地球科学进展 ›› 2022, Vol. 37 ›› Issue (11): 1115 -1126. doi: 10.11867/j.issn.1001-8166.2022.061

青促会之地球科学领域 上一篇    下一篇

西北太平洋次表层中尺度涡研究进展和展望
南峰 1 , 2 , 3 , 4( ), 于非 1 , 2 , 3 , 4, 徐安琪 5, 丁雅楠 1 , 4   
  1. 1.中国科学院海洋环流与波动重点实验室,中国科学院海洋研究所,山东 青岛 266071
    2.中国科学院 海洋大科学研究中心,山东 青岛 266071
    3.青岛海洋科学与技术试点国家实验室,山东 青岛 266237
    4.中国科学院大学,北京 100049
    5.南京信息工程大学,江苏 南京 210000
  • 收稿日期:2022-04-28 修回日期:2022-05-31 出版日期:2022-11-10
  • 基金资助:
    中国科学院青年创新促进会项目(2018241);国家自然科学基金面上项目“西北太平洋次表层中尺度涡三维结构及其形成机制”(41676005)

Progress and Prospect of Subsurface-intensified Eddies in the Northwestern Pacific Ocean

Feng NAN 1 , 2 , 3 , 4( ), Fei YU 1 , 2 , 3 , 4, Anqi XU 5, Yanan DING 1 , 4   

  1. 1.CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
    3.Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
    4.University of Chinese Academy of Sciences, Beijing 100049, China
    5.Nanjing University of Information Science & Technology, Nanjing 210000, China
  • Received:2022-04-28 Revised:2022-05-31 Online:2022-11-10 Published:2022-11-16
  • About author:NAN Feng (1983-), male, Baoding County, Hebei Province, Professor. Research areas include eddy-current interaction, dynamics and its climate effects. E-mail: nanfeng0515@qdio.ac.cn
  • Supported by:
    the Youth Innovation Promotion Association of Chinese Academy of Sciences(2018241);The National Natural Science Foundation of China “Three-dimensional structure and dynamics of the subsurface mesoscale eddy in the northwestern Pacific Ocean”(41676005)

中尺度涡对大洋环流、海洋能量平衡、水团分布、热盐和营养物质输运等方面都具有重要意义。根据其垂向密度结构和旋转流速核心位置不同,中尺度涡有表层和次表层中尺度涡之分。基于卫星海面高度计资料的应用,对表层中尺度涡的研究日趋成熟。次表层中尺度涡垂向密度呈透镜式结构,其最大旋转流速核心位于混合层以下,对次表层涡的研究依赖于现场观测资料。目前次表层涡在世界大洋中偶有发现,因此国内外对其研究方兴未艾。聚焦于西北太平洋的次表层中尺度涡,全面回顾了其观测和数值模式的结果,总结了其垂向结构特征、时空分布和移动规律,以及可能的生成机制等。同时展望了其对海洋能量平衡、水团分布、声传播和海洋生物地球化学要素分布等可能的影响,以及未来可能的研究发展方向。

Mesoscale eddies play an important role in phenomena such as general circulation, momentum budgets, ocean water mass distribution, and water and nutrient transport. Based on the vertical structure of the density and current core, mesoscale eddies are classified into two categories: surface- and subsurface-intensified. The utilization of remote sensing has provided considerable information on surface-intensified eddies. However, little is known about subsurface eddies due to the lack of in-situ observations, although they have been found occasionally in the global ocean. Currently, subsurface eddies are a trending topic within the scientific community. This study reviews the scientific background and research progress on subsurface eddies, with a focus on the northwestern Pacific Ocean. The vertical structure, evolutionary process, and possible formation mechanism of subsurface eddies are summarized based on observational and modelling results. Their influence on marine biogeochemistry, marine sound propagation, and possible important scientific issues are also discussed.

中图分类号: 

