地球科学进展 ›› 2019, Vol. 34 ›› Issue (6): 606 -617. doi: 10.11867/j.issn.1001-8166.2019.06.0606

综述与评述 上一篇    下一篇

钙华生物沉积作用研究进展与展望
汪智军( ),殷建军,蒲俊兵,袁道先   
  1. 中国地质科学院岩溶地质研究所,自然资源部/广西岩溶动力学重点实验室,广西 桂林 541004
  • 收稿日期:2019-02-27 修回日期:2019-05-02 出版日期:2019-06-10
  • 基金资助:
    国家自然科学基金青年科学基金项目“西藏典型热成因古钙华发育演化特征及其控制因素研究”(41807426);广西自然科学基金面上项目“基于微岩相学和地球化学的生物在钙华形成中的作用研究”(2018GXNSFAA138097)

Biological Processes Responsible for Travertine Deposition: A Review and Future Prospect

Zhijun Wang( ),Jianjun Yin,Junbing Pu,Daoxian Yuan   

  1. Key Laboratory of Karst Dynamics, Ministry of Natural Resources / Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
  • Received:2019-02-27 Revised:2019-05-02 Online:2019-06-10 Published:2019-07-05
  • About author:Wang Zhijun(1986-), male, Xiangyun County, Yunnan Province, Assistant professor. Research areas include karst environment and Quaternary geology. E-mail: zhijunwang@karst.ac.cn
  • Supported by:
    Foundation item: Project supported by the National Natural Science Foundation of China “Deposition and evolution of a typical travertine from Tibet and the controlling factors”(No. 41807426);The Guangxi Natural Science Foundation “Biological influence on travertine deposition: Petrographic and geochemical investigation”(No. 2018GXNSFAA138097)

弄清钙华生物沉积作用有助于更好地理解钙华微岩相结构和地球化学特征的气候环境指示意义。总结和综述了与钙华沉积相关的生物群落、生物成因钙华微岩相结构、钙华生物沉积作用过程及其对钙华地球化学特征影响的研究进展,并展望了未来的研究重点。细菌、藻类和苔藓等广泛参与到钙华沉积中,形成了许多不同类型的孔隙结构、晶体结构和纹层结构。生物沉积过程主要包括: 生物生长扰动水流使得CO2逸出; 代谢作用(如光合作用)过程诱导碳酸钙沉积; “表面控制”过程影响晶体成核及生长。生物沉积作用驱动了元素的迁移转化,对沉积水体和钙华地球化学特征具有重要影响。钙华在地球生物学研究中具有重要潜力,未来需要加强现代钙华沉积中的物理化学和生物过程相互作用机制及其各自贡献的量化研究,以便准确地解译钙华沉积记录。

The investigation of biological processes responsible for travertine deposition allows us to better understand the travertine petrographic and geochemical signatures as proxies of climatic and environmental change. This paper reviewed the organisms associated with travertines, the biotic micro-fabrics formed within travertines, the biological processes associated with travertine precipitation and their controls on travertine geochemical properties. Prospects of the future research on biological processes responsible for travertine precipitation were provided. Bacteria, algae and mosses are the most important organisms that involve in the precipitation of travertines. The growth of these organisms leads to the formation of a range of various porosity, crystal fabrics and lamination within travertines. Three main biological processes responsible for travertine deposition can be classified, including a process of aquatic plant growth generating a turbulent condition and consequent CO2 evasion, a metabolic (mainly photosynthetic) process mediating carbonate precipitation and a ‘surface-control’ process influencing nucleation and crystal growth. These processes play an important role in the migration and transformation of elements in travertine-depositing system and thus determine the properties of water chemistry and geochemistry of carbonate deposits. Travertine deposits have great potential to be valuable records for the geobiological study. Further investigation is required to simultaneously track biotic and abiotic interactions in modern travertine-depositing environments and quantify the contribution of these two processes and apply the results to accurately interpret travertine records.

