地球科学进展 ›› 2022, Vol. 37 ›› Issue (11): 1127 -1140. doi: 10.11867/j.issn.1001-8166.2022.085

青促会之地球科学领域 上一篇    下一篇

大洋缺氧事件金属稳定同位素研究进展
李聪颖 1 , 2 , 4( ), 吴思璠 1 , 3 , 4   
  1. 1.中国科学院海洋研究所,深海研究中心,山东 青岛 266071
    2.青岛海洋科学与技术试点国家 实验室,海洋矿产资源评价与探测技术功能实验室,山东 青岛 266237
    3.中国科学院大学,北京 100049
    4.中国科学院海洋大科学研究中心,山东 青岛 266071
  • 收稿日期:2022-07-31 修回日期:2022-10-18 出版日期:2022-11-10
  • 基金资助:
    国家自然科学基金面上项目“板块俯冲过程中铼的地球化学行为——以西北太平洋岛弧火山岩为例”(42176070);中国科学院青年创新促进会项目(2020212)

Advances in Research on Stable Metal Isotopes in Oceanic Anoxic Events

Congying LI 1 , 2 , 4( ), Sifan WU 1 , 3 , 4   

  1. 1.Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
    2.Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
    4.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
  • Received:2022-07-31 Revised:2022-10-18 Online:2022-11-10 Published:2022-11-16
  • About author:LI Congying (1984-), female, Minquan County, Henan Province, Associate professor. Research area includes marine geology. E-mail: licongying@qdio.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Geochemical behavior of rhenium during subduction: a case study of volcanic rocks in the northwest Pacific island arc”(42176070);The Youth Innovation Promotion Association of Chinese Academy of Sciences(2020212)

白垩纪大洋缺氧事件记录了地球气候和古海洋环境的显著变化,是全球碳循环的主要扰动事件,受到了国内外学者的广泛关注。近20年来,随着金属稳定同位素测试技术的发展,越来越多的金属稳定同位素(例如钼同位素、锌同位素、铀同位素、铬同位素、镉同位素和钙同位素等)被用于研究大洋缺氧事件期间的环境变化。通过系统总结钼同位素(δ98Mo)、锌同位素(δ66Zn)和铀同位素(δ238U)的地球化学性质以及在大洋缺氧事件中的研究进展,发现钼同位素主要用于指示局部海洋硫化和非硫化环境的转变过程;锌同位素多用于区分局部海洋对初级生产力、大陆风化以及沉积物埋藏/分解等过程的不同响应情况;铀同位素可以估算全球海底缺氧面积占海底总面积的比例,同时可以结合碳—磷—铀耦合模型模拟全球海洋对大火成岩省形成、大陆风化、生物活动等过程的响应机制。但目前这些金属稳定同位素在海洋体系中的循环分馏机制尚未完善,且研究对象主要聚焦于大洋缺氧事件OAE2的沉积记录,未来还需要更系统全面的研究。

Cretaceous Oceanic Anoxic Events (OAEs) have recorded significant changes in the climatic and paleoceanographic states of the planet and represent major carbon cycle perturbations. In the past two decades, analytical techniques for stable metal isotopes, such as molybdenum, zinc, uranium, chromium, cadmium, and calcium isotopes, have been developed to study OAEs. By systematically summarizing the geochemical characteristics of molybdenum isotopes (δ98Mo), zinc isotopes (δ66Zn), and uranium isotopes (δ238U), and research advances on Cretaceous OAEs, we found that molybdenum isotopes mainly reflect the transformation between sulfide and non-sulfide in the regional marine environment during OAEs. Zinc isotopes can reflect different responses of regional marine environments to different processes, such as primary productivity, continental weathering, and sediment burial/decomposition. Uranium isotopes can be used to estimate the global extent of seafloor euxinia. The coupled global C-P-U cycle model can simulate the response mechanism of the global ocean to different processes, such as the formation of large igneous provinces, continental weathering, and biological activities. However, the cyclic fractionation mechanism of these isotopes in marine systems is still in progress, and most research has only focused on the deposition record of OAE2. In the future, it will be necessary to conduct more systematic research on OAEs.

