological Society , 2011, 92(2): 157-174.
[17] Archer C L,Jacobson M Z.Evaluation of global wind power[J]. Journal of Geophysical Research Atmospheres , 2005, 110(D12): 1 147-1 148.
[18] Hasager C B, Mouche A, Badger M, et al. Offshore wind climatology based on synergetic use of Envisat ASAR, ASCAT and QuikSCAT[J]. Remote Sensing of Environment , 2015, 156: 247-263.
[19] Sempreviva A M, Barthelmie R J, Pryor S C. Review of methodologies for offshore wind resource assessment in European seas[J]. Surveys in Geophysics , 2008, 29(6): 471-497.
[20] Carvalho D, Rocha A, Gomez G M, et al. Comparison of reanalyzed, analyzed, satellite-retrieved and NWP modelled winds with buoy data along the Iberian Peninsula coast[J]. Remote Sensing of Environment , 2013, 152: 480-492.
[21] Matthew L A, Michael E R, Julie K L. Performance of a wind profiling lidar in the region of wind turbine rotor disks[J]. Journal of Atmospheric and Oceanic Technology , 2012, 29(3): 347-355.
[22] Gomes L, Mallet M, Roger J C, et al . Effects of the physical and optical properties of urban aerosols measured during the Capitoul summer campaign on the local direct radiative forcing[J]. Meteorology and Atmospheric Physics , 2008, 102(3): 289-306.
[23] Hsuan C, Tasi Y, Ke J, et al . Validation and measurements of floating lidar for near shore wind resource assessment application[J]. Energy Procedia , 2014, 61: 1 699-1 702.
[24] IEC. Power Performance Measurements of Electricity Producing Wind Turbines: IEC61400-12-1, Revision Edition[S]. Switzerland: International Electrotechnical Commission, 2010.
[25] Furevik B R, Sempreviva A M, Cavaleri L, et al . Eight years of wind measurements from scatterometer for wind resource mapping in the Mediterranean Sea[J]. Wind Energy , 2011, 14(3): 355-372.
[26] Remy F, Parouty S. Antarcticice sheet and radar altimetry: A review[J]. Remote Sensing , 2009, 1: 1 212-1 239.
[27] Takeyama Y, Ohsawa T, Kozai K, et al . Comparison of geophysical model functions for SAR wind speed retrieval in Japanese Coastal waters[J]. Remote Sensing , 2013, 5(4): 1 956-1 973.
[28] Zhang Lei, Shi Hanqing, Long Zhiyong, et al . Overview of the ocean wind retrieval from space-borne SAR images[J]. Marine Science Bulletin , 2012, 31(6): 713-720.
. 海洋通报, 2012, 31(6): 713-720.]
[29] Ricciardulli L, Wentz F. Challenges of integrating multiple scatterometer observations into a climate data record: The effect of diurnal variability[C]∥International Ocean Vector Wind Science Team, Kona, Hawaii,2013.
[30] China Meteorological Administration. Survey and Assessment of National Wind Energy Resources[M]. Beijing: China Meteorological Press, 2014: 80-90.
. 北京: 气象出版社, 2014: 80-90.]
[31] Zheng Chongwei, Zhou Lin, Huang Chaofan, et al. The long-term trend of the sea surface wind speed and the wave height (wind wave, swell, mixed wave) in global ocean during the last 44 a[J]. Acta Oceanologica Sinica , 2013, 32(10): 1-4.
[32] Pryor S C, Barthelmie R J. Long term trends in near surface flow over the Baltic[J]. International Journal of Climatology , 2003, 23(3): 271-289.
[33] Jin S L, Feng S L, Wang B, et al. Assessment of offshore wind resource in China using CFSR data[J]. Advanced Materials Research , 2015, 1 070: 303-308.
[34] Li Zhengquan, Xiao Jingjing, Zhang Yuhui, et al . Variation analysis of sea surface wind over China seas using global wind products[J]. Marine Environment Science , 2016, 35(4): 587-593.
. 海洋环境科学, 2016, 35(4): 587-593. ]
[35] Hasager C B, Astmp P, Nielsen M, et al . Sat-wind Project Final Report[R]. Denmark:Ris-National Laboratory, 2007.
[36] Pimenta F, Kempton W, Garvine R. Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil[J]. Renewable Energy , 2008, 33(11): 2 375-2 387.
[37] Karagali I, Peña A, Badger M, et al . Wind characteristics in the North and Baltic Seas from the QuikSCAT satellite[J]. Wind Energy , 2014, 17(1): 123-140.
[38] Nghiem S V, Leshkevich G A, Stiles B W. Wind fields over the Great Lakes measured by the SeaWinds scatterometer on the QuikSCAT satellite[J]. Journal of Great Lakes Research , 2004, 30(1): 148-165.
[39] Jiang D, Zhuang D F, Huang Y H, et al . Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data[J]. Renewable and Sustainable Energy Reviews , 2013, 24: 142-148.
