Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (4): 433-444    DOI: 10.1167/j.issn.1001-8166.2015.04.0433
综述与评述     
海洋钙同位素分馏机制及其古海洋学应用
吴能友1, 张必东1, 2, *, 邬黛黛1
1 中国科学院天然气水合物重点实验室,中国科学院广州能源研究所,广州 510640; 2 中国科学院大学,北京100049
Fractionation Mechanism and Paleoceanographic Applications of Calcium Isotopes in Marine Settings
Wu Nengyou1, Zhang Bidong1, 2, Wu Daidai1
1.Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640 China; 2. University of Chinese Academy of Sciences, Beijing, 100049 China
 全文: PDF(1273 KB)   HTML
摘要:

钙在海洋中是离子浓度仅次于钠和镁的金属元素,在海洋生物过程及矿物形成中都占据重要的地位。随着同位素分析仪器精度的提高,钙同位素等非常规稳定同位素的研究逐渐成为地球化学的热[JP2]门,钙同位素在海洋环境中的分馏机制及其在古海洋学中的应用研究不断完善。系统介绍了钙同位素高精度分析的方法和原理,海洋环境中无机成因和有机成因2种钙同位素分馏的机制和应用;通过大量的文献调研综述了钙同位素地球化学研究在古海洋参数恢复上的应用。通过有孔虫Globigerinoides sacculifer的钙同位素具有对温度敏感、温感公式简单、后生成岩作用对其影响小和分析材料完整易得等优点,并同其他传统地质温度计联用,为古海洋研究提供精确的海洋表面温度(Sea Surface Temperature,SST);利用钙同位素值温度相关性较小的钙质壳体来恢复古海洋钙通量;利用无机成因碳酸盐岩盖帽的钙同位素恢复海水CO2-3浓度和研究甲烷渗漏对古海洋环境的影响。

关键词: 地球化学古海洋钙同位素分馏机制    
Abstract:

The concentration of calcium is only below sodium and magnesium among metalions, which plays a crucial role in biological processes and the formation of minerals. As analytic accuracy has been increasing, studies of calcium isotopes now become hot focus. Fractionation mechanism and paleoceanographic applications of calcium isotopes in marine settings are perfected with time. Globigerinoides sacculifer is the most promising proxy allied with other proxies of sea surface temperature because its calcium fractionation being sensitive to temperature, with simple formulas and resistant to diagenesis and it is also accessible to test. Those who are not sensitive to temperature in fractionation can be used to recover calcium budget. Inorganic calcium carbonates are promising to evaluate the influences that seepage of methane may exert on paleo-climate.

Key words: Fractionation mechanism    Calcium isotopes    Geochemistry    Paleoceanography.
收稿日期: 2014-10-31 出版日期: 2015-04-20
:  P736.4  
基金资助:

国家自然科学基金项目“南海北部冷泉区AOM驱动的硫早期成岩循环作用及其对甲烷渗漏环境识别研究”(编号:41273022); 中国科学院广州能源研究所所长创新基金培育专项“南海北部天然气水合物成藏的实验与表征研究”(编号:y307p51001)资助

通讯作者: 张必东(1989-),男,湖南湘潭人,硕士研究生,主要从事海洋地球化学研究.      E-mail: bdzhang@mail.ustc.edu.cn
作者简介: 吴能友(1965-),男,浙江东阳人,研究员,主要从事海洋地质研究工作. E-mail:wuny@ms.giec.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张必东
邬黛黛
吴能友

引用本文:

吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.

Wu Nengyou, Zhang Bidong, Wu Daidai. Fractionation Mechanism and Paleoceanographic Applications of Calcium Isotopes in Marine Settings. Advances in Earth Science, 2015, 30(4): 433-444.

