地球科学进展 ›› 2020, Vol. 35 ›› Issue (7): 731 -741. doi: 10.11867/j.issn.1001-8166.2020.057

研究论文 上一篇    下一篇

2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征
马骏 1, 2, 3, 4( ),宋金明 1, 2, 3, 4( ),李学刚 1, 2, 3, 4,袁华茂 1, 2, 3, 4,李宁 1, 2, 3, 4,段丽琴 1, 2, 3, 4,王启栋 1, 2, 3, 4   
  1. 1.中国科学院海洋研究所 中国科学院海洋生态与环境科学重点实验室,山东 青岛 266071
    2.青岛海洋科学与技术国家实验室 海洋生态与环境科学功能实验室,山东 青岛 266237
    3.中国科学院大学,北京 100049
    4.中国科学院海洋大科学研究中心,山东 青岛 266071
  • 收稿日期:2020-05-10 修回日期:2020-06-20 出版日期:2020-07-10
  • 通讯作者: 宋金明 E-mail:mjqdio@163.com;jmsong@qdio.ac.cn
  • 基金资助:
    科技基础资源调查专项项目“西太平洋典型海山生态系统科学调查”(2017FY100802);国家自然科学基金项目“西太平洋最小含氧带对基于生物泵传输效率的生源要素循环的影响”(91958103)

Geochemical Characteristics of Particulate Organic Carbon in the Kocebu Seamount Waters of the Western Pacific Ocean in Spring 2018

Jun Ma 1, 2, 3, 4( ),Jinming Song 1, 2, 3, 4( ),Xuegang Li 1, 2, 3, 4,Huamao Yuan 1, 2, 3, 4,Ning Li 1, 2, 3, 4,Liqin Duan 1, 2, 3, 4,Qidong Wang 1, 2, 3, 4   

  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
    4.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2020-05-10 Revised:2020-06-20 Online:2020-07-10 Published:2020-08-21
  • Contact: Jinming Song E-mail:mjqdio@163.com;jmsong@qdio.ac.cn
  • About author:Ma Jun (1992-), male, Laizhou City, Shandong Province, Ph.D student. Research areas include marine biogeochemistry. E-mail: mjqdio@163.com
  • Supported by:
    the National Key Research and Development Program of China “Science survey of typical seamount ecosystems in the Western Pacific Ocean”(2017FY100802);The National Natural Science Foundation of China “Effect of oxygen minimum zone on the circulation of biogenic elements based on the transmission efficiency of biological pumps”(91958103)

海山区颗粒有机碳的地球化学特征研究对深入认知大洋海山生态系统的物质循环过程具有重要意义。基于2018年3月对西太平洋Kocebu海山的综合调查,探讨了Kocebu海山区海水中颗粒有机碳的分布、来源及组成等地球化学特征。结果表明,随着水深的增加, 颗粒有机碳浓度逐渐降低,并在接近海山底部的水层中略有回升。在各水团中,颗粒有机碳平均浓度的大小依次为北太平洋热带水大于北太平洋中层水大于底层水,其中在底层水中,山顶附近站位的颗粒有机碳浓度低于远离海山的站位。海山山顶上方750~1 500 m水层中存在上升流,进而在该区域内形成颗粒有机碳浓度12.50 μg/L等值线隆起,但未形成“海山效应”。Kocebu海山区的颗粒有机碳主要为海源输入,颗粒有机碳/颗粒态有机氮平均值为3.75。在0~300 m的水层中,仅叶绿素最大值层中的颗粒有机碳/叶绿素a小于200,表明该水层中颗粒有机碳主要为生命态形式;而300 m水层中,颗粒有机碳/叶绿素a急剧升高,非生命态颗粒有机碳在总颗粒有机碳中贡献最大。

The study of the geochemical characteristics of the POC in the seamount area will be of great significance for further understanding the material cycle process in the seamount ecosystem. Based on a comprehensive survey of the Kocebu seamount in the Western Pacific Ocean in March, 2018, the distribution, source and composition of Particulate Organic Carbon (POC) in the seawater of the Kocebu seamount area were discussed. The results showed that the concentration of POC in the Kocebu seamount area gradually decreased with the increasing water depth, and slightly rose in the water layers near the bottom of the seamount. The average concentration of POC in each water mass was sorted from high to low in the order of North Pacific Tropic Water, North Pacific Intermediate Water and Deep Water (DW), and the concentration of POC at stations near the seamount summit was lower than that far from the seamount in the DW. There was upwelling at the water layers of 750~1 500 m above the seamount summit, causing the uplift of the 12.50 μg/L POC isoline in this region, however, no “seamount effect” was formed. The POC was mainly imported from the sea with an average POC/PON of 3.75. At the water layers of 0~300 m, only the POC/chlorophyll a (Chl a) at deep chlorophyll maximum layer was less than 200, indicating that the POC in this region was mainly in a form of life, while at the water layer of 300 m, the POC/Chl a increased sharply, indicating that the non-living POC contributed the most to the total POC.