中图分类号: 

图1 大洋缺氧事件的地层位置和命名
据参考文献[ 1 ]修改,OAE1c的地层年龄数据添加自参考文献[ 2
Fig. 1 The stratigraphic position and nomenclature of OAEs
Modified after reference [ 1 ];The stratigraphic age of OAE1c is from reference [ 2
图2 DSDP site 367剖面的 δ13Corgδ98Mo图(据参考文献[ 84 ]修改)
Fig. 2 δ13Corg and δ98Mo composition of DSDP site 367modified after reference 84 ])
图3 Eastbourne和贡扎剖面的 δ13Ccarbδ66Zn图(据参考文献[ 30 ]修改)
Fig. 3 δ13Ccarb and δ66Zn composition of Eastbourne and Gongzhamodified after reference 30 ])
图4 Eastbourne剖面的 δ13Ccarbδ238U图(据参考文献[ 20 ]修改)
Fig. 4 δ13Ccarb and δ238U composition of Eastbournemodified after reference 20 ])
1 JENKYNS H C. Geochemistry of Oceanic Anoxic Events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1-30.
2 FAN Qingchao, XU Zhaokai. A review of Cretaceous Ocean anoxia events[J]. Marine Sciences, 2020, 44(2): 138-145.
范庆超, 徐兆凯. 白垩纪大洋缺氧事件研究进展[J]. 海洋科学, 2020, 44(2): 138-145.
3 LIU Xinyu, HU Xiumian, LI Juan. Cretaceous oceanic anoxic and oxic events[J]. Chinese Journal of Nature, 2020, 42(4): 347-354.
刘昕羽, 胡修棉, 李娟. 白垩纪大洋缺氧事件与富氧事件[J]. 自然杂志, 2020, 42(4): 347-354.
4 LI Y X, BRALOWER T, MONTAÑEZ I, et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma)[J]. Earth and Planetary Sciences Letters, 2008, 271(1): 88-100.
5 TURGEON S C, CREASER R A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode[J]. Nature, 2008, 454(7 202): 323-326.
6 ERBACHER J, FRIEDRICH O, WILSON P, et al. Short-term warming events during the boreal Albian (mid-Cretaceous)[J]. Geology, 2011, 39(3): 223-226.
7 SANCHEZ-HERNANDEZ Y, MAURRASSE F J M R. The influence of regional factors in the expression of Oceanic Anoxic Event 1a (OAE1a) in the semi-restricted Organyà Basin, south-central Pyrenees, Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 582-598.
8 TESSIN A, SHELDON N D, HENDY I, et al. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation[J]. Earth and Planetary Science Letters, 2016, 449: 135-144.
9 GANGL S K, MOY C M, STIRLING C H, et al. High-resolution records of Oceanic Anoxic Event 2: insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean[J]. Earth and Planetary Science Letters, 2019, 518: 172-182.
10 BOMOU B, ADATTE T, TANTAWY A A, et al. The expression of the Cenomanian-Turonian oceanic anoxic event in Tibet [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 466-481.
11 JENKYNS H C. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian)[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2 130): 20170073.
12 KURODA J, OGAWA N O, TANIMIZU M, et al. Contemporaneous massive subaerial volcanism and Late Cretaceous Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 211-223.
13 MIDTKANDAL I, SVENSEN H H, PLANKE S, et al. The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463: 126-135.
14 WANG X L, PLANAVSKY N, REINHARD C, et al. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts[J]. American Journal of Science, 2016, 316(1): 64-83.
15 MATSUMOTO H, COCCIONI R, FRONTALINI F, et al. Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity[J]. Geology, 2021, 49(9): 1 148-1 152.
16 ERBA E, BOTTINI C, WEISSERT H J, et al. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a[J]. Science, 2010, 329(5 990): 428-432.
17 NAAFS B D A, CASTRO J M, de GEA G A, et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a[J]. Nature Geoscience, 2016, 9(2): 135-139.