链接本文:

http://www.adearth.ac.cn/CN/10.1167/j.issn.1001-8166.2015.04.0433        http://www.adearth.ac.cn/CN/Y2015/V30/I4/433

[1] De Laeter J R, Bohlke J K, De Bievre P, et al. Atomic weights of the elements: Review 2000-(IUPAC technical report)[J]. Pure Applied Chemistry, 2003, 75(6): 683-800.
[2] Russell W A, Papanastassiou D A, Tombrello T A. Ca Isotope fractionation on Earth and other solar-system materials[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1 075-1 090.
[3] Skulan J, Depaolo D J, Owens T L. Biological control of calcium isotopic abundances in the global calcium cycle[J]. Geochimica et Cosmochimica Acta, 1997, 61(12): 2 505-2 510.
[4] Zhu P, Macdougall J D. Calcium isotopes in the marine environment and the oceanic calcium cycle[J]. Geochimica et Cosmochimica Acta, 1998, 62(10): 1 691-1 698.
[5] Heuser A, Eisenhauer A, Gussone N, et al. Measurement of calcium isotopes (delta Ca-44) using a multicollector TIMS technique[J]. International Journal of Mass Spectrometry,2002, 220(3): 385-397.
[6] Sime N G, De La Rocha C L, Galy A. Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera[J]. Earth Planetary Sciences Letters, 2005, 232(1/2): 51-66.
[7] Kasemann S A, Schmidt D N, Pearson P N, et al. Biological and ecological insights into Ca isotopes in planktic foraminifers as a palaeotemperature proxy[J]. Earth Planetary Sciences Letters, 2008, 271(1/4): 292-302.
[8] Chen Ping, Fang Nianqiao, Hu Chaoyong. Glacial-interglacial variations of δ 44 Ca recordedby planktonic foraminifera[J]. Journal of Anhui University of Science and Technology(Natural Science), 2006, 26(4):11-16. [陈萍,方念乔,胡超涌. 有孔虫壳体δ44Ca的古海洋学意义[J].安徽理工大学学报:自然科学版,2006,26(4):11-16.]
[9] Eisenhauer A, Gussone N, Dietzel M, et al. Kinetic effects on calcium isotope (delta Ca-44) fractionation in calcium carbonate[J]. Geochimica et Cosmochimica Acta, 2002, 66(15A): A211-A211.
[10] Schmitt A D, Bracke G, Stille P, et al. The calcium isotope composition of modern seawater determined by thermal ionisation mass spectrometry[J]. Geostandard Newslett, 2001, 25(2/3): 267-275.
[11] Gussone N, Bohm F, Eisenhauer A, et al. Calcium isotope fractionation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4 485-4 494.
[12] Gussone N, Eisenhauer A, Tiedemann R, et al. Reconstruction of Caribbean sea surface temperature and salinity fluctuations in response to the pliocene closure of the Central American Gateway and radiative forcing, using delta Ca-44/40, delta O-18 and Mg/Ca ratios[J]. Earth Planetary Sciences Letters, 2004, 227(3/4): 201-214.
[13] Griffith E M, Paytan A, Bullen T D. Evidence for a dynamic marine calcium cycle during the past 30 million years from a record of Calcium isotopes in marine barite[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): A329-A329.
[14] Gussone N, H Nisch B, Heuser A, et al. A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers[J]. Geochimica et Cosmochimica Acta, 2009, 73(24): 7 241-7 255.
[15] Marriott C S, Henderson G M, Crompton R, et al. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1/2): 5-15.
[16] Bullen T D, Bailey S W. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach[J]. Biogeochemistry, 2005, 74(1): 63-99.
[17] Schiller M, Paton C, Bizzarro M. Calcium isotope measurement by combined HR-MC-ICPMS and TIMS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(1): 38-49.
[18] Lemarchand D, Wasserburg G T, Papanastassiou D A. Rate-controlled calcium isotope fractionation in synthetic calcite[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4 665-4 678.
[19] Böhm F, Gussone N, Eisenhauer A,et al. Calcium isotope fractionation in modern scleractinian corals[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4 452-4 462.
[20] Fantle M S, Depaolo D J. Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: Calcite recrystallization rates and evidence for a rapid rise in seawater Mg over the last 10 million years[J].Geochimica et Cosmochimica Acta, 2006, 70(15): 3 883-3 904.
