地球科学进展 ›› 2020, Vol. 35 ›› Issue (9): 933 -947. doi: 10.11867/j.issn.1001-8166.2020.073

所属专题: 地球系统科学大会纪念专刊

水生关键带有机碳循环过程:从分子水平到全球尺度 上一篇    下一篇

水环境中溶解有机质的光谱表征:从流域到深海
郭卫东 1( ),王超 2,李炎 3,瞿理印 1,郎目晨 1,邓永彬 1,梁清隆 1   
  1. 1.厦门大学海洋与地球学院,近海海洋环境科学国家重点实验室,福建 厦门 361102
    2.广东海洋大学 海洋与气象学院,广东 湛江 524088
    3.厦门大学东山太古海洋观测与实验站,福建 东山 363400
  • 收稿日期:2020-08-01 修回日期:2020-09-03 出版日期:2020-09-10
  • 基金资助:
    国家自然科学基金项目“利用光谱与超高分辨率质谱表征南海—吕宋海峡—西菲律宾海的溶解有机质循环”(41876083);国家自然科学基金委员会—福建省人民政府“促进海峡两岸科技合作联合基金”项目“台湾海峡浮游植物群落演变及其对河口羽流—上升流耦合系统的响应”(U1805241)

Characterization of Aquatic Dissolved Organic Matter by Spectral Analysis: From Watershed to Deep Ocean

Weidong Guo 1( ),Chao Wang 2,Yan Li 3,Liyin Qu 1,Muchen Lang 1,Yongbin Deng 1,Qinglong Liang 1   

  1. 1.College of Ocean and Earth Sciences,State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China
    2.College of Ocean and Meteorology,Guangdong Ocean University,Zhanjiang Guangdong 524088,China
    3.Dongshan Swire Marine Station,Dongshan Fujian 363400,China
  • Received:2020-08-01 Revised:2020-09-03 Online:2020-09-10 Published:2020-10-28
  • About author:Guo Weidong (1968-), male, Meishan City, Sichuan Province, Professor. Research areas include the biogeochemical processes of dissolved organic matter in the aquatic environments. E-mail: wdguo@xmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Utilizing optical and ultrahigh resolution mass spectroscopy to characterize the DOM cycle in the South China Sea, Luzon Strait and West Philippine Sea”(41876083);“The phytoplankton community dynamics and its response to coupling interaction between estuarine plume and coastal upwelling in the Taiwan Strait”(U1805241)

自20世纪90年代以来,光谱分析逐渐成为表征各种水环境中有色溶解有机质及其荧光组分来源和性质变化的一种重要技术手段。选取跨越了陆—海、陆架—海盆、边缘海—开阔大洋、海洋真光层—无光层等多个界面的福建漳江—漳江河口—东山湾—台湾海峡—南海东北部—吕宋海峡—西太平洋黑潮区垂直剖面,从连续载体的视角,通过对各类溶解有机质定性与定量光谱参数沿程的空间分布及变化趋势的分析,结合已有研究进展,系统总结了从流域到深海水文和生物地球化学梯度显著变化的大背景下,有色溶解有机质和荧光组分的各种来源与去除过程及其调控机制,探讨了不同水环境中溶解有机质定量光谱参数的地球化学分异特征,并对溶解有机质定性光谱指数的示踪能力进行了评析。提出土壤—河流系统的耦合研究、与矿化作用相关联的有色溶解有机质/荧光组分产生的微生物学机制、定量化的地球化学框架体系研究及全球变化的影响应是今后重点关注的课题。

Since 1990s, spectral analysis has become an important technique to characterize the properties of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) from various aquatic systems and a series of spectral indices have been suggested to trace the sources of DOM and their biogeochemical regulation processes. DOM samples were collected from an aquatic continuum from watershed to deep ocean, i.e. Zhangjiang River and Estuary, Dongshan Bay, Taiwan Strait, Northeast basin of the South China Sea, Luzon Strait and the vertical profile of the Kuroshio region of the West Pacific Ocean. This continuum covered many critical interfaces (land-ocean, shelf-basin, marginal sea basin-open ocean and euphotic and aphotic layer). The spatial distribution and variation of various qualitative and quantitative parameters along the continuum were clearly revealed. Combined with literature review, the sources and sinks of CDOM/FDOM and their inherent regulation processes under significant hydrological and biogeochemical gradient variation were systematically summarized. The geochemical differentiation of the quantitative DOM spectral index in various aquatic systems was discussed. The tracing ability of the qualitative DOM spectral index was commented. The coupling study of soil-river organic matter systems, mechanism of mineralization-related microbial production of CDOM/FDOM, quantified geochemical framework concept and perturbation of global change on CDOM/FDOM dynamics were suggested as future key topics.