18 WESTERMANN S, VANCE D, CAMERON V, et al. Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2014, 404: 178-189.
19 HOLMDEN C, JACOBSON A D, SAGEMAN B B, et al. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway[J]. Geochimica et Cosmochimica Acta, 2016, 186: 277-295.
20 CLARKSON M O, STIRLING C H, JENKYNS H C, et al. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2 918-2 923.
21 SWEERE T C, DICKSON A J, JENKYNS H C, et al. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Earth and Planetary Science Letters, 2020, 546: 116427.
22 WANG J Y, JACOBSON A, SAGEMAN B, et al. Stable Ca and Sr isotopes support volcanically triggered biocalcification crisis during Oceanic Anoxic Event 1a[J]. Geology, 2020, 49(5): 515-519.
23 LITTKE R, SACHSENHOFER R F. Organic petrology of deep sea sediments: a compilation of results from the ocean drilling program and the deep sea drilling project[J]. Energy & Fuels, 1994, 8(6): 1 498-1 512.
24 DUMITRESCU M, BRASSELL S C. Compositional and isotopic characteristics of organic matter for the early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235 (1/2/3): 168-191.
25 SWEERE T C, DICKSON A J, JENKYNS H C, et al. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Geology, 2018, 46(5): 463-466.
26 DAVIES M A, SCHRÖDER-ADAMS C J, HERRLE J O, et al. Bottom water redox conditions and benthic foraminiferal morphogroup response in the Late Cretaceous Sverdrup Basin, Arctic Canada: implications for Oceanic Anoxic Event 3[J]. Cretaceous Research, 2020, 111: 104449.
27 LECHLER M, von STRANDMANN P A E P, JENKYNS H C, et al. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[J]. Earth and Planetary Science Letters, 2015, 432: 210-222.
28 SABATINO N, COCCIONI R, SALVAGIO MANTA D, et al. High-resolution chemostratigraphy of the late Aptian-early Albian Oceanic Anoxic Event (OAE 1b) from the Poggio le Guaine section (Umbria-Marche Basin, central Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 319-333.
29 PERCIVAL L M E, van HELMOND N A G M, SELBY D, et al. Complex interactions between large igneous Province emplacement and global-temperature changes during the cenomanian-turonian Oceanic Anoxic Event (OAE 2)[J]. Paleoceanography and Paleoclimatology, 2020, 35(10): 1-17.
30 CHEN X, SAGEMAN B, YAO H W, et al. Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2[J]. Geology, 2020, 49(4): 412-416.
31 FRANCOIS R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada[J]. Marine Geology, 1988, 83(1/2/3/4): 285-308.
32 RUSSELL A D, MORFORD J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
33 HILD E, BRUMSACK H J. Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40)[J]. Cretaceous Research, 1998, 19(5): 615-633.
34 BRUMSACK H J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 344-361.
35 HETZEL A, BÖTTCHER M E, WORTMANN U G, et al. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4): 302-328.
36 CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
37 PIPER D Z, PERKINS R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
38 MORSE J W, LUTHER G W III. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3 373-3 378.
39 GROSJEAN E, ADAM P, CONNAN J, et al. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin [J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 789-804.
40 WEHRLI B, STUMM W. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77.
41 BREIT G N, WANTY R B. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97.
42 WANTY R B, GOLDHABER M B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1 471-1 483.
43 MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1 735-1 750.
44 PERCIVAL L M E, TEDESCHI L R, CREASER R A, et al. Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a)[J]. Global and Planetary Change, 2021, 200: 103461.
45 PEUCKER-EHRENBRINK B, RAVIZZA G. The marine osmium isotope record[J]. Terra Nova, 2000, 12(5): 205-219.
46 PAQUAY F S, RAVIZZA G. Heterogeneous seawater 187Os/188Os during the late Pleistocene glaciations[J]. Earth and Planetary Science Letters, 2012, 349/350: 126-138.
