Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (5): 539-551    DOI: 10.11867/j.issn.1001-8166.2015.05.0539
综述与评述     
白云石化作用及白云岩储层研究进展*
黄擎宇1, 刘伟1, 张艳秋2, 石书缘1, 王坤1
1. 中国石油勘探开发研究院,北京 100083; 2. 中国石油天然气股份有限公司塔里木油田分公司勘探开发研究院, 新疆 库尔勒 841000
Progress of Research on Dolomitization and Dolomite Reservoir
Huang Qingyu1, Liu Wei1, Zhang Yanqiu2, Shi Shuyuan1, Wang Kun1
1. Research Institution of Petroleum Exploration & Development, Petrochina, Beijing 100083, China; 2. Institute of Petroleum Exploration and Development, Tarim Oilfield Company, Petrochina, Korla 841000, China
 全文: PDF(4301 KB)  
摘要:

白云石化作用和白云岩储层一直都是碳酸盐岩研究中的重要领域。近年来,随着实验分析技术的进步以及油气勘探的深入,对白云岩的研究也取得了诸多进展:①数值模拟技术逐步应用到白云岩研究中,实现了白云石化模式研究由定性到定量的转变;②对微生物白云石化的研究不断加强,识别出了微生物相关白云石的特殊显微形貌特征并对其生物矿化机制进行了分析;③对已有白云石化模式的重新审视:包括对混合水白云石化的修正、对回流白云石化的扩展以及对构造—热液白云石化模式的丰富;④在白云石化与孔隙相关关系的研究中,突破了白云石化增孔的传统认识,逐步强调白云石化在孔隙保存方面的作用;⑤注重研究白云岩结构、成岩环境、原始相带以及白云岩形成之后的溶蚀改造等因素对白云岩储层发育的控制作用。在未来的研究中,应加强3个方面内容,一是对白云岩结构演化规律的定量研究,二是在成岩流体示踪方面要加强对新技术手段(如二元同位素、Mg同位素)的使用,同时注意借鉴成矿流体研究中的成熟技术和方法,三是要加强对深部白云岩储层形成和保存机制的探索。

关键词: 数值模拟地球化学白云石化模式微生物白云岩储层成因    
Abstract:

Dolomitization and dolomite reservoir are vital research fields in carbonate rocks. Recently, there are many progresses in dolomite with the advancement of experimental techniques and development of petroleum exploration, including: ① Numerical simulation is applied to the study of dolomitization model gradually. It achieves a conversion of dolomitization model from qualitative analysis to quantitative description and is beneficial for understanding the migration and range of dolomitizing fluids on the regional level. ② More attention is focused on the research of microbial dolomitization. The morphological features of dolomite associated with microbe and mechanism of biomineralization have been recognized and studied deeply. ③The defects of mixing-zone dolomitization in theory and practice are pointed out, and the application range of this model is limited. ④ The scope of reflux model of dolomitization is extended widely, particularly the reflux of penesaline seawater is considered as a potential for large-scale dolomitization in shallow-burial stage. ⑤The further study of structural controlled hydrothermal dolomitization has come to realize that hydrothermal dolomite can also be associated to convergent settings. The modification of hydrothermal fluids to reservoirs shows characteristics of coexistence of constructive and destructive impacts. The research of relationship between dolomitization and origin of porosity breaks though the traditional knowledge of dolomitization increasing porosity, and emphasizes the ability of dolomitization retaining porosity. ⑥The main controlling factors of dolomite reservoirs are contributed to the dolomite texture, diagenestic environment and dissolution after emplacement of dolomite. Three aspects should be improved in the future investigations. The first is the quantitative study of evolution of dolomite texture. The second is enhancing the employment of latest geochemical techniques such as Clumped isotope and Mg isotope as well as using the mature methods for research of ore-forming fluids. The third is exploring the mechanism of origin and preservation of dolomite reservoirs in deep burial setting.

Key words: Microbial dolomite    Reservoir origin    Mathematical models    Dolomitization models    Geochemistry.
出版日期: 2015-05-06
:  P588.24+5  
基金资助:

国家科技重大专项“四川、塔里木等盆地及邻区海相碳酸盐岩大油气田形成条件、关键技术及目标评价”(编号:2011ZX05004)资助

作者简介: 黄擎宇(1984-),男,河南南阳人,博士后,主要从事碳酸盐岩储层地质学方面的研究. E-mail: qingyuh08@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
石书缘
张艳秋
黄擎宇
刘伟
王坤

引用本文:

黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展*[J]. 地球科学进展, 2015, 30(5): 539-551.

Huang Qingyu, Liu Wei, Zhang Yanqiu, Shi Shuyuan, Wang Kun. Progress of Research on Dolomitization and Dolomite Reservoir. Advances in Earth Science, 2015, 30(5): 539-551.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2015.05.0539        http://www.adearth.ac.cn/CN/Y2015/V30/I5/539

[1] Land L S. The origin of massive dolomite[J]. Journal of Geological Education, 1985, 33(2): 112-125.
