地球科学进展 ›› 2018, Vol. 33 ›› Issue (10): 1034 -1047. doi: 10.11867/j.issn.1001-8166.2018.10.1034.

综述与评述 上一篇    下一篇

颗粒破碎铀同位素年代学在风尘系统中的应用
付渊赩( ), 李乐, 陈骏 *( )   
  1. 南京大学 地球科学与工程学院 表生地球化学教育部重点实验室,江苏 南京 210023
  • 收稿日期:2018-06-06 修回日期:2018-08-09 出版日期:2018-10-10
  • 通讯作者: 陈骏 E-mail:fyuanhe@163.com;chenjun@nju.edu.cn
  • 基金资助:
    国家自然科学基金项目“颗粒破碎铀同位素年代技术的发展及其在风尘系统中的应用”(编号:41730101)资助.

Application of Uranium Isotope Chronology for Partical Comminution in the Eolian Dust System

Yuanhe Fu( ), Le Li, Jun Chen *( )   

  1. Ministry of Education Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering,Nanjing University, Nanjing 210023, China
  • Received:2018-06-06 Revised:2018-08-09 Online:2018-10-10 Published:2018-11-16
  • Contact: Jun Chen E-mail:fyuanhe@163.com;chenjun@nju.edu.cn
  • About author:

    First author:Fu Yuanhe(1993-), male, Bingzhou City, Shandong Province,Master student. Research areas include uranium isptope geochemistry. E-mail:fyuanhe@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China "Uranium isotope chronology for partical comminution in the eolian dust system"(No.41730101).

风尘系统是陆地表层系统的重要组成部分,对诸多关键带有着重要作用。风尘的产生机制与搬运过程对理解风尘的环境功能和解读风尘沉积的古气候记录至关重要。以往传统地球化学方法只能反映最终剥蚀区的岩性或矿物结晶年龄,无法区分相同最终物源背景下不同粉沙的产生机制和搬运中间过程,是当前风尘研究的最大挑战之一。由α衰变反冲导致的细粒物质的234U/238U值反映颗粒自破碎以来经历的时间,可能能有效示踪粉尘的产生机制以及搬运中间过程,但是铀同位素破碎年代学在风尘系统中还鲜有应用。总结了限制铀同位素广泛应用的复杂因素,并根据最新的研究进展,针对在风尘系统中验证和发展铀同位素破碎年代学,以及解决风尘产生机制和搬运路径等问题展开讨论。

The wind dust system is an important part of the terrestrial surface system and plays an important role in many key belts. The mechanism of wind dust and the handling process are important to understand the environmental function of wind dust and to interpret the paleoclimate record. In the past, traditional geochemical methods can only reflect the rock composition or age in the final denudation zone, and it is not possible to distinguish the different silt mechanism and the intermediate process under the same eventual source background, which is one of the biggest challenges of the present research. The 234U/238U ratio of fine matter caused by alpha decay recoil reflects the time experienced by the particle since it was broken and may be able to effectively trace the mechanism of wind dust generation and the transport of the intermediate process, but the age of uranium isotope fragmentation is rarely used in the wind dust system. The complicated factors restricting the wide application of uranium isotope were summarized, and according to the latest research progress, the verification and development of the uranium isotope comminution age in the wind dust system, and the problem solution of the mechanism of wind dust production and the way of transporting were discussed.