47 DICKSON A J, COHEN A S, COE A L, et al. Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 300-307.
48 ALLÈGRE C, BIRCK J, CAPMAS F, et al. Age of the Deccan traps using 187Re-187Os systematics[J]. Earth and Planetary Science Letters, 1999, 170(3): 197-204.
49 PEUCKER-EHRENBRINK B, JAHN B M. Rhenium-osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(10): n/a.
50 JENKYNS H C. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots; relics from a greenhouse Earth[J]. American Journal of Science, 1999, 299(5): 341-392.
51 JONES C E. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 2001, 301(2): 112-149.
52 FRIJIA G, PARENTE M. Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(1/2): 15-29.
53 WEI Gangjian. Environmental significance and Sr isotope stratigraphy of the change of Sr isotopic composition in seawater[J]. Marine Sciences, 1995, 19(1): 23-25.
韦刚健. 海水中Sr同位素组成变化的环境意义与Sr同位素地层学[J]. 海洋科学, 1995, 19(1): 23-25.
54 FU Yazhou, PENG Jiantang, SHI Xuefa. Progress of research on osmium isotope in marine environment[J]. Advances in Earth Science, 2004, 19(2): 237-244.
符亚洲, 彭建堂, 石学法. 海洋环境中的锇同位素研究现状[J]. 地球科学进展, 2004, 19(2): 237-244.
55 TOSSELL J A. Calculation of the UV-visible spectra and the stability of Mo and Re oxysulfides in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2 497-2 503.
56 ANBAR A D, DUAN Y, LYONS T W, et al. A whiff of oxygen before the great oxidation event? [J]. Science, 2007, 317(5 846): 1 903-1 906.
57 MILLER C A, PEUCKER-EHRENBRINK B, WALKER B D, et al. Re-assessing the surface cycling of molybdenum and rhenium[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7 146-7 179.
58 MCMANUS J, NÄGLER T F, SIEBERT C, et al. Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge-flank alteration[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(12): 1-9.
59 SIEBERT C, NÄGLER T F, von BLANCKENBURG F, et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 159-171.
60 KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2 534-2 558.
61 ARNOLD G L, ANBAR A D, BARLING J, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans[J]. Science, 2004, 304(5 667): 87-90.
62 GOLDBERG T, ARCHER C, VANCE D, et al. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2009, 73(21): 6 502-6 516.
63 NAKAGAWA Y, TAKANO S, FIRDAUS M L, et al. The molybdenum isotopic composition of the modern ocean[J]. Geochemical Journal, 2012, 46(2): 131-141.
64 BARLING J, ANBAR A D. Molybdenum isotope fractionation during adsorption by Manganese oxides[J]. Earth and Planetary Science Letters, 2004, 217(3/4): 315-329.
65 NAGLER T F, MILLS M M, SIEBERT C. Biological fractionation of Mo isotopes during N2 fixation by Trichodesmium sp. IMS 101 [J]. Geochimica et Cosmochimica Acta, 2004, 68(11): A364.
66 WASYLENKI L E, ANBAR A D, GORDON G W. Temperature dependence of Mo isotope fractionation during adsorption to δ-MnO2: implications for the paleoredox proxy[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A691.
67 WASYLENKI L E, ROLFE B A, WEEKS C L, et al. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to Manganese oxides[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5 997-6 005.
68 ERICKSON B E, HELZ G R. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolyb-dates[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1 149-1 158.
69 BARLING J, ARNOLD G L, ANBAR A D. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 447-457.
70 ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1-23.
71 HELZ G R, BURA-NAKIĆ E, MIKAC N, et al. New model for molybdenum behavior in euxinic waters[J]. Chemical Geology, 2011, 284(3/4): 323-332.
72 POULSON BRUCKER R L, MCMANUS J, SEVERMANN S, et al. Molybdenum behavior during early diagenesis: insights from Mo isotopes[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): 1-25.
73 NÄGLER T F, NEUBERT N, BÖTTCHER M E, et al. Molybdenum isotope fractionation in pelagic euxinia: evidence from the modern black and Baltic Seas[J]. Chemical Geology, 2011, 289(1/2): 1-11.