[2] Hardie L A. Dolomitization: A critical view of some current views[J]. Journal of Sedimentary Research, 1987, 57(1): 166-183.
[3] Budd D A. Cenozoic dolomites of carbonate islands: Their attributes and origin[J]. Earth-Science Reviews, 1997, 42(1/2): 1-47.
[4] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/3): 1-81.
[5] Machel H G. Concepts and models of dolomitization: A critical reappraisal[C]∥ Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs.London: Geological Society (London) Special Publication, 2004, 235: 7-63.
[6] Zhang Xuefeng,Liu Bo,Cai Zhongxian,et al. Dolomitization and carbonate reservoir formation[J]. Geological Science and Technology Information,2010, 29(3): 79-85.[张学丰,刘波,蔡忠贤,等. 白云岩化作用与碳酸盐岩储层物性[J]. 地质科技情报, 2010, 29(3): 79-85.]
[7] Huang Sijing. Carbonate Diagenesis[M]. Beijing: Geological Publishing House, 2010.[黄思静. 碳酸盐岩的成岩作用[M]. 北京: 地质出版社, 2010.]
[8] Zheng Herong,Wu Maobing, Wu Xingwei,et al. Oil-gas exploration prospect of dolomite reservoir in the Lower Paleozoic of Tarim Basin[J]. Acta Petrolei Sinica,2007, 28(2): 1-8.[郑和荣,吴茂炳,邬兴威,等. 塔里木盆地下古生界白云岩储层油气勘探前景[J]. 石油学报, 2007, 28(2): 1-8.]
[9] Zhao Wenzhi,Shen Anjiang,Hu Suyun,et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica,2012, 28(3): 758-768.[赵文智,沈安江,胡素云,等. 塔里木盆地寒武—奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 2012, 28(3): 758-768.]
[10] Wang Zecheng,Zhao Wenzhi,Hu Suyun,et al. Reservoir types and distribution characteristics of large marine carbonate oil and gas fields in China[J]. Oil & Gas Geology,2013, 34(2): 153-160.[汪泽成,赵文智,胡素云,等. 我国海相碳酸盐岩大油气田油气藏类型及分布特征[J]. 石油与天然气地质, 2013, 34(2): 153-160.]
[11] Zhao Wenzhi,Shen Anjiang,Zheng Jianfeng,et al. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction[J]. Science in China (Series D),2014, 44(9): 1 925-1 939.[赵文智,沈安江,郑剑锋,等. 塔里木、四川及鄂尔多斯盆地白云岩储层孔隙成因探讨及对储层预测的指导意义[J]. 中国科学:D辑, 2014, 44(9): 1 925-1 939.]
[12] Shields M J, Brady P V. Mass balance and fluid flow constraints on regional-scale dolomitization, Late Devonian, Western Canada Sedimentary Basin[J]. Bulletin of Canadian Petroleum Geology, 1995, 43(4): 371-392.
[13] Jones G D, Rostron B J. Analysis of fluid flow constraints in regional-scale reflux dolomitization: Constant versus variable-flux hydrogeological models[J]. Bulletin of Canadian Petroleum Geology, 2000, 48(3): 230-245.
[14] Jones G D, Whitaker F F, Smart P L, et al. Fate of reflux brines in carbonate platforms[J]. Geology, 2002, 30(4): 371-374.
[15] Jones G D, Smart P L, Whitaker F F, et al. Numerical modeling of reflux dolomitization in the Grosmont platform complex (Upper Devonian), Western Canada sedimentary basin[J]. AAPG Bulletin, 2003, 87(8): 1 273-1 298.
[16] Whitaker F F, Smart P L, Jones G D. Dolomitization: From conceptual to numerical models[C]∥Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. London: Geological Society Special Publication, 2004, 235:99-139.
[17] Caspard E, Rudkiewicz J L, Eberli G P, et al. Massive dolomitization of a Messinian reef in the Great Bahama Bank: A numerical modelling evaluation of Kohout geothermal convection[J]. Geofluids, 2004, 4(1): 40-60.
[18] Jones G D, Xiao Y. Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: Insights from reactive transport models[J]. AAPG Bulletin, 2005, 89(5): 577.
[19] Kaufman J. Numerical models of fluid flow in carbonate platforms; implications for dolomitization[J]. Journal of Sedimentary Research, 1994, 64(1): 128-139.
[20] Wendte J, Qing H, Dravis J J, et al. High-temperature saline (thermoflux) dolomitization of Devonian Swan Hills platform and bank carbonates, Wild River area, west-central Alberta[J]. Bulletin of Canadian Petroleum Geology, 1998, 46(2): 210-265.