[21] Tang J, Dietzel M, Kohler S, et al. Sr 2+ /Ca 2+ and 44 Ca/ 40 Ca fractionation during inorganic calcite formation: II. Calcium isotopes[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 733-3 745.
[22] Tang J, Niedermayr A, Kohler S, et al. Sr 2+ /Ca 2+ and 44 Ca/ 40 Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength[J]. Geochimica et Cosmochimica Acta, 2011, 77(100): 432-443.
[23] Fantle M S, Depaolo D J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: The Ca 2+ (aq)-calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2 524-2 546.
[24] DePaolo D J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions[J].Geochimica et Cosmochimica Acta,2011,75(4):1 039-1 056.
[25] Nielsen L C, DePaolo D J, DeYoreo J J. Self-consistent ion-by-ion growth model for kinetic isotopic fractionation during calcite precipitation[J]. Geochimica et Cosmochimica Acta, 2012, 86: 166-181.
[26] Harouaka K, Eisenhauer A, Fantle M S. Experimental investigation of Ca isotopic fractionation during abiotic gypsum precipitation[J]. Geochimica et Cosmochimica Acta, 2014, 129: 157-176.
[27] Gussone N, Langer G, Thoms S, et al. Cellular calcium pathways and isotope fractionation in Emiliania huxleyi[J]. Geology, 2006, 34(8): 625-628.
[28] Gussone N, Eisenhauer A, Heuser A, et al. Model for kinetic effects on calcium isotope fractionation (delta Ca-44) in inorganic aragonite and cultured planktonic foraminifera[J]. Geochimica et Cosmochimica Acta, 2003, 67(7): 1 375-1 382.
[29] Kisakurek B, Eisenhauer A, Bohm F, et al. Controls on calcium isotope fractionation in cultured planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 427-443.
[30] Griffith E M, Paytan A, Kozdon R, et al. Influences on the fractionation of calcium isotopes in planktonic foraminifera[J]. Earth Planet Science Letters, 2008, 268(1/2): 124-136.
[31] Erez J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Biomineralization, 2003, 54: 115-149.
[32] Elderfield H, Bertram C J, Erez J. Biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate[J]. Earth Planet Science Letters, 1996, 142(3/4): 409-423.
[33] Nägler T F, Eisenhauer A, Muller A, et al. The δ 44 Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: New tool for reconstruction of past sea surface temperatures[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(9),doi:10.1029/2000GC000091.
[34] Hippler D, Eisenhauer A, Nagler T F. Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140 ka[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 90-100.
[35] Anderson O R, Faber W W. An estimation of Calcium-carbonate deposition rate in a planktonic foraminifer Globigerinoides-sacculifer using Ca-45 as a tracer-a recommended procedure for improved accuracy[J]. Journal of Foraminiferal Research, 1984, 14(4): 303-308.
[36] Hemleben C, Spindler M, Breitinger I, et al. Morphological and physiological-responses of Globigerinoides-sacculifer (Brady) under varying laboratory conditions[J]. Marine Micropaleontology, 1987, 12(4): 305-324.
[37] Gussone N, Honisch B, Heuser A, et al. A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers[J]. Geochimica et Cosmochimica Acta, 2009, 73(24): 7 241-7 255.
[38] Hastings D W, Russell A D, Emerson S R. Foraminiferal magnesium in Globeriginoides sacculifer as a paleotemperature proxy[J]. Paleoceanography, 1998, 13(2): 161-169.
[39] Wolff T, Mulitza S, Arz H, et al. Oxygen isotopes versus CLIMAP (18 ka) temperatures: A comparison from the tropical Atlantic[J]. Geology, 1998, 26(8): 675-678.
[40] Ruhlemann C, Mulitza S, Muller P J, et al. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation[J]. Nature, 1999, 402(6 761): 511-514.