74 Poulson R L, SIEBERT C, MCMANUS J, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
75 SIEBERT C, MCMANUS J, BICE A, et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 723-733.
76 PEARCE C R, COHEN A S, COE A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3): 231-234.
77 XU Lingang, LEHMANN B. Mo and Mo stable isotope geochemistry: isotope system, analytical technique and applications to geology[J]. Mineral Deposits, 2011, 30(1): 103-124.
徐林刚, Lehmann Bernd. 钼及钼同位素地球化学: 同位素体系、测试技术及在地质中的应用[J]. 矿床地质, 2011, 30(1): 103-124.
78 SCOTT C, LYONS T W, BEKKER A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean [J]. Nature, 2008, 452(7 186): 456-460.
79 SIEBERT C, KRAMERS J D, MEISEL T, et al. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1 787-1 801.
80 WILLE M, KRAMERS J D, NÄGLER T F, et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2 417-2 435.
81 DUAN Y, ANBAR A D, ARNOLD G L, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 655-6 668.
82 SCHEIDERICH K, HELZ G R, WALKER R J. Century-long record of Mo isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake Bay)[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 189-197.
83 KENDALL B, GORDON G W, POULTON S W, et al. Molybdenum isotope constraints on the extent of late Paleoproterozoic Ocean euxinia[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 450-460.
84 DICKSON A J, JENKYNS H C, PORCELLI D, et al. Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Geochimica et Cosmochimica Acta, 2016, 178: 291-306.
85 GOLDBERG T, POULTON S W, WAGNER T, et al. Molybdenum drawdown during Cretaceous oceanic anoxic event 2[J]. Earth and Planetary Science Letters, 2016, 440: 81-91.
86 DICKSON A J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events[J]. Nature Geoscience, 2017, 10(10): 721-726.
87 DICKSON A J, JENKYNS H C, ERDEM I, et al. New constraints on global geochemical cycling during oceanic anoxic event 2 (Late Cretaceous) from a 6-million-year long molybdenum-isotope record[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(3): 1-13.
88 SIEBERT C, SCHOLZ F, KUHNT W. A new view on the evolution of seawater molybdenum inventories before and during the Cretaceous Oceanic Anoxic Event 2[J]. Chemical Geology, 2021, 582: 120399.
89 SINOIR M, BUTLER E, BOWIE A, et al. Zinc marine biogeochemistry in seawater: a review[J]. Marine and Freshwater Research, 2012, 63(7): 644.
90 HENDRY K R, ANDERSEN M B. The zinc isotopic composition of siliceous marine sponges: investigating nature’s sediment traps[J]. Chemical Geology, 2013, 354: 33-41.
91 CONWAY T M, JOHN S G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean[J]. Global Biogeochemical Cycles, 2014, 28(10): 1 111-1 128.
92 MOREL F M M, REINFELDER J R, ROBERTS S B, et al. Zinc and carbon co-limitation of marine phytoplankton[J]. Nature, 1994, 369(6 483): 740-742.
93 BERMIN J, VANCE D, ARCHER C, et al. The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology, 2006, 226(3/4): 280-297.
94 ALBAREDE F. The stable isotope geochemistry of copper and zinc [J]. Geochemistry of Non-Traditional Stable Isotopes, 2004, 55: 409-427.
95 CONWAY T M, JOHN S G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—insights from stable isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 262-283.
96 SAMANTA M, ELLWOOD M J, SINOIR M, et al. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2017, 192: 1-12.
97 JOHN S G, GEIS R W, SAITO M A, et al. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica [J]. Limnology and Oceanography, 2007, 52(6): 2 710-2 714.
98 GÉLABERT A, POKROVSKY O S, VIERS J, et al. Interaction between zinc and freshwater and marine diatom species: surface complexation and Zn isotope fractionation[J]. Geochimica et Cosmochimica Acta, 2006, 70(4): 839-857.
99 KAFANTARIS F C A, BORROK D M. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Chemical Geology, 2014, 366: 42-51.
100 BRULAND K W. Complexation of zinc by natural organic ligands in the central north Pacific[J]. Limnology and Oceanography, 1989, 34(2): 269-285.