[21] Wilson A M, Sanford W, Whitaker F, et al. Spatial patterns of diagenesis during geothermal circulation in carbonate platforms[J]. American Journal of Science, 2001, 301(8): 727-752.
[22] Steefel C I, Depaolo D J, Lichtner P C. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences[J]. Earth and Planetary Science Letters, 2005, 240(1): 539-558.
[23] Whitaker F F, Xiao Y. Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection[J]. AAPG Bulletin, 2010, 94(6): 889-917.
[24] Al-Helal A B, Whitaker F F, Xiao Y. Reactive transport modeling of brine reflux: Dolomitization, anhydrite precipitation, and porosity evolution[J]. Journal of Sedimentary Research, 2012, 82(3): 196-215.
[25] Xiao Y, Whitaker F F, Al-Helal A B, et al. Fundamental Approaches to Dolomitization and Carbonate Diagenesis in Different Hydrogeological Systems and the Impact on Reservoir Quality Distribution[C]. Beijing: International Petroleum Technology Conference,2013.
[26] Chi Guoxiang,Xue Chunji. Principles,methods and applications of hydrodynamic studies of mineralization[J]. Earth Science Frontiers,2011, 18(5): 1-18.[池国祥,薛春纪. 成矿流体动力学的原理、研究方法及应用[J]. 地学前缘, 2011, 18(5): 1-18.]
[27] Garcia-Fresca B, Lucia F J, Sharp J M, et al. Outcrop-constrained hydrogeological simulations of brine reflux and early dolomitization of the Permian San Andres Formation[J]. AAPG Bulletin, 2012, 96(9): 1 757-1 781.
[28] Gisquet F, Lamarche J, Floquet M, et al. Three-dimensional structural model of composite dolomite bodies in folded area (Upper Jurassic of the Etoile massif, southeastern France)[J]. AAPG Bulletin, 2013, 97 (9): 1 477-1 501.
[29] Vasconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6 546): 220-222.
[30] Van Lith Y, Warthmann R, Vasconcelos C, et al. Microbial fossilization in carbonate sediments: A result of the bacterial surface involvement in dolomite precipitation[J]. Sedimentology, 2003, 50(2): 237-245.
[31] Wang Yong. Dolomite problem and precambrian enigma[J]. Advances in Earth Science,2006, 21(8): 857-862.[王勇. “白云岩问题”与“前寒武纪之谜”研究进展[J]. 地球科学进展, 2006, 21(8): 857-862.]
[32] You Xuelian, Sun Shu, Zhu Jingquan,et al. Progress in the study of microbial dolomite model[J]. Earth Science Frontiers,2011, 18(4): 52-64.[由雪莲,孙枢,朱井泉,等. 微生物白云岩模式研究进展[J]. 地学前缘, 2011, 18(4): 52-64.]
[33] Chang Yuguang,Bai Wanbei,Qi Yong’an,et al. Microfossil assemblage and its sedimentary environment in cambrian stromatolites, western He’nan[J]. Advances in Earth Science,2014, 29(4): 456-463.[常玉光,白万备,齐永安,等. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展, 2014, 29(4): 456-463.]
[34] Vasconcelos C, Mckenzie J A. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil)[J]. Journal of Sedimentary Research, 1997, 67(3): 378-390.
[35] Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1 008.
[36] Burns S J, Mckenzie J A, Vasconcelos C. Dolomite formation and biogeochemical cycles in the Phanerozoic[J]. Sedimentology, 2000, 47(Suppl.1): 49-61.
[37] Warthmann R, Van Lith Y, Vasconcelos C, et al. Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28(12): 1 091-1 094.
[38] Snchez-Romn M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882.
[39] Kenward P A, Goldstein R H, Gonzalez L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea[J]. Geobiology, 2009, 7(5): 556-565.
[40] You Xuelian,Sun Shu,Zhu Jingquan. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China[J]. Science in China (Series D),2014, 44(8): 1 777-1 790.[由雪莲,孙枢,朱井泉. 塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义[J]. 中国科学:D辑, 2014, 44(8): 1 777-1 790.]
[41] Song Quanying,Xu Jun,Zhang Yu. Dolomite precipitation mediated by Lysinibacillus sphaericus and Sporosarcina psychrophila[J]. Microbiology China,2014, 41(10): 2 155-2 165.[宋泉颖,徐俊,张宇. 球形赖氨酸芽孢杆菌(Lysinibacillus sphaericus)和嗜冷芽孢八叠球菌(Sporosarcina psychrophila)介导形成白云石晶体[J]. 微生物学通报, 2014, 41(10): 2 155-2 165.]
[42] Li Hong,Liu Yiqun,Li Wenhou,et al. The microbial precepitation of lacustrine dolomite from Permian Formation, Urumchi, Xinjiang, China[J]. Geologcal Bulletin of China,2013, 32(4): 661-670.[李红,柳益群,李文厚,等. 新疆乌鲁木齐二叠系湖相微生物白云岩成因[J]. 地质通报, 2013, 32(4): 661-670.]
