1 |
JENKYNS H C. Geochemistry of Oceanic Anoxic Events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): 1-30.
|
2 |
FAN Qingchao, XU Zhaokai. A review of Cretaceous Ocean anoxia events[J]. Marine Sciences, 2020, 44(2): 138-145.
|
|
范庆超, 徐兆凯. 白垩纪大洋缺氧事件研究进展[J]. 海洋科学, 2020, 44(2): 138-145.
|
3 |
LIU Xinyu, HU Xiumian, LI Juan. Cretaceous oceanic anoxic and oxic events[J]. Chinese Journal of Nature, 2020, 42(4): 347-354.
|
|
刘昕羽, 胡修棉, 李娟. 白垩纪大洋缺氧事件与富氧事件[J]. 自然杂志, 2020, 42(4): 347-354.
|
4 |
LI Y X, BRALOWER T, MONTAÑEZ I, et al. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma)[J]. Earth and Planetary Sciences Letters, 2008, 271(1): 88-100.
|
5 |
TURGEON S C, CREASER R A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode[J]. Nature, 2008, 454(7 202): 323-326.
|
6 |
ERBACHER J, FRIEDRICH O, WILSON P, et al. Short-term warming events during the boreal Albian (mid-Cretaceous)[J]. Geology, 2011, 39(3): 223-226.
|
7 |
SANCHEZ-HERNANDEZ Y, MAURRASSE F J M R. The influence of regional factors in the expression of Oceanic Anoxic Event 1a (OAE1a) in the semi-restricted Organyà Basin, south-central Pyrenees, Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 582-598.
|
8 |
TESSIN A, SHELDON N D, HENDY I, et al. Iron limitation in the Western Interior Seaway during the Late Cretaceous OAE 3 and its role in phosphorus recycling and enhanced organic matter preservation[J]. Earth and Planetary Science Letters, 2016, 449: 135-144.
|
9 |
GANGL S K, MOY C M, STIRLING C H, et al. High-resolution records of Oceanic Anoxic Event 2: insights into the timing, duration and extent of environmental perturbations from the palaeo-South Pacific Ocean[J]. Earth and Planetary Science Letters, 2019, 518: 172-182.
|
10 |
BOMOU B, ADATTE T, TANTAWY A A, et al. The expression of the Cenomanian-Turonian oceanic anoxic event in Tibet [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 466-481.
|
11 |
JENKYNS H C. Transient cooling episodes during Cretaceous Oceanic Anoxic Events with special reference to OAE 1a (Early Aptian)[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376(2 130): 20170073.
|
12 |
KURODA J, OGAWA N O, TANIMIZU M, et al. Contemporaneous massive subaerial volcanism and Late Cretaceous Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2007, 256(1/2): 211-223.
|
13 |
MIDTKANDAL I, SVENSEN H H, PLANKE S, et al. The Aptian (Early Cretaceous) oceanic anoxic event (OAE1a) in Svalbard, Barents Sea, and the absolute age of the Barremian-Aptian boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 463: 126-135.
|
14 |
WANG X L, PLANAVSKY N, REINHARD C, et al. A Cenozoic seawater redox record derived from 238U/235U in ferromanganese crusts[J]. American Journal of Science, 2016, 316(1): 64-83.
|
15 |
MATSUMOTO H, COCCIONI R, FRONTALINI F, et al. Long-term Aptian marine osmium isotopic record of Ontong Java Nui activity[J]. Geology, 2021, 49(9): 1 148-1 152.
|
16 |
ERBA E, BOTTINI C, WEISSERT H J, et al. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a[J]. Science, 2010, 329(5 990): 428-432.
|
17 |
NAAFS B D A, CASTRO J M, de GEA G A, et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a[J]. Nature Geoscience, 2016, 9(2): 135-139.
|
18 |
WESTERMANN S, VANCE D, CAMERON V, et al. Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2[J]. Earth and Planetary Science Letters, 2014, 404: 178-189.
|
19 |
HOLMDEN C, JACOBSON A D, SAGEMAN B B, et al. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the Western Interior Seaway[J]. Geochimica et Cosmochimica Acta, 2016, 186: 277-295.