中图分类号: 

图1 钙华沉积环境中的生物群落
Fig. 1 Organisms growing in travertine-depositing environments
图2 钙华生物成因结构
Fig. 2 Biotic travertine fabrics
1 Ford T D , Pedley H M . A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41(3/4): 117-175.
2 Andrews J E , Brasier A T . Seasonal records of climatic change in annually laminated tufas: Short review and future prospects[J]. Journal of Quaternary Science, 2005, 20(5): 411-421.
3 Andrews J E . Palaeoclimatic records from stable isotopes in riverine tufas: Synthesis and review[J]. Earth-Science Reviews, 2006, 75(1/4): 85-104.
4 Liu Z , Sun H , Lu B , et al . Wet-dry seasonal variations of hydrochemistry and carbonate precipitation rates in a travertine-depositing canal at Baishuitai, Yunnan, SW China: Implications for the formation of biannual laminae in travertine and for climatic reconstruction[J]. Chemical Geology, 2010, 273(3/4): 258-266.
5 Wang Zhijun , Yin Jianjun , Yuan Daoxian . Possibilities and problems associated with travertines and tufas in Quaternary studies: A case of the Tibetan Plateau[J]. Chinese Science Bulletin, 2018, 63(11): 1 012-1 023.
汪智军, 殷建军, 袁道先 . 钙华在第四纪研究中的应用: 以青藏高原为例[J]. 科学通报, 2018, 63(11): 1 012-1 023.
6 Garnett E R , Andrews J E , Preece R C , et al . Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa[J]. Journal of Quaternary Science, 2004, 19(3): 251-262.
7 Branner J C . The origin of travertine falls and reefs[J]. Science, 1901, 14(344): 184-185.
8 Pentecost A . Travertine[M]. Berlin: Springer, 2005.
9 Liu Zaihua , Sun Hailong , Yan Hao , et al . Tufa/Travertine Investigations[M]. Beijing: Science Press, 2016.
刘再华, 孙海龙, 晏浩, 等 . 钙华探秘[M]. 北京: 科学出版社, 2016.
10 Kano A , Okumura K , Takashima C , et al . Geomicrobiological Properties and Processes of Travertine[M]. Singapore:Springer, 2019.
11 Rogerson M , Pedley H M , Wadhawan J D , et al . New insights into biological influence on the geochemistry of freshwater carbonate deposits[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 4 976-4 987.
12 Shiraishi F , Bissett A , de Beer D , et al . Photosynthesis, respiration and exopolymer calcium-binding in biofilm calcification (Westerh?fer and Deinschwanger Creek, Germany)[J]. Geomicrobiology Journal, 2008, 25(2): 83-94.
13 Dupraz C , Reid R P , Braissant O , et al . Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
14 Li Wei , Liu Liping , Cao Long , et al . Research status and prospect of biological precipitation of carbonate[J]. Advances in Earth Science, 2009, 24(6): 597-605.
李为, 刘丽萍, 曹龙, 等 . 碳酸盐生物沉积作用的研究现状与展望[J]. 地球科学进展, 2009, 24(6):597-605.
15 Wang Long , Khalid L , Muhammad R , et al . The genesis, classification, problems and prospects of microbial carbonates: Implications from the Cambrian carboante of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1 005-1 023.
王龙, Latif Khalid , Riaz Muhammad , 等 . 微生物碳酸盐岩的成因、分类以及问题与展望——来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10): 1 005-1 023.
16 Riding R . Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47: 179-214.
17 Freytet P , Plet A . Modern freshwater microbial carbonates: The Phormidium stromatolites (tufa-travertine) of southeastern Burgundy (Paris Basin, France)[J]. Facies, 1996, 34(1): 219-237.
18 Arp G , Wedemeyer N , Reitner J . Fluvival tufa formation in a hard-water creek (Deinschwanger Bach, Franconian Alb, Germany)[J]. Facies, 2001, 44(1): 1-22.
19 Rainey D K , Jones B . Abiotic versus biotic controls on the development of the Fairmont Hot Springs carbonate deposit, British Columbia, Canada[J]. Sedimentology, 2009, 56(6): 1 832-1 857.
20 Fouke B W . Hot-spring systems geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1): 170-219.