中图分类号: 

图1 颗粒铀同位素衰变图
(a)颗粒α衰变反冲作用示意图;(b) 颗粒表面( 234U/ 238U)与破碎年龄 t com演化图(据参考文献[ 40 ]修改)
Fig.1 Diagram showing radioactive decay of Uranium isotope
(a) Schematic diagram of recoil ejection of 234Th from a spherical grain as a result of the alpha decay of 234U, followed by beta decay of 234Th to 234U;(b)The time dependent (since the onset of weathering) evolution of ( 234U/ 238U) as a function of sediment grain size (modified after reference[40])
图2 反冲系数 f α值与颗粒粒度的关系 [ 21 ]
CLP:黄土高原;Hanford:华盛顿Hanford花岗质冲积物; Site 984:北大西洋984钻点钻孔; Dome C:南极冰芯Dome C;KRF:加州Kings河冲积扇; OT:冲绳海槽
Fig.2 Dependence of recoil fraction ( f α ) on grain-size [ 21 ]
CLP. Chinese Loess Plateau; Hanford.Granitic fluvial sediments in Hanford,Washington; Site 984.Drill site 984 in North Atlantic; Dome C. Antarctic Dome C ice core (Site 984); KRF. Alluvial fan of Kings River,California; OT. Okinawa Trough
图3 碎屑颗粒的( 234U/ 238U)分区图(据参考文献[ 15 ]修改)
Fig.3 Distribution of ( 234U/ 238U) in the detritus grain (modified after reference[15])
图4 化学清洗程度与颗粒( 234U/ 238U)演化示意图(据参考文献[ 51 ]修改)
Fig.4 Schematic of the expected effects of leaching treatments on the 234U/ 238U activity ratio of sediment samples (modified after reference[51])
图5 SSB方法下的整套实验流程基于老黄土样品的( 234U/ 238U)及其误差的长期重复性 [ 21 ]
Fig.5 Long-term reproducibility and analytical uncertain-ties of the whole procedure using SSB method based on one loess sample of >1 Ma [ 21 ]
[1] Dou Yanguang, Yang Shouye, Liu Zhenxia, et al. Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions[J]. Marine Geology, 2010, 275(1/4): 212-220.
doi: 10.1016/j.margeo.2010.06.002     URL    
[2] Horng C S, Huh C A.Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait[J]. Earth and Planetary Science Letters, 2011, 309(1/2): 141-152.
doi: 10.1016/j.epsl.2011.07.002     URL    
[3] Huh C A, Su C C.Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239Pu, 240Pu[J]. Marine Geology, 1999, 160(1/2): 183-196.
doi: 10.1016/S0025-3227(99)00020-1     URL    
[4] Wang Zhongbo, Yang Shouye, Zhang Zhixun, et al. Paleo-fluvial sedimentation on the outer shelf of the East China Sea during the last glacial maximum[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(4): 886-894.
doi: 10.1007/s00343-013-2253-5     URL    
[5] Ijiri A, Wang Luejiang, Oba T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(3/4): 239-261.
doi: 10.1016/j.palaeo.2004.12.028     URL    
[6] Torsten B.Sea surface temperature record from the north of the East China Sea since late Holocene[J]. Chinese Science Bulletin, 2009, 54(23): 4 507-4 513.
doi: 10.1007/s11434-009-0231-2     URL    
[7] Li Guanxue, Liu Yong, Yang Zigeng, et al. Ancient Changjiang channel system in the East China Sea continental shelf during the last glaciation[J].Science in China (Series D), 2005, 48(11): 1 972-1 978.
doi: 10.1360/04yd0053     URL     pmid: 15996583
[8] Liu Jian, Saito Y, Kong Xianhuai, et al. Sedimentary record of environmental evolution off the Yangtze River Estuary, East China Sea, during the last similar to 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years[J]. Quaternary Science Reviews, 2010, 29(17/18): 2 424-2 438.
doi: 10.1016/j.quascirev.2010.06.016     URL    
[9] Xu Kehui, Li Anchun, Liu J P, et al. Provenance. Provenance, structure,formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291/294(4): 176-191.
[10] Yang Zuosheng, Lei Kun, Guo Zhigang, et al. Effect of a winter storm on sediment transport and resuspension in the distal mud area, the East China Sea[J]. Journal of Coastal Research, 2007, 23(2): 310-318.
doi: 10.2112/03-0130.1     URL    
[11] Wang Houjie, Saito Y, Zhang Yong, et al. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia[J]. Earth-Science Reviews, 2011, 108(1/2): 80-100.
doi: 10.1016/j.earscirev.2011.06.003     URL    
[12] Andersen M B, Erel Y, Bourdon B.Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4 124-4 141.
doi: 10.1016/j.gca.2009.04.020     URL    
[13] Li Chao, Yang Shouye, Lian Ergang, et al. A review of comminution age method and its potential application in the East China Sea to constrain the time scale of sediment source-to-sink process[J]. Journal of Ocean University of China, 2015, 14(3): 399-406.
doi: 10.1007/s11802-015-2769-8     URL    
[14] Depaolo D J, Lee V E, Christensen J N, et al. Uranium comminution ages: Sediment transport and deposition time scales[J]. Comptes Rendus-Géoscience, 2012, 344(11/12): 678-687.