[43] Tracy S L, Williams D A, Jennings H M. The growth of calcite spherulites from solution: II. Kinetics of formation[J]. Journal of Crystal Growth, 1998, 193(3): 382-388.
[44] Badiozamani K. The dorag dolomitization model, application to the middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984.
[45] Land L S. Contemporaneous dolomitization of middle pleistocene reefs by meteoric water, North Jamaica[J]. Bulletin of Marine Science, 1973, 23(1): 64-92.
[46] Land L S. Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: Reassessment of mixing-zone dolomite[C]∥Taylor H P, et al. eds. Stable Isotope Geochemistry: A Tribute to Samuel Epstein. The Geochemical Society, Special Publication, 1991, 3:121-130.
[47] Melim L A, Swart P K, Eberli G P. Mixing-zone diagenesis in the subsurface of Florida and the Bahamas[J]. Journal of Sedimentary Research, 2004, 74(6): 904-913.
[48] Luczaj J A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis[J]. AAPG Bulletin, 2006, 90(11): 1 719-1 738.
[49] Huang Sijing,Tong Hongpeng,Liu Lihong,et al. Petrography, geochemistry and dolomitization mechanisms of Feixianguan dolomites in Triassic, NE Sichuan, China[J]. Acta Petrologica Sinica,2009, 25(10): 2 363-2 372.[黄思静,佟宏鹏,刘丽红,等. 川东北飞仙关组白云岩的主要类型, 地球化学特征和白云化机制[J]. 岩石学报, 2009, 25(10): 2 363-2 372.]
[50] Conliffe J, Azmy K, Greene M. Dolomitization of the lower Ordovician Catoche formation: Implications for hydrocarbon exploration in western Newfoundland[J]. Marine and Petroleum Geology, 2012, 30(1): 161-173.
[51] Li Z, Goldstein R H, Franseen E K. Ascending freshwater-mesohaline mixing: A new scenario for dolomitization[J]. Journal of Sedimentary Research, 2013, 83(3): 277-283.
[52] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1 912-1 920.
[53] Jiang L, Cai C F, Worden R H, et al. Reflux dolomitization of the Upper Permian Changxing Formation and the Lower Triassic Feixianguan Formation, NE Sichuan Basin, China[J]. Geofluids, 2013, 13(2): 232-245.
[54] Saller A H, Henderson N. Distribution of porosity and permeability in platform dolomites: Insight from the Permian of west Texas[J]. AAPG Bulletin, 1998, 82(8): 1 528-1 550.
[55] Sun S Q. A reappraisal of dolomite abundance and occurrence in the phanerozoic[J]. Journal of Sedimentary Research, 1994, 64(2): 396-404.
[56] Whitaker F F, Smart P L. Active circulation of saline ground waters in carbonate platforms: Evidence from the Great Bahama Bank[J]. Geology, 1990, 18(3): 200-203.
[57] Qing H, Bosence D W J, Rose E P F. Dolomitization by penesaline sea water in Early Jurassic peritidal platform carbonates, Gibraltar, western Mediterranean[J]. Sedimentology, 2001, 48(1): 153-163.
[58] Pan Liyin,Liu Zhanguo,Li Chang,et al. Dolomitization and its relationship with reservoir development of the Lower Triassic Feixianguan Formation in eastern Sichuan Basin[J]. Journal of Palaeogeography,2012, 14(2): 176-186.[潘立银,刘占国,李昌,等. 四川盆地东部下三叠统飞仙关组白云岩化作用及其与储集层发育的关系[J]. 古地理学报, 2012, 14(2): 176-186.]
[59] Rott C M, Qing H. Early dolomitization and recrystallization in shallow marine carbonates, Mississippian Alida Beds, Williston Basin (Canada): Evidence from petrography and isotope geochemistry[J]. Journal of Sedimentary Research, 2013, 83(11): 928-941.
[60] Huang Qingyu,Zhang Shaonan,Meng Xianghao,et al. Textural types and origin of the Cambrian-Ordovician dolomite in the central Tarim Basin[J]. Acta Sedimentologica Sinica,2014, 32(3): 537-549.[黄擎宇,张哨楠,孟祥豪,等. 塔里木盆地中央隆起区寒武—奥陶系白云岩结构特征及成因探讨[J]. 沉积学报, 2014, 32(3): 537-549.]
[61] Yuan Xinpeng, Liu Jianbo. Research history and progress on reflux seepage dolostone[J]. Journal of Palaeogeography,2012, 14(2): 219-228.[袁鑫鹏,刘建波. 回流渗透模式白云岩研究历史与进展[J]. 古地理学报, 2012, 14(2): 219-228.]