21 Xie Shucheng , Yin Hongfu , Shi Xiaoying . Geobiology: Interactions and Co-evolution Between Life and Earth Environments[M]. Beijing: Science Press, 2011.
谢树成, 殷鸿福, 史晓颖, 等 . 地球生物学: 生命与地球环境的相互作用和协同演化[M]. 北京: 科学出版社, 2011.
22 Barns S M , Fundyga R E , Jeffries M W , et al . Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(5): 1 609-1 613.
23 Pentecost A , Terry C . Inability to demonstrate calcite precipitation by bacterial isolates from travertine[J]. Geomicrobiology Journal, 1988, 6(3/4): 185-194.
24 Fouke B W , Bonheyo G T , Sanzenbacher B , et al . Partitioning of bacterial communities between travertine depositional facies at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Canadian Journal of Earth Sciences, 2003, 40(11): 1 531-1 548.
25 Pentecost A . The micribial ecology of some Italian hotspring travertines[J]. Microbios, 1995, 81: 45-58.
26 Sugihara C , Yanagawa K , Okumura T , et al . Transition of microbiological and sedimentological features associated with the geochemical gradient in a travertine mound in northern Sumatra, Indonesia[J]. Sedimentary Geology, 2016, 343: 85-98.
27 Freytet P , Verrecchia E P . Freshwater organisms that build stromatolites: A synopsis of biocrystallization by prokaryotic and eukaryotic algae[J]. Sedimentology, 1998, 45(3): 535-563.
28 Tian Youping , He Fusheng . Present freshwater stromatolites and algal mats in surface calcareous tufa in the Sichuan and Guizhou areas[J]. Geological Review, 2000, 46(5): 549-555.
田友萍, 何复胜 . 川黔地区地表钙华中发现现代淡水叠层石及藻席[J]. 地质论评, 2000, 46(5): 549-555.
29 Pentecost A . Cyanobacteria associated with hot spring travertines[J]. Canadian Journal of Earth Sciences, 2003, 40(11): 1 447-1 457.
30 Kleinteich J , Golubic S , Pessi I S , et al . Cyanobacterial contribution to travertine deposition in the Hoyoux River system, Belgium[J]. Microbial Ecology, 2017, 74(1): 33-53.
31 Li Yongxin , Tian Youping , Li Yin . Tufa algae and biological karstification at Huanglong, Sichuan[J]. Carsologica Sinica, 2011, 30(11): 86-92.
李永新, 田友萍, 李银 . 四川黄龙钙华藻类及其生物岩溶作用[J]. 中国岩溶, 2011, 30(1): 86-92.
32 Pentecost A , Zhang Z . The travertine flora of Juizhaigou and Munigou, China, and its relationship with calcium carbonate deposition[J]. Cave and Karst Science, 2000, 27(2): 71-78.
33 Pentecost A . A note on the vegetation of some English crons[J]. Naturalist, 1991, 116: 125-131.
34 Malusa J , Overby S T , Parnell R A . Potential for travertine formation: Fossil Creek, Arizona[J]. Applied Geochemistry, 2003, 18(7): 1 081-1 093.
35 Pentecost A , Merritt R , Carter C . Growth and calcification of Vaucheria (Xanthophyta) on a travertine surface in a temperate freshwater setting[J]. European Journal of Phycology, 2014, 49(4): 516-525.
36 Xie J , Strobel G , Xu W F , et al . Fungi as Architects of the Rimstone Dams in Huanglong, NSD, Sichuan, China[J]. Microbial Ecology, 2017, 73(1): 29-38.
37 Zhang Zhaohui , Chen Jiakuan . Biodiversity and ecological depositing types of aquatic bryophytes at karst waterfalls in Southwest Guangxi[J]. Acta Sedimentologica Sinica, 2007, 25(4): 603-611.
张朝晖, 陈家宽 . 桂西南喀斯特瀑布水生苔藓植物生物多样性与生态沉积类型研究[J]. 沉积学报, 2007, 25(4): 603-611.
38 Zhang Zhaohui , Pentecost A . Bryophyte communities associated with travertine formation at Yorkshire National Park, U.K.[J]. Carsologica Sinica, 1999, 18(4): 367-374.
张朝晖, Pentecost A . 英国约克郡(Yorkshire Dale)国家公园钙华苔藓植物群落研究[J]. 中国岩溶, 1999, 18(4), 367-374.
39 Pentecost A , Zhang Z . Bryophytes from some travertine-depositing sites in France and the U.K.: Relationships with climate and water chemistry[J]. Journal of Bryology, 2002, 24(3): 233-241.