doi: 10.1016/j.crte.2012.10.014     URL    
[15] Depaolo D J, Maher K, Christensen J N, et al. Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984[J]. Earth and Planetary Science Letters, 2006, 248(1): 394-410.
doi: 10.1016/j.epsl.2006.06.004     URL    
[16] Dequincey O, Chabaux F, Clauer N, et al. Chemical mobilizations in laterites: Evidence from trace elements and 238U-234U-230Th disequilibria[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1 197-1 210.
doi: 10.1016/S0016-7037(01)00845-6     URL    
[17] Dosseto A, Bourdon B, Turner S P.Uranium-series isotopes in river materials: Insights into the timescales of erosion and sediment transport[J]. Earth and Planetary Science Letters, 2008, 265(1/2): 1-17.
doi: 10.1016/j.epsl.2007.10.023     URL    
[18] Dosseto A, Schaller M.The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides[J].Earth-Science Reviews, 2016, 155: 60-81.
doi: 10.1016/j.earscirev.2016.01.015     URL    
[19] Harmon M I R S. Uranium series disequilibrium: Applications to environmental problems[J]. Quaternary Research, 1983, 20(2): 253.
URL    
[20] Lee V E, Depaolo D J, Christensen J N.Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan[J]. Earth and Planetary Science Letters, 2010, 296(3): 244-254.
doi: 10.1016/j.epsl.2010.05.005     URL    
[21] Li Le, Liu Xiangjun, Li Tao, et al. Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2017, 467: 64-71.
doi: 10.1016/j.epsl.2017.03.014     URL    
[22] Maher K, Depaolo D J, Lin J C F. Rates of silicate dissolution in deep-sea sediment: In situ measurement using 234U/238U of pore fluids[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4 629-4 648.
doi: 10.1016/j.gca.2004.04.024     URL    
[23] Vigier N, Bourdon B.Constraining Rates of Chemical and Physical Erosion Using U-Series Radionuclides[M].Berlin Heidelberg:Handbook of Environmental Isotope Geochemistry, 2012:553-571.
[24] Vigier N, Bourdon B, Turner S, et al. Erosion timescales derived from U-decay series measurements in rivers[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 549-563.
doi: 10.1016/S0012-821X(01)00510-6     URL    
[25] Chabaux F.U-Th-Ra fractionation during weathering and river transport[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 533-576.
doi: 10.2113/0520533     URL    
[26] Chen Jun, Li Gaojun.Geochemical studies on the source region of Asian dust[J]. Science in China (Series D), 2011, 41(9): 1 211-1 232.
[陈骏, 李高军. 亚洲风尘系统地球化学示踪研究[J]. 中国科学:D辑, 2011, 41(9): 1 211-1 232.]
[27] Chen Jun, Li Gaojun, Yang Jiedong, et al. Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3 904-3 914.
[28] Che Xudong, Li Gaojun.Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon[J]. Quaternary Research, 2013, 80(3): 545-551.
[29] Li Gaojun, Chen Jun, Ji Junfeng, et al. Natural and anthropogenic sources of East Asian dust[J]. Geology, 2009, 37(8): 727-730.
[30] Pullen A, Kapp P, Mccallister A T, et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications[J]. Geology, 2011, 39(11): 1 031-1 034.
[31] Nie J, Stevens T, Rittner M, et al. Corrigendum: Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment[J]. Science Foundation in China, 2016, 6(1):8 511.
[32] Aciego S M, Aarons S M, Sims K W W. The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean[J]. Aeolian Research, 2015, 17: 61-66.
[33] Aciego S, Bourdon B, Schwander J, et al. Toward a radiometric ice clock: Uranium ages of the Dome C ice core[J]. Quaternary Science Reviews, 2011, 30(19/20): 2 389-2 397.
[34] Dosseto A, Hesse P P, Maher K, et al. Climatic and vegetation control on sediment dynamics during the last glacial cycle[J]. Geology, 2010, 38(5): 395-398.
[35] Bird A, Stevens T, Rittner M, et al. Quaternary dust source variation across the Chinese Loess Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 435: 254-264.
[36] Sun Youbin, Tada R J, Chen Jun, et al. Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau[J]. Geophysical Research Letters, 2008, 35(1). DOI:10.1029/2007GL031672.