|
20 |
CLARKSON M O, STIRLING C H, JENKYNS H C, et al. Uranium isotope evidence for two episodes of deoxygenation during Oceanic Anoxic Event 2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2 918-2 923.
|
21 |
SWEERE T C, DICKSON A J, JENKYNS H C, et al. Zinc- and cadmium-isotope evidence for redox-driven perturbations to global micronutrient cycles during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Earth and Planetary Science Letters, 2020, 546: 116427.
|
22 |
WANG J Y, JACOBSON A, SAGEMAN B, et al. Stable Ca and Sr isotopes support volcanically triggered biocalcification crisis during Oceanic Anoxic Event 1a[J]. Geology, 2020, 49(5): 515-519.
|
23 |
LITTKE R, SACHSENHOFER R F. Organic petrology of deep sea sediments: a compilation of results from the ocean drilling program and the deep sea drilling project[J]. Energy & Fuels, 1994, 8(6): 1 498-1 512.
|
24 |
DUMITRESCU M, BRASSELL S C. Compositional and isotopic characteristics of organic matter for the early Aptian Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 235 (1/2/3): 168-191.
|
25 |
SWEERE T C, DICKSON A J, JENKYNS H C, et al. Isotopic evidence for changes in the zinc cycle during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Geology, 2018, 46(5): 463-466.
|
26 |
DAVIES M A, SCHRÖDER-ADAMS C J, HERRLE J O, et al. Bottom water redox conditions and benthic foraminiferal morphogroup response in the Late Cretaceous Sverdrup Basin, Arctic Canada: implications for Oceanic Anoxic Event 3[J]. Cretaceous Research, 2020, 111: 104449.
|
27 |
LECHLER M, von STRANDMANN P A E P, JENKYNS H C, et al. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event)[J]. Earth and Planetary Science Letters, 2015, 432: 210-222.
|
28 |
SABATINO N, COCCIONI R, SALVAGIO MANTA D, et al. High-resolution chemostratigraphy of the late Aptian-early Albian Oceanic Anoxic Event (OAE 1b) from the Poggio le Guaine section (Umbria-Marche Basin, central Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 319-333.
|
29 |
PERCIVAL L M E, van HELMOND N A G M, SELBY D, et al. Complex interactions between large igneous Province emplacement and global-temperature changes during the cenomanian-turonian Oceanic Anoxic Event (OAE 2)[J]. Paleoceanography and Paleoclimatology, 2020, 35(10): 1-17.
|
30 |
CHEN X, SAGEMAN B, YAO H W, et al. Zinc isotope evidence for paleoenvironmental changes during Cretaceous Oceanic Anoxic Event 2[J]. Geology, 2020, 49(4): 412-416.
|
31 |
FRANCOIS R. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada[J]. Marine Geology, 1988, 83(1/2/3/4): 285-308.
|
32 |
RUSSELL A D, MORFORD J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia[J]. Marine Geology, 2001, 174(1/2/3/4): 341-354.
|
33 |
HILD E, BRUMSACK H J. Major and minor element geochemistry of Lower Aptian sediments from the NW German Basin (core Hohenegglesen KB 40)[J]. Cretaceous Research, 1998, 19(5): 615-633.
|
34 |
BRUMSACK H J. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 344-361.
|
35 |
HETZEL A, BÖTTCHER M E, WORTMANN U G, et al. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(3/4): 302-328.
|
36 |
CALVERT S E, PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
|
37 |
PIPER D Z, PERKINS R B. A modern vs. Permian black shale—the hydrography, primary productivity, and water-column chemistry of deposition[J]. Chemical Geology, 2004, 206(3/4): 177-197.
|
38 |
MORSE J W, LUTHER G W III. Chemical influences on trace metal-sulfide interactions in anoxic sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3 373-3 378.
|
39 |
GROSJEAN E, ADAM P, CONNAN J, et al. Effects of weathering on nickel and vanadyl porphyrins of a Lower Toarcian shale of the Paris basin [J]. Geochimica et Cosmochimica Acta, 2004, 68(4): 789-804.