中图分类号: 

表1 CDOMFDOM的主要光谱示踪参数
Table 1 Summary for spectral index of chromophoric and fluorescent DOM
图1 采样站位图
(a)研究区域;(b)漳江流域—西太平洋深海连续体采样站位;(c)河流—河口—海湾采样站位;(d)西太平洋N11站位(水深5 735 m)垂直剖面采样层位图;采样时间:漳江流域—河口:2019年7月1日;东山湾:2019年6月28~29日;台湾海峡A断面: 2019年7月27~28日;南海东北部和吕宋海峡:2018年6月22~28日;西太平洋:2017年10月25日至11月13日
Fig.1 Sampling stations
(a) Research area;(b) Sampling transect for the continuum from Zhangjiang River watershed to the deep West Pacific; (c) Detailed sampling stations of river-estuary-bay section; (d) Vertical sampling profile of N11 station (5 735 m deep) of the West Pacific. Sampling periods: Zhangjiang watershed-estuary: July 1, 2019; Dongshan Bay: June 28-29, 2019; A section of the Taiwan Strait: July 27-28, 2019; Northeast South China Sea basin and Luzon Strait: June 22-28, 2018; West Pacific: October 25-November 13, 2017
图2 流域—深海连续体DOM吸收与荧光定量指标的变化趋势
Fig.2 Variation of quantitative parameters of DOM absorption and fluorescence spectra along the watershed-deep ocean continuum
图3 流域—深海连续体DOM吸收与荧光定性指标的变化趋势
Fig.3 Variation of qualitative parameters of DOM absorption and fluorescence spectra along the watershed-deep ocean continuum
图4 西太平洋与水口水库内部类腐殖质C峰与表观耗氧量之间的相关性分析
西太平洋为N11站位,福建水口水库(118.7563°E, 26.3291°N)调查时间为2019年7月
Fig.4 Correlation between humic-like peak C and apparent oxygen utilization in the interior of dark West Pacific Ocean and terrestrial Shuikou reservoir
Station in the West Pacific Ocean is N11, Shuikou reservoir(118.7563°E, 26.3291°N) in Fujian Province was investigated during July 2019
图5 九龙江河口区(20165月)咸淡水混合导致的CDOM絮凝析出实验
Fig.5 Lab experiment showing flocculation phenomena by mixing of filtered freshwater and seawater in Jiulong Estuary (May 2016)
图6 不同区域DOCDOM光谱参数的皮尔森相关分析
Fig.6 Pearson correlation of DOC and DOM optical parameters in different aquatic systems
1 Hansell D A, Carlson H A. Biogeochemistry of Marine Dissolved Organic Matter [M]. 2nd Edition. London: Academic Press, 2014.
2 Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean [J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
3 Carlson H A, Hansell D A. sources DOM, sinks, reactivity, and budgets [M]//Biogeochemistry of Marine Dissolved Organic Matter. 2nd Edition. London: Academic Press, 2014: 66-126.
4 Coble P G. Marine optical biogeochemistry: The chemistry of ocean color [J]. Chemical Reviews, 2007, 107(2): 402-418.
5 Mounier S, Zhao H, Garnier C, et al. Copper complexing properties of dissolved organic matter: PARAFAC treatment of fluorescence quenching [J]. Biogeochemistry, 2011, 106(1): 107-116.
6 Yang L, Hur J, Lee S, et al. Dynamics of dissolved organic matter during four storm events in two forest streams: Source, export, and implications for harmful disinfection byproduct formation [J]. Environmental Science and Pollution Research, 2015, 22(12): 9 173-9 183.
7 Coble P G, Green S A, Blough N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy [J]. Nature, 1990, 348(6 300): 432-435.
8 Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy [J]. Marine Chemistry, 2003, 82(3/4): 239-254.
9 Zhou Y, Davidson T A, Yao X, et al. How autochthonous dissolved organic matter responds to eutrophication and climate warming: Evidence from a cross-continental data analysis and experiments [J]. Earth-Science Reviews, 2018, 185: 928-937.
10 Guo Weidong, Wang Chao, Xu Jing, et al. A review on the spectral analysis of marine organic matter [J]. Marine Science Bulletin, 2018, 37(6): 4-17.
郭卫东, 王超, 徐静, 等. 海洋有机质的光谱分析方法评述 [J]. 海洋通报, 2018, 37(6): 4-17.
11 Helms J R, Stubbins A, Ritchie J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969.
12 Fellman J B, Hood E, Spencer R G M, et al. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review [J]. Limnology and Oceanography, 2010, 55(6): 2 452-2 462.
