地球科学进展 ›› 2019, Vol. 34 ›› Issue (4): 366 -381. doi: 10.11867/j.issn.1001-8166.2019.04.0366

上一篇    下一篇

内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义
刘洋( ),王文龙( ),滕学建,郭硕,滕飞,何鹏,田健,段霄龙   
  1. 中国地质调查局天津地质调查中心,天津 300170
  • 收稿日期:2018-12-25 修回日期:2019-03-06 出版日期:2019-04-10
  • 通讯作者: 王文龙 E-mail:125313766@qq.com;499692710@qq.com;499692710@qq.com.
  • 基金资助:
    中国地质调查项目“1∶5万查干呼舒庙等六幅区域地质矿产调查”(编号:1212014121079)

Geochemistry and Hf Isotopes Characteristics and Geological Significance of Latest Early Permian Granodiorite of Langshan Area, Inner Mongolia

Yang Liu( ),Wenlong Wang( ),Xuejian Teng,Shuo Guo,Fei Teng,Peng He,Jian Tian,Xiaolong Duan   

  1. Tianjin Center of Geological Survey,China Geological Survey,Tianjin 300170,China
  • Received:2018-12-25 Revised:2019-03-06 Online:2019-04-10 Published:2019-05-27
  • Contact: Wenlong Wang E-mail:125313766@qq.com;499692710@qq.com;499692710@qq.com.
  • About author: Liu Yang (1986-), male, Qitai County, Xinjiang Uygur Autonomous Region, Engineer. Research areas include structural geology. E-mail: 125313766@qq.com | Liu Yang (1986-), male, Qitai County, Xinjiang Uygur Autonomous Region, Engineer. Research areas include structural geology. E-mail: 125313766@qq.com
  • Supported by:
    Project supported by the China geological survey project “1∶50,000 Chagan Hushu Miao and six other regional geological and mineral survey”(No. 1212014121079)

狼山地区位于内蒙古西部,索伦蛇绿岩带西南,晚古生代岩浆岩分布广泛,是中亚造山带晚古生代构造演化研究的关键位置。利用LA-ICP-MS锆石U-Pb测年方法获得狼山地区沙日楚鲁花岗闪长岩及莫若古花岗闪长岩的形成时代分别为(278.07±0.66) Ma和(278.05±0.69) Ma,为早二叠世晚期岩浆活动的产物;岩石地球化学特征表明,狼山地区早二叠世晚期花岗闪长岩属于高钾钙碱性系列(SiO2:63.76%~67.88%;K2O:2.74%~4.02%)、弱过铝质岩石(A/CNK:0.94~1.07),具有中等的Mg#(38.98~47.53);轻稀土(LREEs)及大离子亲石元素富集,重稀土及高场强元素亏损,具有弱的Eu负异常,为具有陆缘弧花岗岩特征的I型花岗岩。锆石Hf同位素分析结果显示,沙日楚鲁花岗闪长岩及莫若古花岗闪长岩具有负的而略显分散的εHft)值(-0.6~-7.5),其源区物质主要来源于华北古老地壳,并有少量幔源物质加入。结合区域地质背景,认为狼山地区早二叠世晚期花岗闪长岩形成于古亚洲洋向南俯冲的活动大陆边缘环境,彼时洋盆尚未闭合。

The Langshan area is located in the west of Inner Mongolia, southwest of the Solonker ophiolite belt, which is the ideal workplace to study tectonic-magmatic evolution and geodynamics background in Late Paleozoic because of the intense magmatism. LA-ICP-MS Zircon U-Pb ages yielded the formation time of granodiorite of Sharichulu and Moruogu granitic pluton (278.07±0.66) Ma and (278.05±0.69) Ma, respectively, forming in the latest early Permian. Geochemical characteristics showed that the Zhalashan granites were high-K calc-alkaline (SiO2:63.76%~67.88%;K2O:2.74%~4.02%) and weak peraluminous rocks (A/CNK:0.94~1.07) with moderate Mg# values (38.98~47.53). In addition,it exhibited LILE and LREEs enriched, HFSE and HREEs depleted with slight Eu anomaly, and all of the above-mentioned indicated the characteristics of I-type granites and arc-related. Zircon Hf isotope showed that the scatter εHf(t)values varied from -0.6~-7.5, which suggests a mixed magma source of old continental crust with a small involvement of mantle components. Together with regional geological background,the authors hold that the Latest early Permian granodiorite of Langshan area formed in an active continental margin setting under the background of southward subduction of the Paleo-Asian Ocean which were not close at that time.