|
40 |
WEHRLI B, STUMM W. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 69-77.
|
41 |
BREIT G N, WANTY R B. Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97.
|
42 |
WANTY R B, GOLDHABER M B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1 471-1 483.
|
43 |
MORFORD J L, EMERSON S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1 735-1 750.
|
44 |
PERCIVAL L M E, TEDESCHI L R, CREASER R A, et al. Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a)[J]. Global and Planetary Change, 2021, 200: 103461.
|
45 |
PEUCKER-EHRENBRINK B, RAVIZZA G. The marine osmium isotope record[J]. Terra Nova, 2000, 12(5): 205-219.
|
46 |
PAQUAY F S, RAVIZZA G. Heterogeneous seawater 187Os/188Os during the late Pleistocene glaciations[J]. Earth and Planetary Science Letters, 2012, 349/350: 126-138.
|
47 |
DICKSON A J, COHEN A S, COE A L, et al. Evidence for weathering and volcanism during the PETM from Arctic Ocean and Peri-Tethys osmium isotope records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438: 300-307.
|
48 |
ALLÈGRE C, BIRCK J, CAPMAS F, et al. Age of the Deccan traps using 187Re-187Os systematics[J]. Earth and Planetary Science Letters, 1999, 170(3): 197-204.
|
49 |
PEUCKER-EHRENBRINK B, JAHN B M. Rhenium-osmium isotope systematics and platinum group element concentrations: loess and the upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(10): n/a.
|
50 |
JENKYNS H C. Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots; relics from a greenhouse Earth[J]. American Journal of Science, 1999, 299(5): 341-392.
|
51 |
JONES C E. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous[J]. American Journal of Science, 2001, 301(2): 112-149.
|
52 |
FRIJIA G, PARENTE M. Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: short-term perturbations of marine 87Sr/86Sr during the oceanic anoxic event 2[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(1/2): 15-29.
|
53 |
WEI Gangjian. Environmental significance and Sr isotope stratigraphy of the change of Sr isotopic composition in seawater[J]. Marine Sciences, 1995, 19(1): 23-25.
|
|
韦刚健. 海水中Sr同位素组成变化的环境意义与Sr同位素地层学[J]. 海洋科学, 1995, 19(1): 23-25.
|
54 |
FU Yazhou, PENG Jiantang, SHI Xuefa. Progress of research on osmium isotope in marine environment[J]. Advances in Earth Science, 2004, 19(2): 237-244.
|
|
符亚洲, 彭建堂, 石学法. 海洋环境中的锇同位素研究现状[J]. 地球科学进展, 2004, 19(2): 237-244.
|
55 |
TOSSELL J A. Calculation of the UV-visible spectra and the stability of Mo and Re oxysulfides in aqueous solution[J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2 497-2 503.
|
56 |
ANBAR A D, DUAN Y, LYONS T W, et al. A whiff of oxygen before the great oxidation event? [J]. Science, 2007, 317(5 846): 1 903-1 906.
|
57 |
MILLER C A, PEUCKER-EHRENBRINK B, WALKER B D, et al. Re-assessing the surface cycling of molybdenum and rhenium[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7 146-7 179.
|
58 |
MCMANUS J, NÄGLER T F, SIEBERT C, et al. Oceanic molybdenum isotope fractionation: diagenesis and hydrothermal ridge-flank alteration[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(12): 1-9.
|
59 |
SIEBERT C, NÄGLER T F, von BLANCKENBURG F, et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 159-171.
|
60 |
KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2 534-2 558.
|
61 |
ARNOLD G L, ANBAR A D, BARLING J, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans[J]. Science, 2004, 304(5 667): 87-90.
|
62 |
GOLDBERG T, ARCHER C, VANCE D, et al. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides[J]. Geochimica et Cosmochimica Acta, 2009, 73(21): 6 502-6 516.
|
63 |
NAKAGAWA Y, TAKANO S, FIRDAUS M L, et al. The molybdenum isotopic composition of the modern ocean[J]. Geochemical Journal, 2012, 46(2): 131-141.