[37] Li Gaojun, Li Le, Xu Shujian, et al. Dust source of the loess deposits in the Eastern China constrained by Uranium comminution age[J]. Quaternary Sciences, 2017, 37(5): 1 037-1 044.
[李高军,李乐, 徐树建, 等. 中国东部黄土物源铀同位素碎粒年代学研究[J]. 第四纪研究, 2017, 37(5): 1 037-1 044.]
[38] Li Chao, Yang Shouye, Zhao Jianxin, et al. The time scale of river sediment source-to-sink processes in East Asia[J]. Chemical Geology, 2016, 446: 138-146.
[39] Handley H K, Turner S P, Dosseto A, et al. Considerations for U-series dating of sediments: Insights from the Flinders Ranges, South Australia[J]. Chemical Geology, 2013, 340(2): 40-48.
[40] Handley H K, Turner S, Afonso J C, et al. Sediment residence times constrained by uranium-series isotopes: A critical appraisal of the comminution approach[J]. Geochimica et Cosmochimica Acta, 2013, 103: 245-262.
[41] Cheng Hai, Edwards R L, Shen Chuanchou, et al. Improvements in 230Th dating. Improvements in 230Th dating, 230Th and 234U half-life values,U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 2013, 371/372: 82-91.
[42] Dosseto A, Schaller M.The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides[J]. Earth-Science Reviews, 2016, 155: 60-81.
[43] Chabaux F, Granet M, Pelt E, et al. 238U-234U-230Th disequilibria and timescale of sedimentary transfers in rivers: Clues from the Gangetic plain rivers[J]. Journal of Geochemical Exploration, 2006, 88(1): 373-375.
[44] Dosseto A, Bourdon B, Gaillardet J, et al. Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes[J]. Earth and Planetary Science Letters, 2006, 248(3/4): 759-771.
[45] Granet M, Chabaux F, Stille P, et al. Time-scales of sedimentary transfer and weathering processes from U-series nuclides: Clues from the Himalayan rivers[J]. Earth and Planetary Science Letters, 2007, 261(3): 389-406.
[46] Granet M, Chabaux F, Stille P, et al. U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: The case of the Himalayan rivers[J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2 851-2 865.
[47] Sun Youbin, Clemens S C, An Zhisheng, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1): 33-48.
[48] Chen Jun, Ji Junfeng, Qiu Gang, et al. Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence, China[J]. Science in China, 1998, 41(3): 235-241.
[49] Chen Jun, Liu Lianwen, Ji Junfeng, et al. Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland[J]. Science in China, 2001, 44(5): 403-413.
[50] Francke A, Carney S, Wilcox P, et al. Sample preparation for determination of comminution ages in lacustrine and marine sediments[J]. Chemical Geology, 2018, 479:123-135.
[51] Martin A N, Dosseto A, Kinsley L P J. Evaluating the removal of non-detrital matter from soils and sediment using uranium isotopes[J]. Chemical Geology, 2015, 396: 124-133.
[52] Liu Lianwen, Chen Jun, Wang Hongtao, et al. A chemical index of weathering without effect of wind sorting: Fe/Mg ratios in the acid-insoluble phases of loess deposits[J]. Science Bulletin, 2001, 46(16): 1 384-1 387.
[53] Guo Zhengtang, Ruddiman W F, Hao Qingzhen, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6 877): 159-163.
[54] Bourdon B, Turner S, Henderson G M, et al. Introduction to U-series geochemistry[J]. Uranium-Series Geochemistry, 2003, 52: 1-21.
[55] Sims K W W, Goldstein S J, Blichert-Toft J, et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3 481-3 504.
[56] Sims K W W, Depaolo D J, Murrell M T, et al. Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238U- 230Th- 226Ra and 235U- 231Pa disequilibria[J]. Geochimica et Cosmochimica Acta, 1999, 63(23/24): 4 119-4 138.
[57] Maher K, Depaolo D J, Christensen J N.U-Sr isotopic speedometer: Fluid flow and chemical weathering rates in aquifers[J]. Geochimica et Cosmochimica Acta, 2005, 70(17): 4 417-4 435.
[58] Dosseto A, Buss H, Suresh P O.The delicate balance between soil production and erosion, and its role on landscape evolution[J]. Applied Geochemistry, 2011, 26(26): S24-S27.