中图分类号: 

图1 狼山地区地质简图
Fig.1 Geological map in Langshan
图2 花岗闪长岩野外及镜下照片
Fig.2 Field and microscope photographs for granodiorite
表1 花岗闪长岩 LA-ICP-MS 锆石 U-Pb定年结果
Table 1 LA-ICP-MS zircon U-Pb dating results of the granodiorite
样品和岩性 样点号 含量/×10-6 Th/U 同位素比值 表面年龄/Ma
Pb U 207Pb/235U 206Pb/238U 207Pb/206Pb 206Pb/238U 207Pb/235U
6477.1.01 15 348 0.23 0.3173 0.0040 0.0440 0.0002 0.0523 0.0006 278 1 280 4
样品:TW6477-1;岩性:花岗闪长岩 6477.1.02 10 229 0.35 0.3213 0.0056 0.0441 0.0002 0.0528 0.0009 278 1 283 5
6477.1.03 17 388 0.38 0.3176 0.0058 0.0439 0.0002 0.0524 0.0009 277 1 280 5
6477.1.04 6 144 0.34 0.3192 0.0082 0.0443 0.0002 0.0523 0.0013 279 2 281 7
6477.1.05 26 495 0.27 0.6066 0.0082 0.0443 0.0002 0.0993 0.0013 280 1 481 7
6477.1.06 8 178 0.40 0.3218 0.0074 0.0440 0.0002 0.0530 0.0012 278 2 283 7
6477.1.07 19 434 0.33 0.3211 0.0033 0.0443 0.0002 0.0526 0.0005 279 2 283 3
6477.1.08 21 471 0.33 0.3181 0.0030 0.0443 0.0003 0.0520 0.0005 280 2 280 3
6477.1.09 18 393 0.34 0.3166 0.0052 0.0445 0.0002 0.0516 0.0008 281 1 279 5
6477.1.10 15 344 0.44 0.3166 0.0037 0.0438 0.0003 0.0524 0.0006 276 2 279 3
6477.1.11 22 475 0.47 0.3151 0.0036 0.0441 0.0003 0.0519 0.0006 278 2 278 3
6477.1.12 10 224 0.38 0.3152 0.0055 0.0440 0.0003 0.0519 0.0009 278 2 278 5
6477.1.13 18 403 0.42 0.3115 0.0038 0.0436 0.0003 0.0518 0.0006 275 2 275 3
6477.1.14 20 464 0.33 0.3149 0.0035 0.0438 0.0003 0.0522 0.0005 276 2 278 3
6477.1.15 16 357 0.31 0.3128 0.0043 0.0437 0.0003 0.0520 0.0007 275 2 276 4
6477.1.16 6 132 0.39 0.3118 0.0116 0.0437 0.0003 0.0517 0.0019 276 2 276 10
6477.1.17 11 234 0.28 0.3177 0.0089 0.0444 0.0003 0.0519 0.0016 280 2 280 8
6477.1.18 10 223 0.25 0.3164 0.0151 0.0438 0.0003 0.0524 0.0025 276 2 279 13
6477.1.19 10 213 0.26 0.3158 0.0057 0.0441 0.0003 0.0519 0.0010 278 2 279 5
6477.1.20 6 141 0.30 0.3170 0.0090 0.0444 0.0003 0.0518 0.0015 280 2 280 8
6477.1.21 9 191 0.28 0.3165 0.0059 0.0442 0.0003 0.0519 0.0010 279 2 279 5
6477.1.22 22 485 0.28 0.3182 0.0034 0.0442 0.0002 0.0522 0.0005 279 2 281 3
6477.1.23 12 280 0.26 0.3166 0.0040 0.0442 0.0003 0.0519 0.0006 279 2 279 4
6477.1.24 23 507 0.28 0.3170 0.0034 0.0443 0.0002 0.0519 0.0005 279 2 280 3
样品:TW6907-1;岩性:花岗闪长岩 6907.1.01 5 104 0.49 0.3118 0.0138 0.0436 0.0003 0.0519 0.0023 275 2 276 12
6907.1.02 5 110 0.51 0.3150 0.0126 0.0440 0.0003 0.0520 0.0020 277 2 278 11
6907.1.03 6 118 0.59 0.3186 0.0122 0.0439 0.0003 0.0526 0.0020 277 2 281 11
6907.1.04 7 130 0.64 0.3139 0.0089 0.0440 0.0003 0.0517 0.0014 278 2 277 8
6907.1.05 6 116 0.45 0.3125 0.0107 0.0438 0.0003 0.0517 0.0017 276 2 276 9
6907.1.06 5 101 0.49 0.3165 0.0113 0.0442 0.0003 0.0519 0.0019 279 2 279 10
6907.1.07 4 80 0.47 0.3156 0.0152 0.0440 0.0003 0.0520 0.0025 278 2 279 13
6907.1.08 3 68 0.62 0.3143 0.0182 0.0441 0.0003 0.0517 0.0030 278 2 277 16
6907.1.09 5 105 0.65 0.3148 0.0109 0.0441 0.0003 0.0517 0.0018 278 2 278 10