|
64 |
BARLING J, ANBAR A D. Molybdenum isotope fractionation during adsorption by Manganese oxides[J]. Earth and Planetary Science Letters, 2004, 217(3/4): 315-329.
|
65 |
NAGLER T F, MILLS M M, SIEBERT C. Biological fractionation of Mo isotopes during N2 fixation by Trichodesmium sp. IMS 101 [J]. Geochimica et Cosmochimica Acta, 2004, 68(11): A364.
|
66 |
WASYLENKI L E, ANBAR A D, GORDON G W. Temperature dependence of Mo isotope fractionation during adsorption to δ-MnO2: implications for the paleoredox proxy[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A691.
|
67 |
WASYLENKI L E, ROLFE B A, WEEKS C L, et al. Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to Manganese oxides[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 5 997-6 005.
|
68 |
ERICKSON B E, HELZ G R. Molybdenum(VI) speciation in sulfidic waters: stability and lability of thiomolyb-dates[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1 149-1 158.
|
69 |
BARLING J, ARNOLD G L, ANBAR A D. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 447-457.
|
70 |
ALGEO T J, LYONS T W. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions[J]. Paleoceanography, 2006, 21(1): 1-23.
|
71 |
HELZ G R, BURA-NAKIĆ E, MIKAC N, et al. New model for molybdenum behavior in euxinic waters[J]. Chemical Geology, 2011, 284(3/4): 323-332.
|
72 |
POULSON BRUCKER R L, MCMANUS J, SEVERMANN S, et al. Molybdenum behavior during early diagenesis: insights from Mo isotopes[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(6): 1-25.
|
73 |
NÄGLER T F, NEUBERT N, BÖTTCHER M E, et al. Molybdenum isotope fractionation in pelagic euxinia: evidence from the modern black and Baltic Seas[J]. Chemical Geology, 2011, 289(1/2): 1-11.
|
74 |
Poulson R L, SIEBERT C, MCMANUS J, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
|
75 |
SIEBERT C, MCMANUS J, BICE A, et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth and Planetary Science Letters, 2006, 241(3/4): 723-733.
|
76 |
PEARCE C R, COHEN A S, COE A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3): 231-234.
|
77 |
XU Lingang, LEHMANN B. Mo and Mo stable isotope geochemistry: isotope system, analytical technique and applications to geology[J]. Mineral Deposits, 2011, 30(1): 103-124.
|
|
徐林刚, Lehmann Bernd. 钼及钼同位素地球化学: 同位素体系、测试技术及在地质中的应用[J]. 矿床地质, 2011, 30(1): 103-124.
|
78 |
SCOTT C, LYONS T W, BEKKER A, et al. Tracing the stepwise oxygenation of the Proterozoic ocean [J]. Nature, 2008, 452(7 186): 456-460.
|
79 |
SIEBERT C, KRAMERS J D, MEISEL T, et al. PGE, Re-Os, and Mo isotope systematics in Archean and early Proterozoic sedimentary systems as proxies for redox conditions of the early Earth[J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1 787-1 801.
|
80 |
WILLE M, KRAMERS J D, NÄGLER T F, et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales[J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2 417-2 435.
|
81 |
DUAN Y, ANBAR A D, ARNOLD G L, et al. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 655-6 668.
|
82 |
SCHEIDERICH K, HELZ G R, WALKER R J. Century-long record of Mo isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake Bay)[J]. Earth and Planetary Science Letters, 2010, 289(1/2): 189-197.
|
83 |
KENDALL B, GORDON G W, POULTON S W, et al. Molybdenum isotope constraints on the extent of late Paleoproterozoic Ocean euxinia[J]. Earth and Planetary Science Letters, 2011, 307(3/4): 450-460.
|
84 |
DICKSON A J, JENKYNS H C, PORCELLI D, et al. Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)[J]. Geochimica et Cosmochimica Acta, 2016, 178: 291-306.