[62] Zhang Jianyong,Guo Qingxin,Shou Jianfeng,et al. Control of neogene global eustasy on dolomitization:Revelation to the origin of dolomitization in Paleostrata[J]. Marine Origin Petroleum Geology,2013, 18(4): 46-52.[张建勇,郭庆新,寿建峰,等. 新近纪海平面变化对白云石化的控制及对古老层系白云岩成因的启示[J]. 海相油气地质, 2013, 18(4): 46-52.]
[63] Lavoie D, Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in northern Gaspe-Matapedia (Quebec): Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Petroleum Geology, 2004, 52(3): 256.
[64] Davies G R, Jr Smith L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 2006, 90(11): 1 641-1 690.
[65] López-Horgue M A, Iriarte E, Schröder S, et al. Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain[J]. Marine and Petroleum Geology, 2010, 27(5): 1 069-1 092.
[66] Haeri-Ardakani O, Al-Aasm I, Coniglio M. Petrologic and geochemical attributes of fracture-related dolomitization in Ordovician carbonates and their spatial distribution in southwestern Ontario, Canada[J]. Marine and Petroleum Geology, 2013, 43(5): 409-422.
[67] Qing H, Mountjoy E. Large-scale fluid flow in the Middle Devonian Presqu’ile Barrier, Western Canada Sedimentary Basin[J]. Geology, 1992, 20(10): 903-906.
[68] Qing H, Mountjoy E W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu’ile barrier, Western Canada Sedimentary Basin[J]. AAPG Bulletin, 1994, 78(1): 55-77.
[69] Montanez I P. Late diagenetic dolomitization of Lower Ordovician, upper Knox carbonates: A record of the hydrodynamic evolution of the southern Appalachian Basin[J]. AAPG Bulletin, 1994, 78(8): 1 210-1 239.
[70] Green D G, Mountjoy E W. Fault and conduit controlled burial dolomitization of the Devonian west-central Alberta Deep Basin[J]. Bulletin of Canadian Petroleum Geology, 2005, 53(2): 101-129.
[71] Breesch L, Swennen R, Vincent B, et al. Dolomite cementation and recrystallisation of sedimentary breccias along the Musandam Platform margin (United Arab Emirates)[J]. Journal of Geochemical Exploration, 2010, 106(1/3): 34-43.
[72] Ronchi P, Masetti D, Tassan S, et al. Hydrothermal dolomitization in platform and basin carbonate successions during thrusting: A hydrocarbon reservoir analogue (Mesozoic of Venetian Southern Alps, Italy)[J]. Marine and Petroleum Geology, 2012, 29(1): 68-89.
[73] Zhu Dongya,Jin Zhijun,Hu Wenxuan. Hydrothermal recrystallization of the Lower Ordovician dolomite and its significance to reservoir in northern Tarim Basin[J]. Science in China (Series D),2010, 40(2): 156-170.[朱东亚,金之钧,胡文瑄. 塔北地区下奥陶统白云岩热液重结晶作用及其油气储集意义[J]. 中国科学:D辑, 2010, 40(2): 156-170.]
[74] Westphal H, Eberli G P, Smith L B, et al. Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming[J]. AAPG Bulletin, 2004, 88(4): 405-432.
[75] Katz D A, Eberli G P, Swart P K, et al. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming[J]. AAPG Bulletin, 2006, 90(11): 1 803-1 841.
[76] Xing Fengcun,Zhang Wenhuai,Li Sitian. Influence of hot fluids on reservoir property of deep buried dolomite strata and its significance for petroleum exploration: A case study of Keping outcrop in Tarim Basin[J]. Acta Petrologica Sinica,2011, 27(1): 266-276.[邢凤存,张文淮,李思田. 热流体对深埋白云岩储集性影响及其油气勘探意义——塔里木盆地柯坪露头区研究[J]. 岩石学报, 2011, 27(1): 266-276.]
[77] Murray R C. Origin of porosity in carbonate rocks[J]. Journal of Sedimentary Research, 1960, 30(1): 59-84.
[78] Weyl P K. Porosity through dolomitization—Conservation of mass requirements[J]. Journal of Sedimentary Research, 1960, 30(1): 85-90.
[79] Schmoker J W, Halley R B. Carbonate porosity versus depth: A predictable relation for south Florida[J]. AAPG Bulletin, 1982, 66(12): 2 561-2 570.
[80] Halley R B, Schmoker J W. High porosity Cenozoic carbonate rocks of south Florida: Progressive loss of porosity with depth[J]. AAPG Bulletin, 1983, 67(2): 191-200.
[81] Lucia F J, Major R P. Porosity evolution through hypersaline reflux dolomitization[C]∥Purser B, Tucker M, Zenger D, eds. Dolomites: A Volume in Honor of Dolomieu. International Association of Sedimentologists Special Publication, 1994, 21: 325-341.
[82] Lucia F J. Origin and petrophysics of dolostone pore space[C]∥Braithwaite C J R, Rizzi G, Darke G, eds. The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. Geological Society Special Publication, 2004, 235:141-155.