6907.1.10 4 94 0.60 0.3149 0.0127 0.0441 0.0003 0.0518 0.0020 278 2 278 11
6907.1.11 4 86 0.61 0.3171 0.0118 0.0442 0.0003 0.0521 0.0020 279 2 280 10
6907.1.12 5 111 0.58 0.3136 0.0099 0.0440 0.0003 0.0517 0.0016 278 2 277 9
6907.1.13 6 134 0.65 0.3147 0.0071 0.0441 0.0003 0.0517 0.0012 278 2 278 6
6907.1.14 4 90 0.63 0.3154 0.0100 0.0442 0.0003 0.0517 0.0016 279 2 278 9
6907.1.15 5 97 0.67 0.3155 0.0113 0.0441 0.0003 0.0519 0.0018 278 2 278 10
6907.1.16 4 94 0.67 0.3193 0.0113 0.0443 0.0003 0.0522 0.0018 280 2 281 10
6907.1.17 4 97 0.63 0.3160 0.0113 0.0441 0.0003 0.0520 0.0019 278 2 279 10
6907.1.18 5 118 0.63 0.3187 0.0098 0.0442 0.0003 0.0524 0.0016 279 2 281 9
6907.1.19 6 128 0.79 0.3148 0.0079 0.0441 0.0003 0.0517 0.0013 278 2 278 7
6907.1.20 4 91 0.63 0.3156 0.0097 0.0443 0.0003 0.0517 0.0016 279 2 279 9
6907.1.21 6 145 0.44 0.3147 0.0149 0.0440 0.0003 0.0519 0.0024 278 2 278 13
6907.1.22 5 105 0.67 0.3153 0.0084 0.0441 0.0003 0.0518 0.0014 278 2 278 7
6907.1.23 4 90 0.63 0.3132 0.0112 0.0442 0.0003 0.0514 0.0018 279 2 277 10
6907.1.24 5 118 0.59 0.3148 0.0151 0.0440 0.0003 0.0519 0.0024 278 2 278 13
图3 花岗闪长岩部分锆石CL图像
Fig.3 CL images of selected zircon grains
图4 TW6477-1 TW6907-1锆石U-Pb测年谐和图和加权平均年龄图
Fig.4 Zircon U-Pb condordia and weighted average age diagrams for TW6477-1 and TW6907-1
表2 花岗闪长岩锆石 Hf同位素组成
Table 2 Hf isotopic compositions for zircons of granodiorite
样品和岩性 样点号 T/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf m εHf(0) εHf(t) T DM1/Ma T D M C /Ma f Lu/Hf
样品:TW6477.1岩性:花岗闪长岩 6 477.1.01 278 0.0269 0.0011 0.282512 0.000031 9.2 -3.3 1.1 1 505 2 020 -0.97
6 477.1.03 278 0.0217 0.0009 0.282489 0.000023 10.0 -4.1 0.8 1 554 2 090 -0.97
6 477.1.04 278 0.0173 0.0007 0.282391 0.000023 13.5 -7.5 0.8 1 770 2 396 -0.98
6 477.1.05 278 0.0226 0.0010 0.282512 0.000026 9.2 -3.2 0.9 1 502 2 016 -0.97
6 477.1.06 278 0.0211 0.0009 0.282456 0.000026 11.2 -5.2 0.9 1 626 2 192 -0.97
6 477.1.07 278 0.0217 0.0009 0.282419 0.000023 12.5 -6.6 0.8 1 711 2 312 -0.97
6 477.1.09 278 0.0185 0.0008 0.282424 0.000024 12.3 -6.3 0.9 1 697 2 293 -0.98
6 477.1.10 278 0.0274 0.0011 0.282485 0.000025 10.1 -4.2 0.9 1 564 2 105 -0.97
6 477.1.11 278 0.0278 0.0011 0.282485 0.000023 10.1 -4.2 0.8 1 564 2 105 -0.97
6 477.1.12 278 0.0346 0.0014 0.282479 0.000022 10.4 -4.5 0.8 1 581 2 128 -0.96
6 477.1.13 278 0.0256 0.0011 0.282489 0.000021 10.0 -4.1 0.7 1 555 2 091 -0.97
6 477.1.14 278 0.0172 0.0007 0.282423 0.000021 12.4 -6.4 0.7 1 699 2 297 -0.98
6 477.1.15 278 0.0184 0.0008 0.282485 0.000023 10.2 -4.2 0.8 1 561 2 100 -0.98
6 477.1.16 278 0.0200 0.0008 0.282407 0.000024 12.9 -7.0 0.9 1 737 2 349 -0.97
6 477.1.17 278 0.0224 0.0009 0.282424 0.000024 12.3 -6.4 0.8 1 700 2 297 -0.97
6 477.1.18 278 0.0145 0.0006 0.282445 0.000022 11.6 -5.6 0.8 1 649 2 225 -0.98
6 477.1.19 278 0.0172 0.0007 0.282496 0.000025 9.7 -3.8 0.9 1 534 2 062 -0.98