[59] Gascoyne M, Miller N H, Neymark L A.Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years[J]. Applied Geochemistry, 2002, 17(6): 781-792.
[60] Li Chao, Francois R, Yang Shouye, et al. Constraining the transport time of lithogenic sediments to the Okinawa Trough (East China Sea)[J]. Chemical Geology, 2016, 445: 199-207.
[61] Vigier N, Burton K W, Gislason S R, et al. The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain[J]. Earth and Planetary Science Letters, 2006, 249(3): 258-273.
[62] Van Strandmann P A E P, Burton K W, James R H, et al. Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain[J]. Earth and Planetary Science Letters, 2006, 251(1/2): 134-147.
[63] Dosseto A, Bourdon B, Gaillardet J, et al. Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 71-89.
[64] Vigier N, Bourdon B, Lewin E, et al. Mobility of U-series nuclides during basalt weathering: An example from the Deccan Traps (India)[J]. Chemical Geology, 2005, 219(1): 69-91.
[65] Porcelli D, Andersson P S, Baskaran M, et al. Transport of U-and Th-series nuclides in a Baltic Shield watershed and the Baltic Sea[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2 439-2 459.
[66] Andersson P S, Porcelli D, Wasserburg G J, et al. Particle transport of 234U-238U in the Kalix River and in the Baltic Sea[J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 385-392.
[67] Plater A J, Ivanovich M, Dugdale R E.Uranium series disequilibrium in river sediments and waters: The significance of anomalous activity ratios[J]. Applied Geochemistry, 1992, 7(2): 101-110.
[68] Sarin M M, Krishnaswami S, Somayajulu B L K, et al. Chemistry of uranium, thorium, and radium isotopes in the ganga-brahmaputra river system-weathering processes and fluxes to the bay of bengal[J]. Geochimica et Cosmochimica Acta, 1990, 54(5): 1 387-1 396.
[69] Oster J L, Ibarra D E, Harris C R, et al. Influence of eolian deposition and rainfall amounts on the U-isotopic composition of soil water and soil minerals[J]. Geochimica et Cosmochimica Acta, 2012, 88(7): 146-166.
[70] Anbeek C, Vanbreemen N, Meijer E L, et al. The dissolution of naturally weathered feldspar and quartz[J]. Geochimica et Cosmochimica Acta, 1994, 58(21): 4 601-4 613.
[71] White A F, Peterson M L.Role of reactive-surface-area characterization in geochemical kinetic models[J]. Acs Symposium, 1990, 416(1): 461-475.
[72] Brantley S L, Mellott N P.Surface area and porosity of primary silicate minerals[J]. American Mineralogist, 2000, 85(11/12): 1 767-1 783.
[73] Maher K, Steefel C I, Depaolo D J, et al. The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 337-363.
[74] Bourdon B, Bureau S, Andersen M B, et al. Weathering rates from top to bottom in a carbonate environment[J]. Chemical Geology, 2009, 258(3): 275-287.
[75] Avnir D, Jaroniec M.An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989, 5(6): 1 431-1 433.
[76] Kigoshi K.Alpha-Recoil Thorium-234: Dissolution into water and the Uranium-234/Uranium-238 disequilibrium in nature[J]. Science, 1971, 173(3 991): 47.
[77] Olley J M, Roberts R G, Murray A S.A novel method for determining residence times of river and lake sediments based on disequilibrium in the thorium decay series[J]. Water Resources Research, 1997, 33(6): 1 319-1 326.
[78] Hashimoto T, Aoyagi Y, Kudo H, et al. Range calculation of alpha-recoil atoms in some minerals using LSS-theory[J]. Journal of Radioanalytical and Nuclear Chemistry, 1985, 90(2): 415-438.
[79] Suresh P O, Dosseto A, Handley H K, et al. Assessment of a sequential phase extraction procedure for uranium-series isotope analysis of soils and sediments[J]. Applied Radiation and Isotopes, 2014, 83(1): 47-55.
[80] Li Laifeng, Chen Jun, Chen Tianyu, et al. Weathering dynamics reflected by the response of riverine uranium isotope disequilibrium to changes in denudation rate[J]. Earth and Planetary Science Letters, 2018, 500:136-144.