1 CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15). DOI:10.1029/2007GL030812 .
2 CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216.
3 XIU P, PALACZ A P, CHAI F, et al. Iron flux induced by Haida eddies in the Gulf of Alaska[J]. Geophysical Research Letters, 2011, 38(13). DOI:10.1029/2011GL047946 .
4 DONG C, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5: 3294.
5 XU C, SHANG X D, HUANG R X. Horizontal eddy energy flux in the world oceans diagnosed from altimetry data[J]. Scientific Reports, 2014, 4: 5316.
6 ZHANG Z G, WANG W, QIU B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6 194): 322-324.
7 ZHANG Z G, ZHANG Y, WANG W. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1 653-1 664.
8 LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17). DOI:10.1029/2021GL094772 .
9 GORDON A L, GIULIVI C F, LEE C M, et al. Japan/east Sea intrathermocline eddies[J]. Journal of Physical Oceanography, 2002, 32(6): 1 960-1 974.
10 CHIANG T L, QU T D. Subthermocline eddies in the western equatorial Pacific as shown by an eddy-resolving OGCM[J]. Journal of Physical Oceanography, 2013, 43(7): 1 241-1 253.
11 CHIANG T L, WU C R, QU T D, et al. Activities of 50-80 day subthermocline eddies near the Philippine coast[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3 606-3 623.
12 ZHANG Z W, LI P L, XU L X, et al. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014[J]. Geophysical Research Letters, 2015, 42(15): 6 438-6 445.
13 FAGHMOUS J H, FRENGER I, YAO Y, et al. A daily global mesoscale ocean eddy dataset from satellite altimetry [J]. Scientific Data, 2015, 2: 150028.
14 ZHANG Z G, ZHANG Y, WANG W, et al. Universal structure of mesoscale eddies in the ocean[J]. Geophysical Research Letters, 2013, 40(14): 3 677-3 681.
15 TAKIKAWA T, ICHIKAWA H, ICHIKAWA K, et al. Extraordinary subsurface mesoscale eddy detected in the southeast of Okinawa in February 2002[J]. Geophysical Research Letters, 2005, 32(17). DOI:10.1029/2005gl023842 .
16 OKA E, TOYAMA K, SUGA T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophysical Research Letters, 2009, 36(8). DOI:10.1029/2009GL037540 .
17 FIRING E, KASHINO Y, HACKER P. Energetic subthermocline currents observed east of Mindanao[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(3/4): 605-613.
18 ZHANG Z X, QIAO F L, GUO J S. Subsurface eddies in the southern South China Sea detected from in situ observation in October 2011[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2014, 87: 30-34.
19 KUMAR S, MADHUBABU V, RAO D. Energy and generating mechanism of a subsurface, cold core eddy in the bay of Bengal[J]. Indian Journal of Marine Sciences, 1992, 21: 140-142.
20 ZHURBAS V, STIPA T, MÄLKKI P, et al. Generation of subsurface cyclonic eddies in the southeast Baltic Sea: observations and numerical experiments[J]. Journal of Geophysical Research: Oceans, 2004, 109(C5). DOI:10.1029/2003JC002074 .
21 NAUW J J, van AKEN H M, LUTJEHARMS J R E, et al. Intrathermocline eddies in the southern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2006, 111(C3). DOI:10.1029/2005JC002917 .
22 BRUNDAGE W L, DUGAN J P. Observations of an anticyclonic eddy of 18 ℃ water in the sargasso sea[J]. Journal of Physical Oceanography, 1986, 16(4): 717-727.
23 OEY L Y, ZHANG H C. The generation of subsurface cyclones and jets through eddy-slope interaction[J]. Continental Shelf Research, 2004, 24(18): 2 109-2 131.
24 YANG G, WANG F, LI Y L, et al. Mesoscale eddies in the northwestern subtropical Pacific Ocean: statistical characteristics and three-dimensional structures[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1 906-1 925.
25 QIU B, CHEN S M. Concurrent decadal mesoscale eddy modulations in the western north Pacific subtropical gyre[J]. Journal of Physical Oceanography, 2013, 43(2): 344-358.
26 MCWILLIAMS J C, FLIERL G R. On the evolution of isolated, nonlinear vortices[J]. Journal of Physical Oceanography, 1979, 9(6): 1 155-1 182.
27 NAN F, YU F, WEI C, et al. Observations of an extra-large subsurface anticyclonic eddy in the northwestern Pacific subtropical gyre[J]. Journal of Marine Science: Research & Development, 2017, 7(4): 1-11. DOI:10.4172/2155-9910.1000234 .
28 ZHANG L L, HUI Y C, QU T D, et al. Seasonal variability of subthermocline eddy kinetic energy east of the Philippines[J]. Journal of Physical Oceanography, 2021, 51(3): 685-699.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[3] 王晓宇, 赵进平, 李涛, 钟文理, 矫玉田. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3): 346-356.
[4] 刘春颖, 刘欢欢, 杨桂朋, 王莉莉, 张升辉. 夏季黄海冷水团海域的丙烯酸分布与海洋环境因子和叶绿素a变化之间的关系[J]. 地球科学进展, 2014, 29(3): 361-368.
[5] 高会旺, 姚小红, 郭志刚, 韩志伟, 高树基. 大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1325-1332.
[6] 赵进平,史久新,金明明,李超伦,矫玉田,卢勇. 楚科奇海融冰过程中的海水结构研究[J]. 地球科学进展, 2010, 25(2): 154-162.
[7] 商少凌;柴扉;洪华生. 海洋生物地球化学模式研究进展[J]. 地球科学进展, 2004, 19(4): 621-629.
[8] 戴民汉;翟惟东;鲁中明;蔡平河;蔡卫君;洪华生. 中国区域碳循环研究进展与展望[J]. 地球科学进展, 2004, 19(1): 120-130.
[9] 刘建明. 成矿组分沉积同生富集的一种新机制:动态海水团的混合过程[J]. 地球科学进展, 1994, 9(2): 24-28.
阅读次数
全文


摘要