6 477.1.20 278 0.0208 0.0009 0.282405 0.000021 13.0 -7.0 0.7 1 741 2 355 -0.97
6 477.1.21 278 0.0182 0.0008 0.282444 0.000022 11.6 -5.6 0.8 1 652 2 229 -0.98
6 477.1.24 278 0.0215 0.0009 0.282515 0.000025 9.1 -3.1 0.9 1 494 2 005 -0.97
样品:TW6907.1岩性:花岗闪长岩 6 907.1.01 278 0.0215 0.0007 0.282558 0.000022 7.6 -1.6 0.8 1 396 1 866 -0.98
6 907.1.02 278 0.0228 0.0006 0.282536 0.000023 8.3 -2.4 0.8 1 445 1 935 -0.98
6 907.1.03 278 0.0225 0.0007 0.282584 0.000021 6.7 -0.7 0.7 1 339 1 785 -0.98
6 907.1.04 278 0.0208 0.0007 0.282513 0.000021 9.2 -3.2 0.7 1 497 2 009 -0.98
6 907.1.05 278 0.0242 0.0005 0.282580 0.000020 6.8 -0.8 0.7 1 344 1 792 -0.98
6 907.1.06 278 0.0175 0.0004 0.282545 0.000018 8.0 -2.0 0.6 1 423 1 904 -0.99
6 907.1.07 278 0.0196 0.0006 0.282550 0.000017 7.8 -1.8 0.6 1 413 1 889 -0.98
6 907.1.08 278 0.0193 0.0006 0.282541 0.000019 8.2 -2.2 0.7 1 434 1 919 -0.98
6 907.1.10 278 0.0193 0.0005 0.282585 0.000018 6.6 -0.6 0.6 1 334 1 778 -0.99
6 907.1.11 278 0.0183 0.0005 0.282532 0.000021 8.5 -2.5 0.7 1 452 1 945 -0.99
6 907.1.12 278 0.0170 0.0004 0.282569 0.000018 7.2 -1.1 0.6 1 369 1 827 -0.99
6 907.1.13 278 0.0276 0.0008 0.282472 0.000021 10.6 -4.7 0.7 1 590 2 142 -0.98
6 907.1.14 278 0.0174 0.0005 0.282467 0.000019 10.8 -4.8 0.7 1 598 2 152 -0.98
6 907.1.16 278 0.0208 0.0005 0.282505 0.000017 9.4 -3.4 0.6 1 513 2 032 -0.98
6 907.1.18 278 0.0240 0.0006 0.282488 0.000019 10.0 -4.0 0.7 1 552 2 087 -0.98
6 907.1.20 278 0.0161 0.0005 0.282567 0.000019 7.3 -1.3 0.7 1 375 1 836 -0.98
表3 花岗闪长岩主量元素的质量百分含量 (%)和微量元素 (×10-6)分析结果
Table 3 Major (wt.%) and trace elements (×10 -6) data of granodiorite
岩性 沙日楚鲁岩体 莫若古岩体
编号 6477-1 P8-1 P8-2 P8-3 P8-4 6907-1 P15-1 P15-2 P15-3
SiO2 65.37 67.58 67.88 66.34 65.02 66.5 65.24 63.76 66.23
TiO2 0.63 0.45 0.42 0.56 0.65 0.53 0.53 0.62 0.48
Al2O3 15.64 15.53 15.47 16 16.43 15.68 16.18 16.06 16.23
Fe2O3 0.78 0.23 0.18 0.56 0.6 1.1 0.85 1.31 0.34
FeO 3.81 3.03 2.82 3.31 3.88 3.09 3.42 3.31 3.41
MnO 0.10 0.07 0.07 0.07 0.08 0.10 0.10 0.09 0.07
MgO 1.54 1.09 1 1.46 1.61 1.78 1.99 2.04 1.74
CaO 3.52 2.92 3.08 3.81 3.5 3.4 3.64 4.63 3.82
Na2O 2.83 3.23 3.25 2.85 302 3.11 3.38 3.1 3.64
K2O 3.83 4.05 3.94 4 3.66 3.51 2.74 3.26 2.82
P2O5 0.19 0.14 0.13 0.16 0.19 0.19 0.18 0.17 0.14
LOI 1.34 1.36 1.44 0.52 0.94 0.68 1.37 1.28 0.71
H2O 0.68 0.63 0.53 0.67 0.86 0.47 0.87 0.68 0.5
CO2 0.65 0.62 0.8 0.98 0.67 0.19 0.45 0.43 0.076
Total 99.58 99.68 99.68 99.64 99.58 99.67 99.62 99.63 99.63
K2O/Na2O 1.35 1.25 1.21 1.40 1.21 1.13 0.81 1.05 0.77
Mg# 39.40 39.08 38.98 42.17 40.96 45.39 47.53 46.40 47.14
A/CNK 1.03 1.03 1.02 1.00 1.07 1.04 1.07 0.94 1.02
Li 34.7 34.6 36.9 33 43 55.1 36.8 46 32.2
Sc 11.6 8.98 8.53 10.5 12 11.2 10.5 16.4 11.2
V 45.3 28.7 26.6 43.3 45.4 49.6 56.8 55.2 49
Cr 20 13.2 12.2 19 17.6 39 29.5 46.8 27.5
Co 7.6 6.65 6.55 8.69 9.08 10.7 9.2 12.6 9.25
Ni 6.83 3.59 3.69 5.48 4.74 11.5 12.8 11.2 10.6