[40] Capps S B, Zender C S. Estimated global ocean wind power potential from QuikSCAT observations, accounting for turbine characteristics and siting[J]. Journal of Geophysical Research , 2010, 115: 1 063-1 075.
[41] Beaucage P, Bernier M, Lafrance G, et al . Regional mapping of the offshore wind resource: Towards a significant contribution from space-borne synthetic aperture radars[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 2008, 1(1): 48-56.
[42] Monaldo F M, Li X F, Pichel W G, et al. Ocean wind speed climatology from space borne SAR imagery[J]. Bulletin of the American Meteorological Society , 2014, 95(4): 565-569.
[43] Chang Rui, Zhu Rong, Zhou Rongwei, et al. An application of high resolution SAR wind retrievals to offshore wind resources assessment in China[J]. Acta Meteorologica Sinica , 2014, 72(3): 606-613.
. 气象学报, 2014, 72(3): 606-613.]
[44] Badger M, Badger J, Nielsen M, et al. Wind class sampling of satellite SAR imagery for offshore wind resource mapping[J]. Journal of Applied Meteorology and Climatology , 2010, 49(12): 2 474-2 491.
[45] Barthelmie R J, Pryor S C. Can satellite sampling of offshore wind speeds realistically represent wind speed distributions[J]. Journal of Applied Meteorology , 2003, 42(1): 83-94.
[46] Barthelmie R J. Modelling and measurements of coastal wind speeds[M]∥Majumdar S K, Miller E W, Panah A I, eds. Renewable Energy: Trends and Prospects. Easton: Pennsylvania Academy of Science, 2001: 961-975.
[47] Bergström H, Barthelmie R J. Offshore boundary-layer modelling[C]∥Proceedings of the Global Windpower Conference. Paris, 2002.
[48] Nunalee C G, Basu S. Mesoscale modeling of coastal low-level jets: Implications for offshore wind resource estimation[J]. Wind Energy , 2014, 17: 1 199-1 216.
[49] Hahmann A N, Vincent C L, Pena A, et al . Wind climate estimation using WRF model output: Method and model sensitivities over the sea[J]. International Journal of Climatology , 2015, 35(12): 3 422-3 439.
[50] Carvalho D, Rocha A, Santos C S, et al . Wind resource modeling in complex terrain using different mesoscale-microscale coupling techniques[J]. Applied Energy , 2013, 108(8): 493-504.
[51] Schwartz M, Heimiller D, Haymes S, et al . Assessment of Offshore Wind Energy Resources for the United States[M]. Colorado: National Renewable Energy Laboratory, 2010: 1-23.
[52] Tammelin B, Vihma T, Atlaskin E, et al. Production of the Finnish wind atlas[J]. Wind Energy , 2013, 16(1): 19-35.
[53] Waewsak J, Landry M, Gagnon Y. Offshore wind power potential of the Gulf of Thailand[J]. Renewable Energy , 2015, 81: 609-626,doi: 10.1016/j.renene.2015.03.069.
[54] Badger J, Frank H, Andrea N, et al . Wind climate estimation based on mesoscale and microscale modeling: Statistical dynamical downscaling for wind energy applications[J]. Journal of Applied Meteorology & Climatology , 2014, 53(8): 1 901-1 919.
[55] Zhang Xiaowei, Li Zhengquan, Yang Zhongen, et al . Application of multi-job management mode to numerical simulation for wind energy resource[J]. Journal of Applied Meteorological Science , 2010, 21(6): 747-753.
. 应用气象学报, 2010, 21(6):747-753.]
[56] Zhu Rong, He Xiaofeng, Zhou Rongwei, et al. Assessment method of numerical simulation for regional wind energy resources[J]. Wind Energy , 2010, 4: 50-54.
. 风能, 2010, 4: 50-54. ]
[57] He Xiaofeng, Zhou Rongwei, Zhu Rong. Study of classification method for the wind energy resource numerical simulation assessment[J]. Acta Meteorological Sinica , 2015, 73(5): 975-984.
. 气象学报, 2015, 73(5): 975-984.]
[58] Fernandes M, Costa P, Estanqueiro A. Improving offshore wind resource assessments using a data assimilation technique[C]∥European Offshore Wind Conference & Exhibition. Amsterdam, 2011.
[59] Chang R, Zhu R, Badge M, et al . Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea[J]. Remote Sensing , 2015, 7(1): 467-487.
[60] Song Lili, Lü Yongping, Qian Guangming, et al . Regulations for Data Inspection and Correction of Wind Farm Meteorological Observation:QX/T74-2007[S]. Beijing: China Meteorological Administration, 2007.
. 北京: 中国气象局, 2007.]
[61] Song Lili, Huang Haohui, Zhi Shiqun, et al. Precision control in measurement and calculation of wind energy resource over wind power facilities[J]. Meteorological Monthly , 2009, 35(3): 73-80.
. 气象, 2009, 35(3): 73-80.]