|
85 |
GOLDBERG T, POULTON S W, WAGNER T, et al. Molybdenum drawdown during Cretaceous oceanic anoxic event 2[J]. Earth and Planetary Science Letters, 2016, 440: 81-91.
|
86 |
DICKSON A J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events[J]. Nature Geoscience, 2017, 10(10): 721-726.
|
87 |
DICKSON A J, JENKYNS H C, ERDEM I, et al. New constraints on global geochemical cycling during oceanic anoxic event 2 (Late Cretaceous) from a 6-million-year long molybdenum-isotope record[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(3): 1-13.
|
88 |
SIEBERT C, SCHOLZ F, KUHNT W. A new view on the evolution of seawater molybdenum inventories before and during the Cretaceous Oceanic Anoxic Event 2[J]. Chemical Geology, 2021, 582: 120399.
|
89 |
SINOIR M, BUTLER E, BOWIE A, et al. Zinc marine biogeochemistry in seawater: a review[J]. Marine and Freshwater Research, 2012, 63(7): 644.
|
90 |
HENDRY K R, ANDERSEN M B. The zinc isotopic composition of siliceous marine sponges: investigating nature’s sediment traps[J]. Chemical Geology, 2013, 354: 33-41.
|
91 |
CONWAY T M, JOHN S G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean[J]. Global Biogeochemical Cycles, 2014, 28(10): 1 111-1 128.
|
92 |
MOREL F M M, REINFELDER J R, ROBERTS S B, et al. Zinc and carbon co-limitation of marine phytoplankton[J]. Nature, 1994, 369(6 483): 740-742.
|
93 |
BERMIN J, VANCE D, ARCHER C, et al. The determination of the isotopic composition of Cu and Zn in seawater[J]. Chemical Geology, 2006, 226(3/4): 280-297.
|
94 |
ALBAREDE F. The stable isotope geochemistry of copper and zinc [J]. Geochemistry of Non-Traditional Stable Isotopes, 2004, 55: 409-427.
|
95 |
CONWAY T M, JOHN S G. The cycling of iron, zinc and cadmium in the North East Pacific Ocean—insights from stable isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 164: 262-283.
|
96 |
SAMANTA M, ELLWOOD M J, SINOIR M, et al. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2017, 192: 1-12.
|
97 |
JOHN S G, GEIS R W, SAITO M A, et al. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica [J]. Limnology and Oceanography, 2007, 52(6): 2 710-2 714.
|
98 |
GÉLABERT A, POKROVSKY O S, VIERS J, et al. Interaction between zinc and freshwater and marine diatom species: surface complexation and Zn isotope fractionation[J]. Geochimica et Cosmochimica Acta, 2006, 70(4): 839-857.
|
99 |
KAFANTARIS F C A, BORROK D M. Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria[J]. Chemical Geology, 2014, 366: 42-51.
|
100 |
BRULAND K W. Complexation of zinc by natural organic ligands in the central north Pacific[J]. Limnology and Oceanography, 1989, 34(2): 269-285.
|
101 |
VANCE D, de SOUZA G F, ZHAO Y, et al. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific[J]. Earth and Planetary Science Letters, 2019, 525: 115748.
|
102 |
LEMAITRE N, de SOUZA G F, ARCHER C, et al. Pervasive sources of isotopically light zinc in the North Atlantic Ocean[J]. Earth and Planetary Science Letters, 2020, 539: 116216.
|
103 |
VANCE D, ARCHER C, BERMIN J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204-213.
|
104 |
LITTLE S H, VANCE D, WALKER-BROWN C, et al. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments[J]. Geochimica et Cosmochimica Acta, 2014, 125: 673-693.
|
105 |
JOHN S G, ROUXEL O J, CRADDOCK P R, et al. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 17-28.
|
106 |
JOHN S G, HELGOE J, TOWNSEND E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific[J]. Marine Chemistry, 2018, 201: 256-262.
|
107 |
MARÉCHAL C N, NICOLAS E, DOUCHET C, et al. Abundance of zinc isotopes as a marine biogeochemical tracer[J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1-15.
|
108 |
ANDERSEN M B, VANCE D, ARCHER C, et al. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 137-145.