[81] Blanco P, Tomé F V, Lozano J C.Sequential extraction for radionuclide fractionation in soil samples: A comparative study[J]. Applied Radiation and Isotopes Including Data Instrumentation and Methods for Use in Agriculture Industry and Medicine, 2004, 61(2/3): 345.
[82] Väisänen A, Kiljunen A.Ultrasound-assisted sequential extraction method for the evaluation of mobility of toxic elements in contaminated soils[J]. International Journal of Environmental Analytical Chemistry, 2005, 85(14): 1 037-1 049.
[83] Schultz M K, Burnett W C, Inn K G W. Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments[J]. Journal of Environmental Radioactivity, 1998, 40(2): 155-174.
[84] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[85] Menozzi D, Dosseto A, Kinsley L P J. Assessing the effect of sequential extraction on the uranium-series isotopic composition of a basaltic weathering profile[J]. Chemical Geology, 2016, 446:126-137.
[86] Andersen M B, Vance D, Keech A R, et al. Estimating U fluxes in a high-latitude, boreal post-glacial setting using U-series isotopes in soils and rivers[J]. Chemical Geology, 2013, 354(5): 22-32.
[87] Romer R L, Rocholl A.Activity disequilibrium of 230Th,234U, and 238U in old stilbite: Effects of young U mobility and α-recoil[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4 705-4 719.
[88] Davis D W, Krogh T E.Preferential dissolution of 234U and radiogenic Pb from α-recoil-damaged lattice sites in zircon: Implications for thermal histories and Pb isotopic fractionation in the near surface environment[J]. Chemical Geology, 2001, 172(1/2): 41-58.
[89] Sheng Ζ Z, Kuroda P K.Isotopic fractionation of uranium: Extremely high enrichments of 234U in the acid-residues of a colorado carnotite[J]. Radiochimica Acta, 1986, 39(3): 131-138.
[90] Andersen M B, Erel Y, Bourdon B.Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4 124-4 141.
[91] Fleischer R L.Isotopic disequilibrium of uranium: Alpha-recoil damage and preferential solution effects[J]. Science, 1980, 207(4 434): 979-981.
[92] Latham A G, Schwarcz H P.The relative mobility of U, Th and Ra isotopes in the weathered zones of the Eye-Dashwa Lakes granite pluton, northwestern Ontario, Canada[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2 787-2 793.
[93] Fantle M S, Maher K M, Depaolo D J.Isotopic approaches for quantifying the rates of marine burial diagenesis[J]. Reviews of Geophysics, 2010, 48(3). DOI:10.1029/2009RG000306.
[94] Li Gaojun, Li Laifeng, Li Le.Short-lived weathering surfaces: Evidence from U isotopes[C]∥The Ninth National Congress and the Sixteenth Annual Academic Conference of the Minerals, Rocks and Geochemistry Society of China. Xi'an, 2017.
[李高军, 李来峰, 李乐. 短命的风化表面:来自U同位素的证据[C]∥中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会.西安, 2017.]
[95] Dou Yanguang, Yang Shouye, Shi Xuefa, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109.
[96] Grzymko T J, Marcantonio F, Mckee B A, et al. Temporal variability of uranium concentrations and 234U/238U activity ratios in the Mississippi River and its tributaries[J]. Chemical Geology, 2007, 243(3/4): 344-356.
[97] Andersson P S, Porcelli D, Gustafsson O, et al. The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary[J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 13-25.
[98] Porcelli D, Swarzenski P W.The behavior of U-and Th-series nuclides in groundwater[J]. Uranium-Series Geochemistry, 2003, 52: 317-361.
[99] Ding Zhongli, Xiong Shangfa, Sun Jimin, et al. Pedostratigraphy and paleomagnetism of a similar to 7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 152(1/2): 49-66.
[100] Engelbrecht J P, Derbyshire E.Airborne mineral dust[J]. Elements, 2010, 6(4): 241-246.
[101] Kapp P, Pullen A, Pelletier J D, et al. From dust to dust: Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China[J]. Geology, 2015, 43(9): 835-838.
[102] Liu Congqiang, Masuda A, Okada A, et al. Isotope geochemistry of Quaternary deposits from the arid lands in Northern China[J]. Earth and Planetary Science Letters, 1994, 127(1/4): 25-38.