101 VANCE D, de SOUZA G F, ZHAO Y, et al. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific[J]. Earth and Planetary Science Letters, 2019, 525: 115748.
102 LEMAITRE N, de SOUZA G F, ARCHER C, et al. Pervasive sources of isotopically light zinc in the North Atlantic Ocean[J]. Earth and Planetary Science Letters, 2020, 539: 116216.
103 VANCE D, ARCHER C, BERMIN J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204-213.
104 LITTLE S H, VANCE D, WALKER-BROWN C, et al. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta, 2014, 125: 673-693.
105 JOHN S G, ROUXEL O J, CRADDOCK P R, et al. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 17-28.
106 JOHN S G, HELGOE J, TOWNSEND E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific[J]. Marine Chemistry, 2018, 201: 256-262.
107 MARÉCHAL C N, NICOLAS E, DOUCHET C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1-15.
108 ANDERSEN M B, VANCE D, ARCHER C, et al. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 137-145.
109 PICHAT S, DOUCHET C, ALBARÈDE F. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka[J]. Earth and Planetary Science Letters, 2003, 210(1/2): 167-178.
110 LÜ Y W, LIU S G, WU H C, et al. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications[J]. Geochimica et Cosmochimica Acta, 2018, 239: 330-345.
111 ZHAO M Y, TARHAN L G, ZHANG Y Y, et al. Evaluation of shallow-water carbonates as a seawater zinc isotope archive[J]. Earth and Planetary Science Letters, 2021, 553: 116599.
112 LITTLE S H, VANCE D, MCMANUS J, et al. Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes[J]. Geology, 2016, 44(3): 207-210.
113 ISSON T T, LOVE G D, DUPONT C L, et al. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes[J]. Geobiology, 2018, 16(4): 341-352.
114 JOHN S G, KUNZMANN M, TOWNSEND E J, et al. Zinc and cadmium stable isotopes in the geological record: a case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 202-208.
115 WANG X, LIU S G, WANG Z R, et al. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 498: 68-82.
116 MAVROMATIS V, GONZÁLEZ A G, DIETZEL M, et al. Zinc isotope fractionation during the inorganic precipitation of calcite—towards a new pH proxy[J]. Geochimica et Cosmochimica Acta, 2019, 244: 99-112.
117 LIU S A, WU H C, SHEN S Z, et al. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction[J]. Geology, 2017, 45(4): 343-346.
118 MÜSING K, CLARKSON M O, VANCE D. The meaning of carbonate Zn isotope records: constraints from a detailed geochemical and isotope study of bulk deep-sea carbonates[J]. Geochimica et Cosmochimica Acta, 2022, 324: 26-43.
119 LITTLE S H, WILSON D J, REHKÄMPER M, et al. Cold-water corals as archives of seawater Zn and Cu isotopes[J]. Chemical Geology, 2021, 578: 120304.
120 DRUCE M, STIRLING C H, BOSTOCK H C, et al. Examining the effects of chemical cleaning, leaching, and partial dissolution on zinc and cadmium isotope fractionation in marine carbonates[J]. Chemical Geology, 2022, 592: 120738.
121 LIANG Zhengwei, TIAN Shihong. Uranium “stable” isotope fractionation and its applications in Earth science[J]. Earth Science, 2021, 46(12): 4 405-4 426.
梁正伟, 田世洪. 铀“稳定”同位素分馏及其在地球科学中的应用[J]. 地球科学, 2021, 46(12): 4 405-4 426.
122 WEYER S, ANBAR A D, GERDES A, et al. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359.
123 KLINKHAMMER G P, PALMER M R. Uranium in the oceans: where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1 799-1 806.
124 MCMANUS J, BERELSON W M, KLINKHAMMER G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 95-108.
125 STIRLING C H, ANDERSEN M B, POTTER E K, et al. Low-temperature isotopic fractionation of uranium[J]. Earth and Planetary Science Letters, 2007, 264(1/2): 208-225.