13 Hansen A M, Kraus T E C, Pellerin B A, et al. Optical properties of Dissolved Organic Matter (DOM): Effects of biological and photolytic degradation [J]. Limnology and Oceanography, 2016, 61(3): 1 015-1 032.
14 Bricaud A, Morel A, Prieur L. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 [J]. Limnology and Oceanography, 1981, 26(1): 43-53.
15 Siegel D A, Maritorena S, Nelson N B, et al. Global distribution and dynamics of colored dissolved and detrital organic materials [J]. Journal of Geophysical Research: Oceans, 2002, 107(C12). DOI:10.1029/2001JC000965.
doi: 10.1029/2001JC000965    
16 Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 1996, 51(4): 325-346.
17 Weishaar J L, Aiken G R, Bergamaschi B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science & Technology, 2003, 37(20): 4 702-4 708.
18 Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying [J]. Chemosphere, 1999, 38(1): 45-50.
19 Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter [J]. Environmental Science & Technology, 2002, 36(4): 742-746.
20 Parlanti E, W?rz K, Geoffroy L, et al. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs [J]. Organic Geochemistry, 2000, 31(12): 1 765-1 781.
21 Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary [J]. Organic Geochemistry, 2009, 40(6): 706-719.
22 Cory R M, Mcknight D M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter [J]. Environmental Science & Technology, 2005, 39: 8 142-8 149.
23 Guo W, Xu J, Wang J, et al. Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis [J]. Journal of Environmental Sciences, 2010, 22(11): 1 728-1 734.
24 Zhou Y, Shi K, Zhang Y, et al. Fluorescence peak integration ratio IC:IT as a new potential indicator tracing the compositional changes in chromophoric dissolved organic matter [J]. Science of the Total Environment, 2017, 574: 1 588-1 598.
25 Yamashita Y, Hashihama F, Saito H, et al. Factors controlling the geographical distribution of fluorescent dissolved organic matter in the surface waters of the Pacific Ocean [J]. Limnology and Oceanography, 2017, 62(6): 2 360-2 374.
26 Yamashita Y, Cory R M, Nishioka J, et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2010, 57(16): 1 478-1 485.
27 Helms J R, Stubbins A, Perdue E M, et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence [J]. Marine Chemistry, 2013, 155: 81-91.
28 Wang C, Guo W, Li Y, et al. Hydrological and biogeochemical controls on absorption and fluorescence of dissolved organic matter in the northern South China Sea [J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(12): 3 405-3 418.
29 Coble P G, Lead J, Baker A, et al. Aquatic Organic Matter Fluorescence [M]. New York: Cambridge University, 2014.
30 Spencer R G M, Guo W, Raymond P A, et al. Source and biolability of ancient dissolved organic matter in glacier and lake ecosystems on the Tibetan Plateau [J]. Geochimica et Cosmochimica Acta, 2014, 142: 64-74.
31 Guo W, Yang L, Zhai W, et al. Runoff-mediated seasonal oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated estuary—The Changjiang Estuary [J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 776-793.
32 Yang L, Chen C-T A, Hong H, et al. Mixing behavior and bioavailability of dissolved organic matter in two contrasting subterranean estuaries as revealed by fluorescence spectroscopy and parallel factor analysis [J]. Estuarine, Coastal and Shelf Science, 2015, 166: 161-169.
33 Wang C, Guo W, Guo Z, et al. Characterization of dissolved organic matter in groundwater from the coastal Dagu River watershed, China using fluorescence excitation-emission matrix spectroscopy [J]. Spectroscopy and Spectral Analysis, 2013, 33(9): 2 460-2 465.