[103] White A F, Brantley S L.The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?[J]. Chemical Geology, 2003, 202(3): 479-506.
[104] Uno I, Eguchi K, Yumimoto K, et al. Asian dust transported one full circuit around the globe[J]. Nature Geoscience, 2009, 2(8): 557-560.
[105] Pye K.The nature, origin and accumulation of loess[J]. Quaternary Science Reviews, 1995, 14(7/8): 653-667.
[106] Li Le, Chen Jun, Chen Yang, et al. Uranium isotopic constraints on the provenance of dust on the Chinese Loess Plateau[J]. Geology, 2018,46(9): 747-750.
[107] Li Xusheng, Yang Dayuan, Lu Huayu.Grain-size features and genesis of the Xiashu Loess in Zhenjiang[J]. Marine Geology and Quaternary Geology, 2001, 21(1): 25-32.
[108] Xiong Shangfa, Sun Donghuai, Ding Zhongli.Aeolian origin of the red earth in southeast China[J]. Journal of Quaternary Science, 2002, 17(2): 181-191.
[109] Peng Shuzhen, Hao Qingzhen, Luo Wang, et al. Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, Northern China[J]. Quaternary Research, 2016, 85(2): 290-298.
[110] Liu Fei, Li Gaojun, Chen Jun.U-Pb ages of zircon grains reveal a proximal dust source of the Xiashu Loess, Lower Yangtze River region, China[J]. Science Bulletin, 2014, 59(20): 2 391-2 395.
[111] Dosseto A, Turner S P, Douglas G B.Uranium-series isotopes in colloids and suspended sediments: Timescale for sediment production and transport in the Murray-Darling River system[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 418-431.
[112] Suresh P O, Dosseto A, Hesse P P, et al. Very long hillslope transport timescales determined from uranium-series isotopes in river sediments from a large, tectonically stable catchment[J]. Geochimica et Cosmochimica Acta, 2014, 142: 442-457.
[113] Portenga E W, Bierman P R.Understanding Earth's eroding surface with 10Be[J]. Gsa Today, 2011, 21(8): 4-10.
[114] Gao Shu.Holocene shelf-coastal sedimentary systems associated with the Changjiang River: An overview[J]. Marine Sciences, 2013, 32(12): 4-12.
[115] Chen Zhongyuan, Wang Zhanghua, Finlayson B, et al. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China[J]. Geology, 2010, 38(11): 1 043-1 046.
[116] Dadson S J, Hovius N, Chen H G, et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen[J]. Nature, 2003, 426(6 967): 648-651.
[117] Li Laifeng, Li Gaojun.Uranium comminution age responds to erosion rate semiquantitatively[J]. Chinese Journal of Geochemistry, 2017, 36(3): 426-428.
[118] Huang Laiming, Shao Ming'an, Jia Xiaoxu, et al. A review of the methods and controls of soil weathering rates[J]. Advances in Earth Science, 2016,31(10): 1 021-1 031.
[黄来明, 邵明安, 贾小旭, 等. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1 021-1 031.]
[119] Zhang Qilin, Wang Zhanlin, Wang Dongdong, et al. Advances in researches of the effects of grassland vegetation on soil erosion in Loess Plateau[J]. Advances in Earth Science, 2017, 32(10): 1 093-1 101.
[张琪琳, 王占礼, 王栋栋, 等. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1 093-1 101.]
[1] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[2] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[3] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[4] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[5] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[6] 张晓栋,刘志飞,张艳伟,赵玉龙. 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019, 34(9): 936-949.
[7] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[8] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[9] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[10] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[11] 彭大雷, 许强, 董秀军, 巨袁臻, 亓星, 陶叶青. 无人机低空摄影测量在黄土滑坡调查评估中的应用[J]. 地球科学进展, 2017, 32(3): 319-330.
[12] 李娜, 孙军杰, 王谦, 钟秀梅, 冯敏杰, 郭鹏. 黄土地基改性处理技术研究进展评述与展望[J]. 地球科学进展, 2017, 32(2): 209-219.
[13] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[14] 邵明安, 贾小旭, 王云强, 朱元骏. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14-22.
[15] 唐亚明, 冯卫, 李政国. 黄土滑塌研究进展[J]. 地球科学进展, 2015, 30(1): 26-36.
阅读次数
全文


摘要