Cu 10.8 5.79 3.9 10.1 9.68 12 14.9 9.29 7.32
Zn 50.3 43 42.8 62 66.6 58.2 52.5 58.7 50.4
Ga 18.2 17.1 16.8 17.6 19.4 17.9 18.8 18.1 17.7
Rb 129 157 151 140 142 144 122 130 112
Sr 300 282 271 312 314 311 549 312 471
Zr 220 139 158 161 184 153 144 164 147
Nb 9.43 8.18 8.3 7.27 8.57 8.71 6.91 9.14 7.01
Cs 5.34 24.8 17.6 10.5 17.6 11 3.26 8.15 5.26
Ba 696 596 444 844 778 638 671 720 774
Hf 6.15 4.84 5.46 5.09 5.88 4.52 4 5.17 4.65
Ta 0.85 1.02 1.26 0.71 0.9 0.83 0.52 0.82 0.57
Pb 25.7 33 61 36.1 30.3 28.8 26.9 27.6 34.1
Th 10.8 16.7 15.3 15 14.1 11.2 9.23 12.3 10.9
U 1.43 3.2 2.99 1.15 1.34 1.18 0.74 1.26 1.23
La 20.6 24.7 25.6 30.4 31.2 24.8 24.4 25.8 25.5
Ce 41.8 57.8 62.7 63.7 57.5 46.9 47.2 57.4 54.9
编号 6477-1 P8-1 P8-2 P8-3 P8-4 6907-1 P15-1 P15-2 P15-3
Pr 5.45 5.96 6.28 7.74 7.7 5.85 5.77 5.94 5.68
Nd 21 21.5 22.6 29.4 28.5 21.8 21.4 21.8 19.7
Sm 4.43 4.88 5.33 5.67 5.5 4.18 3.85 4.57 4.04
Eu 1.26 0.98 1 1.41 1.42 1.07 1.09 1.27 1.1
Gd 4.22 4.8 5.1 4.56 4.85 3.72 3.51 4.5 3.66
Tb 0.76 0.79 0.89 0.8 0.89 0.55 0.5 0.66 0.54
Dy 4.54 4.61 5.35 4.47 5.14 2.97 2.64 3.82 2.81
Ho 0.94 0.97 1.11 0.86 1 0.58 0.51 0.76 0.55
Er 2.73 2.84 3.3 2.46 3 1.64 1.44 2.08 1.54
Tm 0.42 0.44 0.54 0.37 0.46 0.24 0.2 0.31 0.23
Yb 2.9 3.05 3.7 2.42 3.04 1.59 1.41 2.08 1.48
Lu 0.44 0.47 0.56 0.35 0.46 0.24 0.21 0.32 0.23
Y 26.2 24.6 29.5 21.9 26.1 16 13.9 18.8 13.7
LREE 94.54 115.82 123.51 138.32 131.82 104.60 103.71 116.78 110.92
HREE 43.15 42.57 50.05 38.19 44.94 27.53 24.32 33.33 24.74
ΣREE 137.69 158.39 173.56 176.51 176.76 132.13 128.03 150.11 135.66
σEu 0.88 0.61 0.58 0.82 0.82 0.81 0.89 0.85 0.86
(La/Yb)N 4.79 5.46 4.66 8.47 6.92 10.52 11.67 8.36 11.62
(Yb)N 13.88 14.59 17.70 11.58 14.55 7.61 6.75 9.95 7.08
Sr/Y 11.45 11.46 9.19 14.25 12.03 19.44 39.50 16.60 34.38
图5 花岗闪长岩岩石判别图解
Fig.5 Discrimination diagrams of the granodiorite
图6 花岗闪长岩稀土元素配分图和微量元素蛛网图
Fig.6 Chondrite-normalized REE parterns and primitive-mantle normalized trace element spider diagrams of the granodiorite
图7 花岗闪长岩 ε Hf ( t )-t 图解
Fig.7 ε Hf ( t )-t diagrams of granodiorite
图8 Sr/Y-Y(a)[ 51 ]和(La/Yb N -YbN(b)图解[ 52 ]
Fig.8 Discrimination diagram of Sr/Y-Y(a)[ 51 ] and La/YbN-YbN(b)[ 52 ]
图9 花岗闪长岩构造环境判别图解
Fig.9 Tectonic setting discrimination diagrams of the granodiorite
1 ?eng?r A M C , Natal'in B A , Burtman V S . Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6 435): 299.
2 Jahn B M , Wu Fuyuan , Chen Bin . Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23: 82-92.
3 Jahn B M , Windley B , Natal'in B , et al . Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 2004, 23(5): 599-603.
4 Wilde S A . Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—A review of the evidence[J]. Tectonophysics, 2015, 662: 345-362.
5 Zhang Shuanhong , Zhao Yue , Liu Jianmin , et al . Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 2016, 240/243: 382-401.