126 RADEMACHER L K, LUNDSTROM C C, JOHNSON T M, et al. Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron[J]. Environmental Science & Technology, 2006, 40(22): 6 943-6 948.
127 BASU A, SANFORD R A, JOHNSON T M, et al. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates[J]. Geochimica et Cosmochimica Acta, 2014, 136: 100-113.
128 STYLO M, NEUBERT N, WANG Y H, et al. Uranium isotopes fingerprint biotic reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5 619-5 624.
129 TISSOT F L H, DAUPHAS N. Uranium isotopic compositions of the crust and ocean: age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143.
130 MONTOYA-PINO C, WEYER S, ANBAR A D, et al. Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: a quantitative approach using U isotopes[J]. Geology, 2010, 38(4): 315-318.
131 ZHANG F F, LENTON T M, REY Á D, et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: a critical review[J]. Geochimica et Cosmochimica Acta, 2020, 287: 27-49.
132 NOORDMANN J, WEYER S, GEORG R B, et al. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance[J]. Isotopes in Environmental and Health Studies, 2016, 52(1/2): 141-163.
133 ANDERSEN M B, ROMANIELLO S, VANCE D, et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194.
134 DAHL T W, BOYLE R A, CANFIELD D E, et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters, 2014, 401: 313-326.
135 LAU K V, MAHER K, ALTINER D, et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2 360-2 365.
136 ZHANG F F, ROMANIELLO S J, ALGEO T J, et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction[J]. Science Advances, 2018, 4(4). DOI:10.1126/sciadv.1602921 .
137 STOCKEY R G, COLE D B, PLANAVSKY N J, et al. Persistent global marine euxinia in the early Silurian[J]. Nature Communications, 2020, 11: 1804.
138 LIU M, CHEN D Z, JIANG L, et al. Oceanic anoxia and extinction in the latest Ordovician[J]. Earth and Planetary Science Letters, 2022, 588: 117553.
139 ZHANG F F, ALGEO T J, CUI Y, et al. Global-ocean redox variations across the Smithian-Spathian boundary linked to concurrent climatic and biotic changes[J]. Earth-Science Reviews, 2019, 195: 147-168.
140 ZHANG F F, DAHL T W, LENTON T M, et al. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis[J]. Earth and Planetary Science Letters, 2020, 533: 115976.
141 CLARKSON M O, LENTON T M, ANDERSEN M B, et al. Upper limits on the extent of seafloor anoxia during the PETM from uranium isotopes[J]. Nature Communications, 2021, 12: 399.
142 BRENNECKA G A, WASYLENKI L E, BARGAR J R, et al. Uranium isotope fractionation during adsorption to Mn-oxyhydroxides[J]. Environmental Science & Technology, 2011, 45(4): 1 370-1 375.
143 HOOD A V S, PLANAVSKY N J, WALLACE M W, et al. Integrated geochemical-petrographic insights from component-selective δ 238U of Cryogenian marine carbonates[J]. Geology, 2016, 44(11): 935-938.
144 CHEN X M, ROMANIELLO S J, ANBAR A D. Uranium isotope fractionation induced by aqueous speciation: implications for U isotopes in marine CaCO3 as a paleoredox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 215: 162-172.
145 NOORDMANN J, WEYER S, MONTOYA-PINO C, et al. Uranium and molybdenum isotope systematics in modern euxinic basins: case studies from the central Baltic Sea and the Kyllaren fjord (Norway)[J]. Chemical Geology, 2015, 396: 182-195.
146 ROLISON J M, STIRLING C H, MIDDAG R, et al. Uranium stable isotope fractionation in the Black Sea: modern calibration of the 238U/235U paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 203: 69-88.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[3] 付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047.
[4] 刘志飞,胡修棉. 白垩纪至早第三纪的极端气候事件[J]. 地球科学进展, 2003, 18(5): 681-690.
[5] 姜衍文,吴智勇. 大洋钻探与世界油气资源[J]. 地球科学进展, 1995, 10(3): 251-253.
阅读次数
全文


摘要