[41] Farkaš J, Böhm F, Wallmann K, et al. Calcium isotope record of Phanerozoic oceans: Implications for chemical evolution of seawater and its causative mechanisms[J]. Geochimica et Cosmochimica Acta, 2007, 71(21): 5 117-5 134.
[42] Farkaš J, Buhl D, Blenkinsop J, et al. Evolution of the oceanic calcium cycle during the late Mesozoic: Evidence from δ 44 / 40 Ca of marine skeletal carbonates[J]. Earth and Planetary Science Letters, 2007, 253(1/2): 96-111.
[43] Fantle M S, DePaolo D J. Variations in the marine Ca cycle over the past 20 million years[J]. Earth and Planetary Science Letters, 2007, 237(1/2): 102-117.
[44] Sandberg P A. An oscillating trend In phanerozoic non-skeletal carbonate mineralogy[J]. Nature, 1983, 305(5929): 19-22.
[45] Kasemann S A, Hawkesworth C J, Prave A R, et al. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: Evidence for extreme environmental change[J]. Earth Planet Science Letters, 2005, 231(1/2): 73-86.
[46] Kennedy M J, Christie-Blick N, Sohl L E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth’s coldest intervals?[J]. Geology, 2001, 29(5): 443-446.
[47] Chen Duofu, Chen Xianpei, Chen Guangqian. Geology and geochemistry of cold seepage and venting-related carbonates[J]. Acta Sedimentologica Sinica, 2002, 20(1):34-40. [陈多福,陈先沛,陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J].沉积学报,2002,20(1):34-40.]
[48] Wu Zijun, Ren Dezhang, Zhou Huaiyang. Anaerobic Oxidation of Methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J]. Advances in Earth Science, 2013, 28(7):765-773. [吴自军,任德章,周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展,2013,28(7):765-773.]
[49] Huang Keke, Huang Sijing, Lan Yefang, et al. Review of the carbon isotope of early triassic carbonates[J]. Advances in Earth Science, 2013, 28(3):357-365. [黄可可,黄思静,兰叶芳,等.早三叠世海相碳酸盐碳同位素研究进展[J].地球科学进展,2013,28(3):357-365.]
[50] Feng Dong, Chen Duofu, Liu Qian. Formation of late Neoproterozoic cap carbonates and termination mechanism of “Snowball Earth”[J]. Acta Sedimentologica Sinica, 2006, 24(2): 235-241. [冯东,陈多福,刘芊. 新元古代晚期盖帽碳酸盐岩的成因与“雪球地球”的终结机制[J].沉积学报,2006,24(2):235-241.]
[51] Chappellaz J, Blunier T, Raynaud D, et al. Synchronous changes in atmospheric CH 4 and greenland climate between 40-kyr and 8-Kyr Bp[J]. Nature, 1993, 366(6 454): 443-445.
[52] Henderson G M, Chu N C, Bayon G, et al. δ (44/42)Ca in gas hydrates, porewaters and authigenic carbonates from Niger Delta sediments[J]. Geochimica et Cosmochimica Acta,2006,70(18):A244-A244.
[53] Wang S H, Yan W, Magalhaes V H, et al. Factors influencing methane-derived authigenic carbonate formation at cold seep from southwestern Dongsha area in the northern South China Sea[J]. Environmental Earth Sciences, 2014, 71(5): 2 087-2 094.
[54] Teichert B M A, Gussone N, Torres M E. Controls on calcium isotope fractionation in sedimentary porewaters[J]. Earth and Planetary Science Letters, 2009, 279(3/4): 373-382.

[1] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[2] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[3] 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 穿透性地球化学勘查技术综述与展望[J]. 地球科学进展, 2017, 32(8): 828-838.
[4] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[5] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[6] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[7] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[8] 穆延宗, 乜 贞, 卜令忠, 王云生, 伍 倩. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2): 147-160.
[9] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[10] 郭进义, 侯青叶. 2016年度地球化学领域项目评审与资助成果[J]. 地球科学进展, 2016, 31(12): 1275-1278.
[11] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[12] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[13] 崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.
[14] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展*[J]. 地球科学进展, 2015, 30(5): 539-551.
[15] 崔月菊, 李静, 王燕艳, 刘永梅, 陈志, 杜建国. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展, 2015, 30(2): 284-294.