40 Pentecost A , Zhang Z . Response of bryophytes to exposure and water availability on some European travertines[J]. Journal of Bryology, 2006, 28(1): 21-26.
41 Drysdale R N , Carthew K D , Taylor M P . Larval caddis-fly nets and retreats: A unique biosedimentary paleocurrent indicator for fossil tufa deposits[J]. Sedimentary Geology, 2003, 161(3): 207-215.
42 Pentecost A . Algal and bryophyte flora of a Yorkshire (U.K.) hill stream: A comparative study approach using biovolume estimations[J]. Archiv Fur Hydrobiologie, 1991, 121: 181-201.
43 Capezzuoli E , Gandin A , Pedley M . Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art[J]. Sedimentology, 2014, 61(1): 1-21.
44 Chafetz H S , Guidry S A . Bacterial shrubs, crystal shrubs, and ray-crystal shrubs: Bacterial vs. abiotic precipitation[J]. Sedimentary Geology, 1999, 126(1/4): 57-74.
45 Chafetz H S , Folk R L . Travertines-depositional morphology and the bacterially constructed constituents[J]. Journal of Sedimentary Petrology, 1984, 54(1): 289-316.
46 Guo L , Riding R . Aragonite laminae in hot water travertine crusts, Rapolano-Terme, Italy[J]. Sedimentology, 1992, 39(6): 1 067-1 079.
47 Folk R L . Interaction between bacteria, nannobacteria, and mineral precipitation in hot-springs of Central Italy[J]. Geographie Physique et Quaternaire, 1994, 48(3): 233-246.
48 Janssen A , Swennen R , Podoor N , et al . Biological and diagenetic influence in recent and fossil tufa deposits from Belgium[J]. Sedimentary Geology, 1999, 126(1/4): 75-95.
49 Takashima C , Kano A . Microbial processes forming daily lamination in a stromatolitic travertine[J]. Sedimentary Geology, 2008, 208(3/4): 114-119.
50 Okumura T , Takashima C , Shiraishi F , et al . Processes forming daily lamination in a microbe-rich travertine under low flow condition at the Nagano-yu Hot Spring, Southwestern Japan[J]. Geomicrobiology Journal, 2013, 30(10): 910-927.
51 Badger M . The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms[J]. Photosynthesis Research, 2003, 77(2): 83.
52 Merz-Prei? M , Riding R . Cyanobacterial tufa calcification in two freshwater streams: Ambient environment, chemical thresholds and biological processes[J]. Sedimentary Geology, 1999, 126(1): 103-124.
53 Verrecchia E P , Freytet P , Verrecchia K E , et al . Spherulites in calcrete laminar crusts: Biogenic CaCO3, precipitation as a major contributor to crust formation[J]. Journal of Sedimentary Research A, 1995, 65: 690-700.
54 Phoenix V R , Adams D G , Konhauser K O . Cyanobacterial viability during hydrothermal biomineralisation[J]. Chemical Geology, 2000, 169(3): 329-338.
55 Kawaguchi T , Decho A W . A laboratory investigation of cyanobacterial Extracellular Polymeric Secretions (EPS) in influencing CaCO3 polymorphism[J]. Journal of Crystal Growth, 2002, 240(1): 230-235.
56 Fernández-Remolar D C , Preston L J , Sánchez-Román M , et al . Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars[J]. Earth and Planetary Science Letters, 2012, 351/352: 13-26.
57 Castanier S , Le Métayer-Levrel G , J-P Perthuisot . Bacterial Roles in the Precipitation of Carbonate Minerals[M]// Riding R, Awramik S M, eds. Microbial Sediments. Berlin: Springer-Verlag, 2000: 32-39.
58 Liu Zaihua , Li Qiang , Sun Hailong , et al . Diurnal variations in hydrochemistry in a travertine-depositing stream at Baishuitai, Yunnan, SW China: Observations and explanations[J]. Hydrogeology and Engineering Geology, 2005, 32(6): 10-15.
刘再华, 李强, 孙海龙, 等 . 云南白水台钙华水池中水化学日变化及其生物控制的发现[J]. 水文地质工程地质, 2005, 32(6): 10-15.
59 Wang Hongmei , Wu Xiaoping , Qiu Xuan , et al . Microbially induced carbonate precipitation: A review[J]. Microbiology China, 2013, 40(1): 180-189.