中图分类号: 

图1 Kocebu海山区的调查站位图
(a) 海山位置图;(b) 站位设置图;(c) A和B断面
Fig.1 Sampling stations in the Kocebu seamount area
(a) Location map of seamount; (b) Station setting map; (c) Section A and B
图2 Kocebu海山区的水团分布图
Fig.2 The distribution of water masses in the Kocebu seamount area
表1 Kocebu海山区各水团中的温度、盐度和 POC分布
Table 1 The distribution of temperature, salinity and POC in different water masses in the Kocebu seamount area
图3 Kocebu海山区 5 0001 000 m水深中 POC的垂直分布
Fig.3 The vertical distribution of POC at 5 000 and 1 000 m in the Kocebu seamount area
图4 Kocebu海山区 AB断面中 POC和温度的分布
Fig.4 The distribution of POC and temperature in section A and B of the Kocebu seamount area
图5 Kocebu海山区不同水团中 POC的水平分布
Fig.5 The horizontal distribution of POC in different water masses of the Kocebu seamount area
图6 Kocebu海山区 PONDONO 3-N的垂直分布
Fig.6 The vertical distribution of PON, DO and NO 3-N in the Kocebu seamount area
表2 Kocebu海山区 0~300 m水层中 Chl aPOC/Chl a的分布
Table 2 The distribution of Chl aPOC/Chl a at 0~300 water layers in the Kocebu seamount area
1 Ma J, Song J, Li X, et al. Control factors of DIC in the Y3 seamount waters of the Western Pacific Ocean[J]. Journal of Oceanology and Limnology, 2020: 1- 10. DOI: 10.1007/s00343-020-9314-3.
doi: 10.1007/s00343-020-9314-3    
2 Wang Xuejing, Jin Chunjie, Wang Lisha, et al. Distribution characteristics and influencing factors of particulate organic carbon in the Yellow Sea and the Bohai Sea in summer of 2016[J]. Acta Oceanologica Sinica, 2018, 40( 10): 200- 208.
王雪景, 金春洁, 王丽莎, 等. 2016年夏季黄、渤海颗粒有机碳的分布特征及影响因素[J]. 海洋学报, 2018, 40( 10): 200- 208.
3 Lu Xi, Song Jinming, Yuan Huamao, et al. Carbon distribution and exchange of Kuroshio and adjacent China sea shelf: A review[J]. Advances in Earth Science, 2015, 30( 2): 214- 225.
卢汐, 宋金明, 袁华茂, 等. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30( 2): 214- 225.
4 Yin Xijie, Li Yunhai, Qiao Lei, et al. Distribution of Particulate Organic Carbon (POC) and δ13C POC in surface waters in summer in Prydz Bay,Antarctica[J]. Chinese Journal of Polar Research, 2014, 26( 1): 159- 166.
尹希杰, 李云海, 乔磊, 等. 南极普里兹湾海域夏季表层水体颗粒有机碳及其同位素分布特征[J]. 极地研究, 2014, 26( 1): 159- 166.
5 Song Jinming, Li Xuegang. Ecological functions and biogenic element cycling roles of marine sediment/particles[J]. Acta Oceanologica Sinica, 2018, 40( 10): 1- 13.
宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40( 10): 1- 13.
6 Liu Jun, Yu Zhigang, Zang Jiaye. Distribution and budget of organic carbon in the Bohai and Yellow Seas[J]. Advances in Earth Science, 2015, 30( 5): 564- 578.
刘军, 于志刚, 臧家业, 等. 黄渤海有机碳的分布特征及收支评估研究[J]. 地球科学进展, 2015, 30( 5): 564- 578.
7 Zhang Naixing, Song Jinming, He Zhipeng. Biogeochemical mechanism of Particulate Organic Carbon (POC) variations in seawaters[J]. Acta Ecologica Sinica, 2006, 26( 7): 2 328- 2 339.
张乃星, 宋金明, 贺志鹏. 海水颗粒有机碳(POC)变化的生物地球化学机制[J]. 生态学报, 2006, 26( 7): 2 328- 2 339.
8 Song J. Biogeochemical Processes of Biogenic Elements in China Marginal Seas[M]. Berlin: Springer Science & Business Media, 2011: 1- 62.
9 Song J, Wang Q. A new mechanism of atmospheric CO 2 absorption promoted by iron-nitrogen coupling in low-latitude oceans during ice age[J]. Science China Earth Sciences, 2020, 63( 1): 167- 168.