6 Jian Ping , Liu Dunyi , Kr?ner A , et al . Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118(1/2): 169-190.
7 Shi Xingjun , Wang Tao , Zhang Lei , et al . Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt[J]. Lithos, 2014, 208/209: 158-177.
8 Liu Min , Zhang Da , Xiong Guangqiang , et al . Zircon U-Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 2016, 120(15):139-158.
9 Tian Jian , Teng Xuejian , Liu Yang , et al . Petrogenesis and tectonic significance of the Early Carboniferous hornblende gabbro and granodiorite in Langshan area, Inner Mongolia[J]. Acat Petrologica et Mineralogica, 2018, 37(5): 754-770.
田健,滕学建,刘洋,等 . 内蒙古狼山地区早石炭世角闪辉长岩、花岗闪长岩的岩石成因及构造意义[J].岩石矿物学杂志, 2018, 37(5): 754-770.
10 Wang Wenlong , Teng Xuejian , Liu Yang , et al . Zircon U-Pb chronology and geochemical characteristics of Wuheertu pluton in Langshan, Inner Mongolia[J]. Journal of Geomechanics, 2017, 23(3): 382-396.
王文龙,滕学建,刘洋,等 .内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征[J].地质力学学报, 2017, 23(3): 382-396.
11 Wang Wenlong , Teng Xuejian , Liu Yang , et al . Geochemical, LA-ICP-MS Zircon U-Pb dating and Hf isotope features of haorigeshan Monzogranite in Langshan, Inner Mongolia[J]. Acta Geological Sinica, 2018, 92(11): 2 227-2 247.
王文龙,滕学建,刘洋,等 . 内蒙古狼山地区浩日格山二长花岗岩的地球化学特征、LA-ICP-MS锆石U-Pb定年及Hf同位素组成[J].地质学报, 2018, 92(11): 2 227-2 247.
12 Luo Hongling , Wu Tairan , Zhao Lei , et al . Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance[J]. Acta Petrologica Sinica, 2009, 25(3): 515-526.
罗红玲,吴泰然,赵磊,等 . 华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义[J].岩石学报, 2009, 25(3): 515-526.
13 Zhao Lei , Wu Tairan , Luo Hongling , et al . SHRIMP U-Pb dating, geochemistry and tectonic implications of the Beiqigetao gabbros in Urad Zhongqi area, Inner Mongolia[J]. Acta Petrologica Sinica, 2011, 27(10): 3 071-3 082.
赵磊,吴泰然,罗红玲,等 . 内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义[J].岩石学报, 2011,27( 10): 3 071-3 082.
14 Wang Zengzhen , Han Baofu , Feng Lixia , et al . Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences,2015,97(PartB): 337-351.
15 Guo Shuo , Teng Xuejian , Liu Yang , et al . Geochemistry, chronology, and Hf isotope features of the Permain intermediate-basic volcanic rocks in Wulanaobao area, Urad Houqi, Inner Mongolia and its geological significance[J]. Journal of Geomechanics, 2017, 23(3): 397-410.
郭硕,滕学建,刘洋,等 . 内蒙古乌拉特后旗乌兰敖包地区二叠纪中—基性火山岩地球化学、年代学、Hf同位素特征及其地质意义[J].地质力学学报, 2017, 23(3):397-410.
16 Wang Tingyin , Wang Jinrong , Wang Shizheng , et al . Discovery of the Engeer Wusu ophiolitic mélange belt in northern Alashan and its tectonic significance[J]. Journal of Lanzhou University (Natural Sciences), 1992, 28(2):194-196.
王廷印,王金荣,王士政,等 . 阿拉善北部恩格尔乌苏蛇绿混杂岩带的发现及其构造意义[J].兰州大学学报:自然科学版, 1992, 28(2), 194-196.
17 Chen Yaping , Wei Chunjing , Zhang Jinrui , et al . Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia[J]. Science Bulletin, 2015, 60(19):1 698-1 707.
18 Zhou Hai , Zhao Guochun , Han Yigui , et al . Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 2018, 314/315: 119-139.
19 Gong Wangbin , Hu Jianmin , Wu Sujuan , et al . Deformation characteristics, timing and significance of the Langshan sinistral strike-slip ductile shear zone in Inner Mongolia[J]. Earth Science Fronitiers, 2017, 24(3): 263-275.
公王斌,胡健民,吴素娟,等 . 内蒙古狼山左行走滑韧性剪切带变形特征、时间及意义[J].地学前缘, 2017,24(3): 263-275.
20 Hu Jianmin , Gong Wangbin , Wu Sujuan , et al . LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications[J]. Precambrian Research, 2014, 255(Part 2): 756-770.
21 Liu Chaohui , Zhao Guochun , Liu Fulai , et al . Late Precambrian tectonic affinity of the Alxa block and the North China Craton: Evidence from zircon U-Pb dating and Lu-Hf isotopes of the Langshan Group[J]. Precambrian Research, 2017. DOI: 10.1016/j.precamres.2017.10.019.
doi: 10.1016/j.precamres.2017.10.019    
22 Wang Zengzhen , Han Baofu , Feng Lixia , et al . Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the Western North China Craton: Evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement[J]. Lithos, 2016, 261(15): 278-295.