王红梅, 吴晓萍, 邱轩, 等 . 微生物成因的碳酸盐矿物研究进展[J]. 微生物学通报, 2013, 40(1), 180-189.
60 Shiraishi F , Hanzawa Y , Okumura T , et al . Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics[J]. Scientific Reports, 2017, 7(1): 11 805.
61 Pentecost A . Moss growth and travertine deposition: The significance of photosynthesis, evaporation and degassing of carbon dioxide[J]. Journal of Bryology, 1996, 19(2): 229-234.
62 Zeng Zhenyu , Yan Hao , Sun Hailong , et al . Theoretical calculation of aquatic photosynthesis contribution ratio and the controlling factors of diurnal variations of hydrochemistiry and δ13CDIC in the outlets and inlets of travertine pools at Baishuitai, Yunnan, China[J]. Carsologica Sinica, 2016, 35(6): 605-613.
曾振宇, 晏浩, 孙海龙, 等 . 云南白水台钙华池出入口水化学和δ13CDIC昼夜变化的影响因素及水生光合作用影响比例的计算[J]. 中国岩溶, 2016, 35(6): 605-613.
63 Pentecost A , Coletta P . The role of photosynthesis and CO2 evasion in travertine formation: A quantitative investigation at an important travertine-depositing hot spring, Le Zitelle, Lazio, Italy[J]. Journal of the Geological Society, 2007, 164: 843-853.
64 Pentecost A , Franke U . Photosynthesis and calcification of the stromatolitic freshwater cyanobacterium Rivularia[J]. European Journal of Phycology, 2010, 45(4): 345-353.
65 Shiraishi F , Okumura T , Takahashi Y , et al . Influence of microbial photosynthesis on tufa stromatolite formation and ambient water chemistry, SW Japan[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5 289-5 304.
66 Wang Haijing , Liu Zaihua , Zeng Cheng , et al . Hydrochemical variations of Huanglong Spring and the stream in Huanglong Ravine,Sichuan Province[J]. Geochimica, 2009, 38(3): 307-314.
王海静, 刘再华, 曾成, 等 . 四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J]. 地球化学, 2009, 38(3): 307-314.
67 Pentecost A , Spiro B . Stable carbon and oxygen isotope composition of calcites associated with modern freshwater cyanobacteria and algae[J]. Geomicrobiology Journal, 1990, 8(1): 17-26.
68 Spiro B , Pentecost A . One day in the life of a stream-a diurnal inorganic carbon mass balance for a travertine-depositing stream (Waterfall Beck, Yorkshire)[J]. Geomicrobiology Journal, 1991, 9(1): 1-11.
69 Li Qiang , Jin Zhenjiang , Sun Hailong . Experiment on calcite precipitation in the presence of modern algae and isotope non-equlibrium[J]. Carsologica Sinica, 2005, 24(4): 261-264.
李强, 靳振江, 孙海龙 . 现代藻类碳酸钙沉积试验及其同位素不平衡现象[J]. 中国岩溶, 2005, 24(4): 261-264.
70 Chafetz H S , Utech N M , Fitzmaurice S P . Differences in the δ18O and δ13C signatures of seasonal laminae comprising travertine stromatolites[J]. Journal of Sedimentary Research, 1991, 61(6): 1 015-1 028.
71 Andrews J E , Riding R , Dennis P F . The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 129(1/2): 171-189.
72 Guo L , Andrews J , Riding R , et al . Possible microbial effects on stable carbon isotopes in hot-spring travertines[J]. Journal of Sedimentary Research, 1996, 66(3): 468-473.
73 NASA. An Exobiological Strategy for Mars Exploration , SP-530[R]. Washington DC: National Aeronautics and Space Administration, 1995.
74 Tong Wei , Liao Zhijie , Liu Shibin , et al . Thermal Springs in Tibet[M]. Beijing: Science Press, 2000.
佟伟, 廖志杰, 刘时彬, 等 . 西藏温泉志[M]. 北京: 科学出版社, 2000.
75 Zhang Jinliu , Wang Haijing , Liu Zaihua . The impact of tourist activities on PO 4 3 - concentrations and aquatic algae growth at the Huanglong Scenic Spot, Sichuan Province[J]. Acta Geoscientica Sinica, 2011, 32(4): 463-368.
张金流, 王海静, 刘再华 . 旅游活动对黄龙景区磷酸盐浓度和水藻生长的影响[J]. 地球学报, 2011, 32(4): 463-468.
[1] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[2] 马 强,姬丙艳,张亚峰,任文恺,代 璐,黄秉雄. 青海东部土壤及生物体中硒的地球化学特征[J]. 地球科学进展, 2012, 27(10): 1148-1152.
阅读次数
全文


摘要