34 Yamashita Y, Tanoue E. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior [J]. Nature Geoscience, 2008, 1(9): 579-582.
35 Follett C L, Repeta D J, Rothman D H, et al. Hidden cycle of dissolved organic carbon in the deep ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16 706-16 711.
36 Zhang Y, Xiao W, Jiao N. Linking biochemical properties of particles to particle-attached and free-living bacterial community structure along the particle density gradient from freshwater to open ocean [J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(8): 2 261-2 274.
37 Margolin A R, Gonnelli M, Hansell D A, et al. Black Sea dissolved organic matter dynamics: Insights from optical analyses [J]. Limnology and Oceanography, 2018, 63(3): 1 425-1 443.
38 Yang L, Choi J H, Hur J. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes [J]. Water Research, 2014, 61: 97-107.
39 Wang F, Chen N, Yan J, et al. Major processes shaping mangroves as inorganic nitrogen sources or sinks: Insights from a multidisciplinary study [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(5): 1 194-1 208.
40 Yang L, Hong H, Guo W, et al. Absorption and fluorescence of dissolved organic matter in submarine hydrothermal vents off NE Taiwan [J]. Marine Chemistry, 2012, 128/129: 64-71.
41 Yang L, Zhuang W E, Chen C T A, et al. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC [J]. Water Research, 2017, 111: 195-203.
42 Zheng Q, Chen Q, Cai R, et al. Molecular characteristics of microbially mediated transformations of Synechococcus-derived dissolved organic matter as revealed by incubation experiments [J]. Environmental Microbiology, 2019, 21(7): 2 533-2 543.
43 Guo Donghui, Yi Yueyuan, Zhao Lei, et al. Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa[J]. Spectroscopy and Spectral Analysis, 2012, 32(6): 1 584-1 587.
郭东晖, 易月圆, 赵磊,等. 水母代谢过程中释放的溶解有机质的光谱特征 [J]. 光谱学与光谱分析, 2012, 32(6): 1 584-1 587.
44 Xing X, Qiu G, Boss E, et al. Temporal and vertical variations of particulate and dissolved optical properties in the South China Sea [J]. Journal of Geophysical Research: Oceans,2019, 124(6): 3 779-3 795.
45 Guo W, Yang L, Yu X, et al. Photo-production of dissolved inorganic carbon from dissolved organic matter in contrasting coastal waters in the southwestern Taiwan Strait, China [J]. Journal of Environmental Sciences, 2012, 24(7): 1 181-1 188.
46 Yang F, Song G, Massicotte P, et al. Depth-resolved photochemical lability of dissolved organic matter in the western tropical Pacific Ocean[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(3). DOI:10.1029/2019JG005425.
doi: 10.1029/2019JG005425    
47 Vodacek A, Blough N V, Degrandpre M D, et al. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation [J]. Limnology and Oceanography, 1997, 42(4): 674-686.
48 Lee M-H, Osburn C L, Shin K-H. New insight into the applicability of spectroscopic indices for Dissolved Organic Matter (DOM) source discrimination in aquatic systems affected by biogeochemical processes [J]. Water Research, 2018, 147: 164-176.
49 Ye Q, Wang Y, Zhang Z, et al. Dissolved organic matter characteristics in soils of tropical legume and non-legume tree plantations [J]. Soil Biology & Biochemistry, 2020, 148: 107880.
50 Hayase K, Shinozuka N. Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial Central Pacific [J]. Marine Chemistry, 1995, 48(3): 283-290.
51 Zhang Y, Gao X, Guo W, et al. Origin and dynamics of dissolved organic matter in a mariculture area suffering from summertime hypoxia and acidification [J]. Frontiers in Marine Science, 2018, 5: 325.