|
109 |
PICHAT S, DOUCHET C, ALBARÈDE F. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka[J]. Earth and Planetary Science Letters, 2003, 210(1/2): 167-178.
|
110 |
LÜ Y W, LIU S G, WU H C, et al. Zn-Sr isotope records of the Ediacaran Doushantuo Formation in South China: diagenesis assessment and implications[J]. Geochimica et Cosmochimica Acta, 2018, 239: 330-345.
|
111 |
ZHAO M Y, TARHAN L G, ZHANG Y Y, et al. Evaluation of shallow-water carbonates as a seawater zinc isotope archive[J]. Earth and Planetary Science Letters, 2021, 553: 116599.
|
112 |
LITTLE S H, VANCE D, MCMANUS J, et al. Key role of continental margin sediments in the oceanic mass balance of Zn and Zn isotopes[J]. Geology, 2016, 44(3): 207-210.
|
113 |
ISSON T T, LOVE G D, DUPONT C L, et al. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes[J]. Geobiology, 2018, 16(4): 341-352.
|
114 |
JOHN S G, KUNZMANN M, TOWNSEND E J, et al. Zinc and cadmium stable isotopes in the geological record: a case study from the post-snowball Earth Nuccaleena cap dolostone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 202-208.
|
115 |
WANG X, LIU S G, WANG Z R, et al. Zinc and strontium isotope evidence for climate cooling and constraints on the Frasnian-Famennian (~372 Ma) mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 498: 68-82.
|
116 |
MAVROMATIS V, GONZÁLEZ A G, DIETZEL M, et al. Zinc isotope fractionation during the inorganic precipitation of calcite—towards a new pH proxy[J]. Geochimica et Cosmochimica Acta, 2019, 244: 99-112.
|
117 |
LIU S A, WU H C, SHEN S Z, et al. Zinc isotope evidence for intensive magmatism immediately before the end-Permian mass extinction[J]. Geology, 2017, 45(4): 343-346.
|
118 |
MÜSING K, CLARKSON M O, VANCE D. The meaning of carbonate Zn isotope records: constraints from a detailed geochemical and isotope study of bulk deep-sea carbonates[J]. Geochimica et Cosmochimica Acta, 2022, 324: 26-43.
|
119 |
LITTLE S H, WILSON D J, REHKÄMPER M, et al. Cold-water corals as archives of seawater Zn and Cu isotopes[J]. Chemical Geology, 2021, 578: 120304.
|
120 |
DRUCE M, STIRLING C H, BOSTOCK H C, et al. Examining the effects of chemical cleaning, leaching, and partial dissolution on zinc and cadmium isotope fractionation in marine carbonates[J]. Chemical Geology, 2022, 592: 120738.
|
121 |
LIANG Zhengwei, TIAN Shihong. Uranium “stable” isotope fractionation and its applications in Earth science[J]. Earth Science, 2021, 46(12): 4 405-4 426.
|
|
梁正伟, 田世洪. 铀“稳定”同位素分馏及其在地球科学中的应用[J]. 地球科学, 2021, 46(12): 4 405-4 426.
|
122 |
WEYER S, ANBAR A D, GERDES A, et al. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359.
|
123 |
KLINKHAMMER G P, PALMER M R. Uranium in the oceans: where it goes and why[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1 799-1 806.
|
124 |
MCMANUS J, BERELSON W M, KLINKHAMMER G P, et al. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain[J]. Geochimica et Cosmochimica Acta, 2005, 69(1): 95-108.
|
125 |
STIRLING C H, ANDERSEN M B, POTTER E K, et al. Low-temperature isotopic fractionation of uranium[J]. Earth and Planetary Science Letters, 2007, 264(1/2): 208-225.
|
126 |
RADEMACHER L K, LUNDSTROM C C, JOHNSON T M, et al. Experimentally determined uranium isotope fractionation during reduction of hexavalent U by bacteria and zero valent iron[J]. Environmental Science & Technology, 2006, 40(22): 6 943-6 948.