[62] Rogers A, Rogers J, Manwell J F. Comparison of the performance of four measure-correlate-predict algorithms[J]. Journal of Wind Engineering and Industrial Aerodynamics , 2005, 93: 243-264.
[63] Lavagnini A, Sempreviva A M, Barthelmie R J. Estimating wind energy potential offshore in Mediterranean areas[J]. Wind Energy , 2003, 6: 23-34.
[64] Chang T P. Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application[J]. Applied Energy , 2011, 88(1): 272-282.
[65] Dong Y, Wang J, Jiang H, et al. Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China[J]. Applied Energy , 2013, 109(2): 239-253.
[66] Li Hongxiu, Ren Peng, Zhu Ruizhao. Discussion on maximum wind speed in wind energy resource assessment[C]∥The Fourth Asian Wind Energy Conference. Beijing, 2007.
∥第四届亚洲风能大会暨国际风能设备展览会议. 北京, 2007.]
[67] Hu Jinhua, Wang Xiangming. A method for estimating the extreme 10min average and 3s wind speed with a recurrence period of 50 years at the difference height in a wind farm[J]. Journal of Applied Meteorological Science , 2009, 20(1): 108-113.
. 应用气象学报, 2009, 20(1): 108-113.]
[68] IEC. Safety of Small Wind Turbine Generator Systems:IEC61400-2-2001[S]. Switzerland: International Electrotechnical Commission, 2001.
[69] Wang J, Qin S, Jin S, et al . Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources[J]. Renewable and Sustainable Energy Reviews , 2015, 42: 26-42,doi: 10.1016/j.roser.2014.01.065.
[70] Ishihara T, Yamaguchi A. Prediction of the extreme wind speed in the mixed climate region by using Monte Carlo simulation and measure-correlate-predict method[J]. Wind Energy , 2015, 18(1): 171-186.
[71] Lackner M A, Rogers A L, Manwell J F. Uncertainty analysis in MCP-based wind resource assessment and energy production estimation[J]. Journal of Solar Energy Engineering , 2008, 130(3),doi: 10.1115/1.2931499.
[72] Wen Min, Zhang Renhe, Yang Zhenbin. Rational development and utilization of climate resources[J]. Advances in Earth Science , 2004, 19(6): 896-902.
. 地球科学进展, 2004, 19(6): 896-902.]
[73] Kjellstrom E, Nikulin G, Hansson U, et al. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations[J]. Tellus A , 2011, 63: 24-40,doi: 10.1111/j.1600-08/0.2010.00475x.
[74] Gonçalves A M, Barrera E A, Baldasano J, et al . Modelling wind resources in climate change scenarios in complex terrains[J]. Renewable Energy , 2015, 76: 670-678,doi: 10.1016/j.renene.2014.11.066.
[75] Zhang De, Zhu Rong, Luo Yong, et al . Application of Wind Energy Simulation Toolkit (WEST) to wind energy numerical simulation of China[J]. Plateau Meteorology , 2008, 27(1): 202-207.
. 高原气象, 2008, 27(1): 202-207.]
[76] Zhang Xiuzhi, Richard B, Zhu Rong, et al . Guidebook on Offshore Wind Farm Development in China[M]. Beijing: China Meteorological Press, 2010: 3-35.
. 北京: 气象出版社, 2014: 80-90.]
[77] Zhou Rongwei, He Xiaofeng, Zhu Rong, et al . Numerical simulation of the development potential of wind energy resources over China’s offshore areas[J]. Resources Science , 2010, 32(8): 1 434-1 443.
. 资源科学, 2010, 32(8): 1 434-1 443.]
[78] Xu Jingwei, Zhang Xiuzhi, Luo Yong, et al . The validation analysis of QuikSCAT wind speed and the wind distribution in China’s offshore areas[J]. Acta Oceanologica Sinica , 2013, 35(6): 76-86.
. 海洋学报, 2013, 35(6): 76-86.]
[79] Zheng C W,Pan J. Assessment of the global ocean wind energy resource[J]. Renewable and Sustainable Energy Reviews , 2014, 33: 382-391,doi: 10.1016/j.reser.2014.01.065.
[1] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[2] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[3] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[6] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[7] 刘元波, 吴桂平, 赵晓松, 范兴旺, 潘鑫, 甘国靖, 刘永伟, 郭瑞芳, 周晗, 王颖, 王若男, 崔逸凡. 流域水文遥感的科学问题与挑战[J]. 地球科学进展, 2020, 35(5): 488-496.
[8] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[9] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[10] 刘磊,翁陈思,李书磊,胡帅,叶进,窦芳丽,商建. 太赫兹波被动遥感冰云研究现状及进展[J]. 地球科学进展, 2020, 35(12): 1211-1221.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[13] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[14] 陈泽青,刘诚,胡启后,洪茜茜,刘浩然,邢成志,苏文静. 大气成分的遥感监测方法与应用[J]. 地球科学进展, 2019, 34(3): 255-264.
[15] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
阅读次数
全文


摘要