10 Ma J, Song J, Li X, et al. Environmental characteristics in three seamount areas of the Tropical Western Pacific Ocean: Focusing on nutrients[J]. Marine Pollution Bulletin, 2019, 143: 163- 174.
11 Ma Jun, Song Jinming, Li Xuegang, et al. Research progress on oceanic seamounts and their eco-environmental characteristics[J]. Marine Sciences, 2018, 42( 6): 150- 160.
马骏, 宋金明, 李学刚, 等. 大洋海山及其生态环境特征研究进展[J]. 海洋科学, 2018, 42( 6): 150- 160.
12 Epp D, Smoot N C. Distribution of seamounts in the North Atlantic[J]. Nature, 1989, 337( 6 024): 254- 257.
13 Genin A. Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies[J]. Journal of Marine Systems, 2004, 50( 1): 3- 20.
14 Mourino B, Fernandez E, Serret P, et al. Variability and seasonality of physical and biological fields at the Great Meteor Tablemount (subtropical NE Atlantic)[J]. Oceanologica Acta, 2001, 24( 2): 167- 185.
15 Dower J F, Mackas D L. “Seamount effects” in the zooplankton community near Cobb Seamount[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1996, 43( 6): 837- 858.
16 Ma Jun, Song Jinming, Li Xuegang, et al. Effects of Y3 seamount on nutrients and its coupling relationships with ecological environment in the Western Pacific Ocean[J]. Earth Science Frontiers, 2019: 1- 11. DOI: 10.13745/j.esf.sf.2019.8.16.
doi: 10.13745/j.esf.sf.2019.8.16    
马骏, 宋金明, 李学刚, 等. 西太平洋Y3海山对营养盐的影响及其生态环境效应[J]. 地学前缘, 2019: 1- 11. DOI: 10.13745/j.esf.sf.2019.8.16.
doi: 10.13745/j.esf.sf.2019.8.16    
17 Clark M R, Rowden A A, Schlacher T, et al. The ecology of seamounts: Structure, function, and human impacts[J]. Annual Review of Marine Science, 2010, 2: 253- 278.
18 Sun Zhaohui, Liu Zenghong, Tong Mingrong, et al. The application of Argo data to water masses analysis in the Northwest Pacific Ocean[J]. Journal of Marine Sciences, 2007, 25( 3): 1- 13.
孙朝辉, 刘增宏, 童明荣, 等. 应用Argo资料分析西北太平洋冬、夏季水团[J]. 海洋学研究, 2007, 25( 3): 1- 13.
19 Li Xulu. Water mass features in the upper part of section along 8 °N in western Tropical Pacific Ocean and their responses to El Nino and anti-El Nino[J]. Taiwan Strait, 1993( 1): 41- 47.
李绪录. 热带西太平洋8°N断面上部的水团特征及其对厄尔尼诺的响应[J]. 台湾海峡, 1993( 1): 41- 47.
20 Wang Fan, Liu Chuanyu, Hu Shijian, et al. Variability and climate effect of the salinity in the Pacific warm pool-cold tongue confluence region [J]. Advances in Earth Science, 2018, 33( 8): 775- 782.
王凡, 刘传玉, 胡石建, 等. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究[J]. 地球科学进展, 2018, 33( 8): 775- 782.
21 Yu Y, Song J, Li X, et al. Distribution, sources and budgets of particulate phosphorus and nitrogen in the East China Sea[J]. Continental Shelf Research, 2012, 43: 142- 155.
22 Zhang Wenjing, Sun Xiaoxia, Chen Yunyan, et al. Chlorophyll a concentration and size structure of phytoplankton at yarp Y3 seamount in Tropical West Pacific in winter 2014[J]. Oceanologia et Limnologia Sinica, 2016, 47( 4): 739- 747.
张文静, 孙晓霞, 陈芸燕, 等. 2014年冬季热带西太平洋雅浦Y3海山浮游植物叶绿素a浓度及粒级结构[J]. 海洋与湖沼, 2016, 47( 4): 739- 747.
23 Singh A, Gandhi N, Ramesh R. Contribution of atmospheric nitrogen deposition to new production in the nitrogen limited photic zone of the northern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2012, 117( C6): 1- 11.