[83] Qiao Zhanfeng,Shen Anjiang,Zheng Jianfeng,et al. Classification and origin of the Lower Ordovician dolostone in Tarim Basin[J]. Journal of Palaeogeography,2012, 14(1): 21-32.[乔占峰,沈安江,郑剑锋,等. 塔里木盆地下奥陶统白云岩类型及其成因[J]. 古地理学报, 2012, 14(1): 21-32.]
[84] Zheng Jianfeng,Shen Anjiang,Qiao Zhanfeng,et al. Genesis of dolomite and main controlling factors of reservoir in Penglaiba Formation of Lower Ordovician, Tarim Basin: A case study of Dabantage outcrop in Bachu area[J]. Acta Petrologica Sinica,2013, 29(9): 3 223-3 232.[郑剑锋,沈安江,乔占峰,等. 塔里木盆地下奥陶统蓬莱坝组白云岩成因及储层主控因素分析——以巴楚大班塔格剖面为例[J]. 岩石学报, 2013, 29(9): 3 223-3 232.]
[85] Zhang Xuefeng,Shi Kaibo,Liu Bo,et al. Retention processes and porosity preservation in deep carbonate reservoirs[J]. Geological Science and Technology Information,2014, 33(2): 80-85.[张学丰,石开波,刘波,等. 保持性成岩作用与深部碳酸盐岩储层孔隙的保存[J]. 地质科技情报, 2014, 33(2): 80-85.]
[86] Sibley D F, Gregg J M. Classification of dolomite rock textures[J]. Journal of Sedimentary Research, 1987, 57(6): 967-975.
[87] Wang Dan,Chen Daizhao,Yang Changchun,et al. Classification of texture in burial dolomite[J]. Acta Sedimentologica Sinica,2010, 28(1): 17-25.[王丹,陈代钊,杨长春,等. 埋藏环境白云石结构类型[J]. 沉积学报, 2010, 28(1): 17-25.]
[88] Huang Sijing, Huang Keke, Lü Jie, et al. The relationship between dolomite textures and their formation temperature: A case study from the Permian-Triassic of the Sichuan Basin and the Lower Paleozoic of the Tarim Basin[J]. Petroleum Science, 2014, 11(1): 39-51.
[89] Zhao H, Jones B. Genesis of fabric-destructive dolostones: A case study of the Brac Formation (Oligocene), Cayman Brac, British West Indies[J]. Sedimentary Geology, 2012,(267/268):36-54.
[90] Jones B. Microarchitecture of dolomite crystals as revealed by subtle variations in solubility: Implications for dolomitization[J]. Sedimentary Geology, 2013, 288:66-80.
[91] Huang Sijing,Li Xiaoning,Lan Yefang,et al. Influences of marine cementation on carbonate textures: A case of Feixianguan carbonates of Triassic, NE Sichuan Basin[J]. Journal of Central South University (Science and Technology),2013, 44(12): 5 007-5 018.[黄思静,李小宁,兰叶芳,等. 海水胶结作用对碳酸盐岩石组构的影响:以四川盆地东北部三叠系飞仙关组为例[J]. 中南大学学报:自然科学版, 2013, 44(12): 5 007-5 018.]
[92] Gregg J M, Laudon P R, Woody R E, et al. Porosity evolution of the Cambrian Bonneterre Dolomite, south-eastern Missouri, USA[J]. Sedimentology, 1993, 40(6): 1 153-1 169.
[93] Woody R E, Gregg J M, Koederitz L F. Effect of texture on petrophysical properties of dolomite: Evidence from the Cambrian-Ordovician of southeastern Missouri[J]. AAPG Bulletin, 1996, 80(1): 119-131.
[94] Choquette P W, Hiatt E E. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites[J]. Sedimentology, 2008, 55(2): 423-460.
[95] Huang Qingyu, Zhang Shaonan, Zhang Siyang, et al.Textural control on the development of dolomite reservoir: A study from the cambrian-ordovician dolomite, Central Tarim Basin, NW China[J]. Natural Gas Geoscience,2014, 25(3): 341-350, 470.[黄擎宇,张哨楠,张斯杨,等. 白云岩结构对储集空间发育的控制作用——以塔里木盆地中央隆起区寒武系—奥陶系白云岩为例[J]. 天然气地球科学, 2014, 25(3): 341-350, 470.]
[96] Huang Sijing,Qing Hairuo,Hu Zuowei,et al. Closed-system dolomitization and the significance for petroleum and economic geology: An example from Feixianguan carbonates, Triassic, NE Sichuan Basin of China[J]. Acta Petrologica Sinica,2007, 23(11): 2 955-2 962.[黄思静,Qing Hairuo,胡作维,等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23(11): 2 955-2 962.]
[97] Luo Ping,Wang Shi,Li Pengwei,et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica,2013, 31(5): 807-823.[罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报, 2013, 31(5): 807-823.]