|
127 |
BASU A, SANFORD R A, JOHNSON T M, et al. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates[J]. Geochimica et Cosmochimica Acta, 2014, 136: 100-113.
|
128 |
STYLO M, NEUBERT N, WANG Y H, et al. Uranium isotopes fingerprint biotic reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5 619-5 624.
|
129 |
TISSOT F L H, DAUPHAS N. Uranium isotopic compositions of the crust and ocean: age corrections, U budget and global extent of modern anoxia[J]. Geochimica et Cosmochimica Acta, 2015, 167: 113-143.
|
130 |
MONTOYA-PINO C, WEYER S, ANBAR A D, et al. Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: a quantitative approach using U isotopes[J]. Geology, 2010, 38(4): 315-318.
|
131 |
ZHANG F F, LENTON T M, REY Á D, et al. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: a critical review[J]. Geochimica et Cosmochimica Acta, 2020, 287: 27-49.
|
132 |
NOORDMANN J, WEYER S, GEORG R B, et al. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance[J]. Isotopes in Environmental and Health Studies, 2016, 52(1/2): 141-163.
|
133 |
ANDERSEN M B, ROMANIELLO S, VANCE D, et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194.
|
134 |
DAHL T W, BOYLE R A, CANFIELD D E, et al. Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event[J]. Earth and Planetary Science Letters, 2014, 401: 313-326.
|
135 |
LAU K V, MAHER K, ALTINER D, et al. Marine anoxia and delayed Earth system recovery after the end-Permian extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2 360-2 365.
|
136 |
ZHANG F F, ROMANIELLO S J, ALGEO T J, et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction[J]. Science Advances, 2018, 4(4). DOI:10.1126/sciadv.1602921 .
|
137 |
STOCKEY R G, COLE D B, PLANAVSKY N J, et al. Persistent global marine euxinia in the early Silurian[J]. Nature Communications, 2020, 11: 1804.
|
138 |
LIU M, CHEN D Z, JIANG L, et al. Oceanic anoxia and extinction in the latest Ordovician[J]. Earth and Planetary Science Letters, 2022, 588: 117553.
|
139 |
ZHANG F F, ALGEO T J, CUI Y, et al. Global-ocean redox variations across the Smithian-Spathian boundary linked to concurrent climatic and biotic changes[J]. Earth-Science Reviews, 2019, 195: 147-168.
|
140 |
ZHANG F F, DAHL T W, LENTON T M, et al. Extensive marine anoxia associated with the Late Devonian Hangenberg Crisis[J]. Earth and Planetary Science Letters, 2020, 533: 115976.
|
141 |
CLARKSON M O, LENTON T M, ANDERSEN M B, et al. Upper limits on the extent of seafloor anoxia during the PETM from uranium isotopes[J]. Nature Communications, 2021, 12: 399.
|
142 |
BRENNECKA G A, WASYLENKI L E, BARGAR J R, et al. Uranium isotope fractionation during adsorption to Mn-oxyhydroxides[J]. Environmental Science & Technology, 2011, 45(4): 1 370-1 375.
|
143 |
HOOD A V S, PLANAVSKY N J, WALLACE M W, et al. Integrated geochemical-petrographic insights from component-selective δ 238U of Cryogenian marine carbonates[J]. Geology, 2016, 44(11): 935-938.
|
144 |
CHEN X M, ROMANIELLO S J, ANBAR A D. Uranium isotope fractionation induced by aqueous speciation: implications for U isotopes in marine CaCO3 as a paleoredox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 215: 162-172.
|
145 |
NOORDMANN J, WEYER S, MONTOYA-PINO C, et al. Uranium and molybdenum isotope systematics in modern euxinic basins: case studies from the central Baltic Sea and the Kyllaren fjord (Norway)[J]. Chemical Geology, 2015, 396: 182-195.
|
146 |
ROLISON J M, STIRLING C H, MIDDAG R, et al. Uranium stable isotope fractionation in the Black Sea: modern calibration of the 238U/235U paleo-redox proxy[J]. Geochimica et Cosmochimica Acta, 2017, 203: 69-88.
|