24 Menzel D W. Particulate organic carbon in the deep sea[J]. Deep Sea Research and Oceanographic Abstracts, 1967, 14( 2): 229- 238.
25 Menzel D W, Goering J J. The distribution of organic detritus in the ocean[J]. Limnology and Oceanography, 1966, 11( 3): 333- 337.
26 Xing Jianwei, Xian Weiwei, Shen Zhiliang, et al. Interannual variation of particulate organic carbon and its influencing factors in Changjiang River estuary in autumn[J]. Oceanologia et Limnologia Sinica, 2014, 45( 5): 964- 972.
邢建伟, 线薇薇, 沈志良, 等. 秋季长江口水体颗粒有机碳年际变化及影响因素分析[J]. 海洋与湖沼, 2014, 45( 5): 964- 972.
27 Henson S A, Sanders R, Madsen E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean[J]. Global Biogeochemical Cycles, 2012, 26( 1): 1- 14.
28 Hazen E L, Johnston D W. Meridional patterns in the deep scattering layers and top predator distribution in the central equatorial Pacific[J]. Fisheries Oceanography, 2010, 19( 6): 427- 433.
29 Chen Jianfang, Wiesner M G, Wong H K, et al. Vertical change of particulate organic carbon flux in the South China Sea and markers of early degradation[J]. Science in China(Series D), 1999, 29( 4): 372- 378.
陈建芳, Wiesner M G, Wong H K, 等. 南海颗粒有机碳通量的垂向变化及早期降解作用的标志物[J]. 中国科学:D辑, 1999, 29( 4): 372- 378.
30 Ducklow H W, Steinberg D K, Buesseler K O. Upper ocean carbon export and the biological pump[J]. Oceanography, 2001, 14( 4): 50- 58.
31 Hernes P J, Peterson M L, Murray J W, et al. Particulate carbon and nitrogen fluxes and compositions in the central equatorial Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2001, 48( 9): 1 999- 2 023.
32 Buesseler K O, Lamborg C H, Boyd P W, et al. Revisiting carbon flux through the Ocean's Twilight Zone[J]. Science, 2007, 316( 5 824): 567- 570.
33 Sayles F L, Martin W R, Deuser W G. Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda[J]. Nature, 1994, 371( 6 499): 686- 689.
34 Zhang Haibo, Yang Luning, Wang Lisha, et al. Distribution and source analysis of particulate organic carbon in the Yellow Sea and Bohai Sea during summer, 2013[J]. Acta Oceanologica Sinica, 2016, 38( 8): 24- 35.
张海波, 杨鲁宁, 王丽莎, 等. 2013年夏季黄、渤海颗粒有机碳分布及来源分析[J]. 海洋学报, 2016, 38( 8): 24- 35.
35 Comeau L A, Vezina A F, Bourgeois M, et al. Relationship between phytoplankton production and the physical structure of the water column near Cobb Seamount, northeast Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1995, 42( 6): 993- 1 005.
36 Zhang Wuchang, Yu Ying, Li Chaolun, et al. Planktonic ecology in seamount area of the open ocean: A review[J]. Oceanologia et Limnologia Sinica, 2014, 45( 5): 973- 978.
张武昌, 于莹, 李超伦, 等. 海山区浮游生态学研究[J]. 海洋与湖沼, 2014, 45( 5): 973- 978.
37 Mendonca A, Aristegui J, Vilas J C, et al. Is there a seamount effect on microbial community structure and biomass? The case study of seine and Sedlo seamounts (Northeast Atlantic)[J]. PLoS ONE, 2012, 7( 1): 1- 13.
38 Boehlert G W, Genin A. A review of the effects of seamounts on biological processes [J]. Seamounts, Islands, and Atolls, 1987, 43: 319- 334.
39 Song Jinming, Xu Yongfu, Hu Weiping, et al. Biogeochemistry of Carbon in Offshore China and Lakes[M]. Beijing: Science Press, 2008: 1- 32.