[98] Song Jinmin,Luo Ping,Yang Shisheng,et al. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J]. Petroleum Exploration and Development,2014, 41(4): 404-413, 437.[宋金民,罗平,杨式升,等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 2014, 41(4): 404-413, 437.]
[99] Yao Genshun,Hao Yi,Zhou Jin’gao,et al. Formation and evolution of reservoir spaces in the Sinian Dengying Fm of the Sichuan Basin[J]. Natural Gas Industry,2014, 34(3): 31-37.[姚根顺,郝毅,周进高,等. 四川盆地震旦系灯影组储层储集空间的形成与演化[J]. 天然气工业, 2014, 34(3): 31-37.]
[100] Zhao Wenzhi,Shen Anjiang,Hu Suyun,et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12.[赵文智,沈安江,胡素云,等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1): 1-12.]
[101] Ma Yongsheng, Cai Xunyu,Zhao Peirong. Characteristics and formation mechanisms of reef-shoal carbonate reservoirs of Changxing-Feixianguan formations, Yuanba gas field[J]. Acta Petrolei Sinica,2014, 35(6): 1 001-1 011.[马永生,蔡勋育,赵培荣. 元坝气田长兴组—飞仙关组礁滩相储层特征和形成机理[J]. 石油学报, 2014, 35(6): 1 001-1 011.]
[102] Zhang Baomin,Liu Jingjiang,Bian Lizeng,et al. Reef-banks and reservoir-constructive diagenesis[J]. Earth Science Frontiers,2009, 16(1): 270-289.[张宝民,刘静江,边立曾,等. 礁滩体与建设性成岩作用[J]. 地学前缘, 2009, 16(1): 270-289.]
[103] Zhang Jianyong,Zhou Jin’gao,Pan Liyin,et al. The main origins of high quality reservoir in Feixianguan Formation in Northeast Sichuan Basin: Atmospheric water eluviation and seepage-reflux dolomitization[J]. Natural Gas Geoscience,2013, 24(1): 9-18.[张建勇,周进高,潘立银,等. 川东北地区孤立台地飞仙关组优质储层形成主控因素——大气淡水淋滤及渗透回流白云石化[J]. 天然气地球科学, 2013, 24(1): 9-18.]
[104] Moore C H. Carbonate Reservoirs: Porosity Evolution and Diagenesis in A Sequence Stratigraphic Framework[M]. Amsterdam:Elsevier Science, 2001.
[105] Kyser T K, James N P, Bone Y. Shallow burial dolomitization and dedolomitization of Cenozoic cool-water limestones, southern Australia: Geochemistry and origin[J]. Journal of Sedimentary Research, 2002, 72(1): 146-157.
[106] Li Guorong,Wu Hengzhi,Ye Bin,et al. Stages and mechanism of dissolution in Changxing reservoir, Yuanba area[J]. Acta Petrologica Sinica,2014, 30(3): 709-717.[李国蓉,武恒志,叶斌,等. 元坝地区长兴组储层溶蚀作用期次与机制研究[J]. 岩石学报, 2014, 30(3): 709-717.]
[107] Zhu Dongya,Jin Zhijun,Zhang Rongqiang,et al. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage kasrt[J].Earth Science Frontiers, 2013, 21(6):335-345.[朱东亚,金之钧,张荣强,等. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘, 2013,21(6):335-345.]
[108] Shen Anjiang,Wang Zhaoming,Zheng Xingping,et al. Genesis classification and characteristics of cambrian-ordovician carbonate reservoirs and petroleum exploration potential in Yaka-Yengimahalla area,Tarim Basin[J]. Marin Origin Petroleum Geology,2007, 12(2): 23-32.[沈安江,王招明,郑兴平,等. 塔里木盆地牙哈—英买力地区寒武系—奥陶系碳酸盐岩储层成因类型、特征及油气勘探潜力[J]. 海相油气地质, 2007, 12(2): 23-32.]
[109] Jiao Cunli,He Zhiliang,Xing Xiujuan,et al. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 277-284.[焦存礼,何治亮,邢秀娟,等. 塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2011, 27(1): 277-284.]
[110] Machel H G, Buschkuehle B E. Diagenesis of the devonian southesk-cairn carbonate complex, Alberta, Canada: Marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow[J]. Journal of Sedimentary Research, 2008, 78(5): 366.
[111] Ma Yongsheng,Cai Xunyu,Zhao Peirong,et al. Formation mechanism of deep-buried carbonate reservoir and its model of three-element controlling reservoir: A case study from the Puguang Oilfield in Sichuan[J]. Acta Geologica Sinica, 2010, 84(8): 1 087-1 094.[马永生,蔡勋育,赵培荣,等. 深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式——以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1 087-1 094.]