23 Jackson S E , Pearson N J , Griffin W L , et al . The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211: 47-69.
24 Elhlou S , Belousova E , Griffin W L , et al . Trace element and isotopic composition of GJ- red zircon standard by laser ablation[J]. Geochim Cosmochim Acta, 2006, 70(Suppl.): A158.
25 Xie Liewen , Zhang Yanbin , Zhang Huihuang , et al . In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 2008, 53(10): 1 565-1 573.
谢烈文,张艳斌,张辉煌,等 . 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定[J].科学通报, 2008, 53(10): 1 565-1 573.
26 Liu Xiaoming , Gao Shan , Diwuchunrong, et al . Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size[J]. Chinese Science Bulletin, 2007, 52(7): 942-948.
柳小明,高山,第五春容,等 . 单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定[J].科学通报, 2007, 52(7): 942-948.
27 Hou Kejun , Li Yanhe , Tian Yourong . In situ U-Pb zircon dating using laser ablation-multiion counting-ICP-MS[J]. Mineral Deposits, 2009, 28(4): 481-492.
侯可军,李延河,田有荣 . LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492.
28 Liu Yongsheng , Gao Shan , Hu Zhaochu , et al . Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 392-399.
29 Ludwig K . Isoplot/Ex, A Geochronological Toolkit for Microsoft Excel. version 3.00[J]. Berkeley Geochronology Centre, 2003, 4: 1-71.
30 Geng Jianzhen , Li Huaikun , Zhang Jian , et al . Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10): 1 508-1 513.
耿建珍,李怀坤,张健,等 . 锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报, 2011, 30(10): 1 508-1 513.
31 S?derlund U , Patchett J P , Vervoort J D , et al . The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.
32 Maitre R W L . A Classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[J]. Blackwell, 1989. DOI: 10.1017/CBO9780511535581.
doi: 10.1017/CBO9780511535581    
33 Maniar P D , Piccoli P M . Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989,101(5): 635-643.
34 Sun S S , Mcdonough W F . Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313-345.
35 Zhang Shuanhong , Zhao Yue , Liu Jianmin , et al . Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842.
张拴宏,赵越,刘建民,等 . 华北地块北缘晚古生代—早中生代岩浆活动期次、特征及构造背景[J].岩石矿物学杂志, 2010, 29(6): 824-842.
36 Wang Wanqiong , Xu Zhongyuan , Liu Zhenghong , et al . Early-middle permian tectonic evolution of the Central-Northern margin of the North China Craton: Constraints from Zircon U-Pb ages and geochemistry of the granitoids[J]. Acta Petrologica Sinica, 2013, 29(9): 2 987-3 003.
王挽琼,徐仲元,刘正宏,等 . 华北板块北缘中段早中二叠世的构造属性:来自花岗类锆石U-Pb年代学及地球化学的制约[J].岩石学报,2013, 29(9): 2 987-3 003.
37 Zhu Xuefeng , Chen Yanjing , Wang Pin , et al . Zircon U-Pb age, geochemistry and Hf isotopes of the causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia[J]. Earth Science Frontiers, 2018, 25(5): 199-134.
朱雪峰,陈衍景,王玭,等 . 内蒙古毕力赫斑岩型金矿成矿岩体地球化学、锆石U-Pb年代学及Hf同位素研究[J].地学前缘, 2018, 25(5): 120-134.
38 Wang Wanqiong , Liu Zhenghong , Wang Xing'an , et al . SHRIMP U-Pb dating of from Hercynian biotite Monzonitic Granites in Urad Zhongqi, Inner Mongolia, and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1 771-1 782.
王挽琼,刘正宏,王兴安,等 . 内蒙古乌拉特中旗海西期黑云母二长花岗岩锆石SHRIMPU-Pb年龄及其地质意义[J].吉林大学学报:地球科学版,2012, 42(6): 1 771-1 782.
39 Zhang Shuanhong , Zhao Yue , Song Biao , et al . Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications[J]. Geological Society of America Bulletin, 2009,121(1/2): 181-200.
40 Liu Changfeng , Wu Chen , Zhu Yan , et al . Late Paleozoic-Early Mesozoic magmatic history of central Inner Mongolia, China: Implications for the tectonic evolution of the Xingmeng Orogenic Belt, the southeastern segment of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015. DOI: 10.1016/j.jseaes.2015.09.011.
doi: 10.1016/j.jseaes.2015.09.011    
41 Griffin W L , Wang X , Jackson S E , et al . Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3): 237-269.
42 Kemp A I S , Hawkesworth C J , Foster G L , et al . Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon[J]. Science, 2007, 315(5 814): 980-983.
43 Zhang Wenhui , Wang Cuizhi , Li Xiaomin , et al . Zircon SIMS U-Pb age, Hf and O isotopes of mafic dikes, southwest Fujian Province[J]. Advances in Earth Science, 2016, 31(3): 320-334.