宋金明, 徐永福, 胡维平, 等. 中国近海与湖泊碳的生物地球化学[M]. 北京: 科学出版社, 2008: 1- 32.
40 Xia Bin, Ma Shaosai, Chen Jufa, et al. Distribution of organic carbon and carbon fixed strength of phytoplankton in Enteromorpha prolifera outbreak area of the western south Yellow Sea, 2008[J]. Environmental Science, 2010, 31( 6): 1 442- 1 449.
夏斌, 马绍赛, 陈聚法, 等. 2008年南黄海西部浒苔暴发区有机碳的分布特征及浮游植物的固碳强度[J]. 环境科学, 2010, 31( 6): 1 442- 1 449.
41 Zhang Ting, Shi Xiaoyong, Zhang Chuansong, et al. Distribution of organic carbon in the end of the decline of enteromorpha prolifera in 2008[J]. Marine Environmental Science, 2011, 30( 3): 324- 328.
张婷, 石晓勇, 张传松, 等. 2008年浒苔消亡末期有机碳分布情况的初步研究[J]. 海洋环境科学, 2011, 30( 3): 324- 328.
42 Genin A, Dayton P K, Lonsdale P F, et al. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography[J]. Nature, 1986, 322( 6 074): 59- 61.
43 Zuo J, Song J, Yuan H, et al. Particulate nitrogen and phosphorus in the East China Sea and its adjacent Kuroshio waters and evaluation of budgets for the East China Sea Shelf[J]. Continental Shelf Research, 2016, 131: 1- 11.
44 Bricaud A, Babin M, Morel A, et al. Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization[J]. Journal of Geophysical Research: Oceans, 1995, 100( C7): 13 321- 13 332.
45 Zhao Li, Zhao Yanchu, Wang Chaofeng, et al. Comparison in the distribution of microbial food web components in the Y3 and M2 seamounts in the Tropical Western Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48( 6): 1 446- 1 455.
赵丽, 赵燕楚, 王超锋, 等. 热带西太平洋Y3和M2海山微食物网主要类群生态分布与比较[J]. 海洋与湖沼, 2017, 48( 6): 1 446- 1 455.
46 Gundersen K, Orcutt K M, Purdie D A, et al. Particulate organic carbon mass distribution at the Bermuda Atlantic Time-series Study (BATS) site[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 48( 8): 1 697- 1 718.
47 Danovaro R, Dell'Anno A, Pusceddu A, et al. Biochemical composition of pico-, nano- and micro-particulate organic matter and bacterioplankton biomass in the oligotrophic Cretan Sea (NE Mediterranean)[J]. Progress in Oceanography, 2000, 46( 2): 279- 310.
[1] 南峰, 于非, 徐安琪, 丁雅楠. 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 2022, 37(11): 1115-1126.
[2] 高丽,任鹏飞,周放,郑嘉雯,任宏利. GRAPES-GEPS对西太平洋副热带高压和南亚高压的集合预报评估与集合方法研究[J]. 地球科学进展, 2020, 35(7): 715-730.
[3] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[4] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[5] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[6] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[7] 张宏芳,潘留杰,侯建忠,李明娟. 陕西暖季雷暴的主模态及其可能的影响机制[J]. 地球科学进展, 2013, 28(9): 1025-1035.
[8] 常凤鸣,李铁刚. 西太平洋暖池区古海洋学研究[J]. 地球科学进展, 2013, 28(8): 847-858.
[9] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[10] 王凡,胡敦欣,穆穆,王启,何金海,朱江,刘志宇. 热带太平洋海洋环流与暖池的结构特征、变异机理和气候效应[J]. 地球科学进展, 2012, 27(6): 595-602.
[11] 谭丽菊,张哲,梁成菊,王江涛. 青岛邻近海域海水中有机碳的分布特征[J]. 地球科学进展, 2011, 26(4): 426-432.
[12] 秦蕴珊,尹宏. 西太平洋——我国深海科学研究的优先战略选区[J]. 地球科学进展, 2011, 26(3): 245-248.
[13] 杜岩,方国洪. 印度尼西亚海与印度尼西亚贯穿流研究概述[J]. 地球科学进展, 2011, 26(11): 1131-1142.
[14] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
[15] 赵进平,史久新,金明明,李超伦,矫玉田,卢勇. 楚科奇海融冰过程中的海水结构研究[J]. 地球科学进展, 2010, 25(2): 154-162.
阅读次数
全文


摘要