52 Catalá T S, Reche I, Fuenteslema A, et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean[J]. Nature Communications, 2015, 6:5 986.
53 Lin H, Cai Y, Sun X, et al. Sources and mixing behavior of chromophoric dissolved organic matter in the Taiwan Strait[J]. Marine Chemistry, 2016, 187: 43-56.
54 Devilbiss S E, Zhou Z, Klump J V, et al. Spatiotemporal variations in the abundance and composition of bulk and chromophoric dissolved organic matter in seasonally hypoxia-influenced Green Bay, Lake Michigan, USA [J]. Science of the Total Environment, 2016, 565: 742-757.
55 Xia Enqin, Guo Weidong, Hu Minghui. Advance in studies on fluorescence analysis for protein in marine environment[J]. Journal of Oceanography in Taiwan Strait, 2005, 23(2): 238-244.
夏恩琴, 郭卫东, 胡明辉. 海洋蛋白质荧光分析法的研究进展[J].台湾海峡, 2005, 23(2): 238-244.
56 J?rgensen L, Stedmon C A, Kragh T, et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter[J]. Marine Chemistry, 2011, 126: 139-148.
57 Liu Xianping, Li Lei, Dai Jinfeng, et al. Spectral characteristics of dissolved organic matter released during the metabolic process of small medusa[J]. Spectroscopy and Spectral Analysis, 2007, 27(10): 2 083-2 087.
柳先平, 李磊, 戴金凤,等. 不同水体中有色可溶性有机物质荧光光谱定量分析研究 [J]. 光谱学与光谱分析, 2007, 27(10): 2 083-2 087.
58 Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids [J]. Marine Chemistry, 2003, 82: 255-271.
59 Kaspar H, Dettmer K, Chan Q, et al. Urinary amino acid analysis: A comparison of iTRAQ?-LC-MS/MS, GC-MS, and amino acid analyzer [J]. Journal of Chromatography B, 2009, 877: 1 838-1 846.
60 Song X, Yang J, Hussain Q, et al. Stable isotopes reveal the formation diversity of humic substances derived from different cotton straw-based materials [J]. Science of the Total Environment, 2020, 740: 140 202.
61 L?nborg C, Carreira C, Jickells T, et al. Impacts of global change on ocean Dissolved Organic Carbon (DOC) cycling [J]. Frontiers in Marine Science, 2020, 7: 466.
62 Bao H, Yi Y, Wang C, et al. Dissolved organic matter in coastal rainwater: Concentration, bioavailability and depositional flux to seawater in southeastern China [J]. Marine Chemistry, 2018, 205: 48-55.
63 Wymore A S, Potter J, Rodríguez-Cardona, B, et al. Using in situ optical sensors to understand the biogeochemistry of dissolved organic matter across a stream network [J]. Water Resources Research, 2018, 54(4): 2 949-2 958.
64 Shultz M, Pellerin B A, Aiken G R, et al. High frequency data exposes nonlinear seasonal controls on dissolved organic matter in a large watershed [J]. Environmental Science & Technology, 2018, 52(10): 5 644-5 652.
65 Qu L, Wu Y, Li Y, et al. El Ni?o-driven dry season flushing enhances dissolved organic matter export from a subtropical watershed [J]. Geophysical Research Letters, 2020. DOI: 10.1029/2020GL089877.
doi: 10.1029/2020GL089877    
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[3] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[4] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[5] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[6] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[7] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[8] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[9] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[10] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[11] 冯世博,姜玥璐,蔡中华,曾艳华,周进. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
[12] 王宇航, 朱园园, 黄建东, 宋虎跃, 杜勇, 李哲. 海相碳酸盐岩稀土元素在古环境研究中的应用[J]. 地球科学进展, 2018, 33(9): 922-932.
[13] 徐昭萌, 刘素美. 底栖有孔虫体内储存硝酸盐和反硝化研究进展[J]. 地球科学进展, 2017, 32(9): 949-958.
[14] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[15] 崔豪,周炼,李超,彭兴芳,金承胜,石炜,张子虎,罗根明,谢树成. Fe-Mo同位素与古海洋化学演化[J]. 地球科学进展, 2013, 28(9): 1049-1056.
阅读次数
全文


摘要