张文慧,王翠芝,李晓敏,等 .闽西南基性岩脉中捕获锆石SIMSU-Pb年龄及Hf、O同位素特征[J].地球科学进展, 2016, 31(3):320-334.
44 Taylor S R , McLennan S M . The Continental Crust: Its Composition and Evolution[M]. Oxford:Blackwell Scientific, 1985: 312.
45 Mcdonough W F , Sun S S , Mcdonough W F , et al . The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223-253.
46 Wang Dezi , Xie Lei . Magma mingling: Evidence from enclaves[J]. Geological Journal of China Universities, 2008, 14 (1): 16-21.
王德滋,谢磊 . 岩浆混合作用:来自岩石包体的证据[J].高校地质学报, 2008,14(1): 16-21.
47 Xiao Qinghui , Deng Jinfu . Thoughts and Methods of Granite Research[M]. Beijing: Geologyical Publishing House, 2012, 53-70.
肖庆辉,邓晋福 . 花岗岩研究思维与方法[M].北京:地质出版社, 2002: 53-70.
48 Zhang Ruigang , Gao Xue , Yang Liqiang . Identification of magma mixing: A case study of the DaoCheng batholith in Yidun Arc[J]. Advances in Earth Science, 2018, 33(10): 1 058-1 074.
张瑞刚,高雪,杨立强 .岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J].地球科学进展,2018, 33(10): 1 058-1 074.
49 Zhang Jianjun , Wang Tao , Zhang Zhaochong , et al . Magma mixing origin if Yamatu Granite in Nuoergong-Langshan area, western part of the northern margin of North China craton: Petrological and geochemical evidences[J]. Geological Review, 2012, 58(1):53-66.
张建军,王涛,张招崇,等 . 华北地块北缘西段巴音诺尔公—狼山地区牙马图岩体的岩浆混合成因[J].地质论评, 2012, 58(1): 53-66.
50 Zhang Yongmei , Zhang Huafeng , Liu Wencan , et al . Timing and petrogenesis of the Damiao granodiorite,Siziwangqi,Inner Mongolia[J]. Acta Petrologica Sinica, 2009, 25(12): 515-526.
章永梅,张华锋,刘文灿,等 . 内蒙古中部四子王旗大庙岩体时代及成因[J].岩石学报, 2009, 25(12): 515-526.
51 Defant M J , Drummond M S . Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 1990, 347: 662-665.
52 Martin H . Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986,14(9): 753-756.
53 Pearce J A , Harris N B W , Tindle A G . Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983.
54 Batchelor R A , Bowden P . Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].ChemicalGeology, 1985,48(1/4):43-55.
55 Deng,Jinfu, Xiao Qinghui , Su Shangguo , et al . Igneous petro-tectonic assemblages and tectonic settings: A discussion[J].Geological Journal of China Universities, 2007,13(3): 392-402.
邓晋福,肖庆辉,苏尚国,等 . 火成岩组合与构造环境:讨论[J].高校地质学报, 2007, 13(3): 392-402.
56 Deng Jinfu , Feng Yanfang , Di Yongjun , et al . Magmatic arc and ocean—Continent transition: Discussion[J]. Geological Review,2015,61(3) :473-484.
邓晋福,冯艳芳,狄永军,等 . 岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 2015, 61(3): 473-484.
57 Gorton M P , Schandl E V .From continentstoisland arcs:A geochemicalindexof tectonic settingfor arc-relatedand within-plate felsictointermediate volcan-ic rocks[J]. Canadian Mineralogist, 2000, 38(5): 1 065-1 073.
58 Zhang Shuanhong , Zhao Yue , Kr?ner, et al . Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6): 1 441-1 467.
59 Li Shan , Wilde S A , Wang Tao , et al . Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2016, 29(1): 168-180.
60 Li Shan , Chung S L , Wilde S A ,et al . Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research Solid Earth, 2017. DOI: 10.1002/2017JB014006.
doi: 10.1002/2017JB014006    
61 Li Pengwu , Gao Rui , Guan Ye , al et , Palaeomagnetic constraints on final closure time of Solonker-Linxi Suture [J]. Journal of Jilin University (Earth Science Edition),2006, 36: 744-758.
李朋武,高锐,管烨,等 . 内蒙古中部索伦—林西缝合带封闭时代的古地磁分析[J].吉林大学学报:地球科学版, 2006, 36: 744-758.
62 Li Jinyi . Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
63 Li Gangzhu , Wang Yujing , Li Chengyuan , et al . Discovery of Early Permian radiolarian fauna in the Solon Obo ophiolite belt, Inner Mongolia and its geological significance[J]. Chinese Science Bulletin, 2017, 62(5): 400-406.
李钢柱,王玉净,李成元,等 . 内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义[J].科学通报, 2017, 62(5): 60-66.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[6] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[7] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[8] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[9] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[10] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[11] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
[12] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[13] 熊巨华, 宗克清. 2018年度地球科学部地球化学学科工作报告 *[J]. 地球科学进展, 2018, 33(12): 1286-1291.
[14] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
[15] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
阅读次数
全文


摘要