[112] Zhu Guangyou,Yang Haijun,Su Jin,et al. New prowess of marine hydrocarbon geological theory in China[J]. Acta Petrologica Sinica,2012, 28(3): 722-738.[朱光有,杨海军,苏劲,等. 中国海相油气地质理论新进展[J]. 岩石学报, 2012, 28(3): 722-738.]
[113] Zhang Jie,Shou Jianfeng,Zhang Tianfu,et al. New approach on the stduy of dolomite origin: The crystal structure analysis of dolomite[J]. Acta Sedimentologica Sinica,2014, 32(3): 550-559.[张杰,寿建峰,张天付,等. 白云石成因研究新方法——白云石晶体结构分析[J]. 沉积学报, 2014, 32(3): 550-559.]
[114] Jones B. Dolomite crystal architecture: Genetic implications for the origin of the Tertiary dolostones of the Cayman Islands[J]. Journal of Sedimentary Research, 2005, 75(2): 177-189.
[115] Kaczmarek S E, Sibley D F. Direct physical evidence of dolomite recrystallization[J]. Sedimentology, 2014, 61(6): 1 862-1 882.
[116] Ferry J M, Passey B H, Vasconcelos C, et al. Formation of dolomite at 40~80 ℃ in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry[J]. Geology, 2011, 39(6): 571.
[117] Sena C M, John C M, Jourdan A L, et al. Dolomitization of lower cretaceous peritidal carbonates by modified seawater: Constraints from clumped isotopic paleothermometry, elemental chemistry, and strontium isotopes[J]. Journal of Sedimentary Research, 2014, 84(7): 552-566.
[118] Holmden C. Ca isotope study of Ordovician dolomite, limestone, and anhydrite in the Williston Basin: Implications for subsurface dolomitization and local Ca cycling[J]. Chemical Geology, 2009, 268(3): 180-188.
[119] Sun Jian,Fang Nan,Li Shizhen,et al. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J]. Acta Petrologica Sinica,2012, 28(9): 2 890-2 902.[孙剑,房楠,李世珍,等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2012, 28(9): 2 890-2 902.]
[120] Lavoie D, Jackson S, Girard I. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada[J]. Sedimentary Geology, 2014, 305:58-68.
[121] Zhang Xingyang,Gu Jiayu,Luo Ping,et al. Genesis of the fluorite in the Ordovician and its significance to the petroleum geology of Tarim Basin[J]. Acta Petrologica Sinica,2006, 22(8): 2 220-2 228.[张兴阳,顾家裕,罗平,等. 塔里木盆地奥陶系萤石成因及其油气地质意义[J]. 岩石学报, 2006, 22(8): 2 220-2 228.]
[122] Ehrenberg S N, Walderhaug O, Bjrlykke K. Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?[J]. AAPG Bulletin, 2012, 96(2): 217-233.
[123] Bjørlykke K, Jahren J. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 2012, 96(12): 2 193-2 214.
[124] Laubach S E, Eichhubl P, Hilgers C, et al. Structural diagenesis[J]. Journal of Structural Geology, 2010, 32(12): 1 866-1 872.
[125] Vandeginste V, Swennen R, Allaeys M, et al. Challenges of structural diagenesis in foreland fold-and-thrust belts: A case study on paleofluid flow in the Canadian Rocky Mountains West of Calgary[J]. Marine and Petroleum Geology, 2012, 35(1): 235-251.
[126] Neilson J E, Oxtoby N H, Simmons M D, et al. The relationship between petroleum emplacement and carbonate reservoir quality: Examples from Abu Dhabi and the Amu Darya Basin[J]. Marine and Petroleum Geology, 1998, 15(1): 57-72.
[127] Huang Wenming, Liu Shugen,Ma Wenxin,et al. Formation, preservation and damage mechanism of marine deep carbonate high quality reservoir rocks: Illustrated by Sinian system to Silurian in Sichuan Basin[J]. Chinese Journal of Geology,2011, 46(3): 875-895.[黄文明,刘树根,马文辛,等. 深层海相碳酸盐岩优质储层的形成、保存和破坏机制——以四川盆地震旦系—志留系为例[J]. 地质科学, 2011, 46(3): 875-895.]
[128] Kenward P A, Goldstein R H, Brookfield A E, et al. Model for how microbial methane generation can preserve early porosity in dolomite and limestone reservoirs[J]. AAPG Bulletin, 2012, 96(3): 399-413.

[1] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[2] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[3] 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 穿透性地球化学勘查技术综述与展望[J]. 地球科学进展, 2017, 32(8): 828-838.
[4] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[5] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[6] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[7] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[8] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[9] 穆延宗, 乜 贞, 卜令忠, 王云生, 伍 倩. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2): 147-160.
[10] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[11] 郭进义, 侯青叶. 2016年度地球化学领域项目评审与资助成果[J]. 地球科学进展, 2016, 31(12): 1275-1278.
[12] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[13] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[14] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[15] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.