地球科学进展 ›› 2018, Vol. 33 ›› Issue (3): 293 -304. doi: 10.11867/j.issn.1001-8166.2018.03.0293

全球变化研究 上一篇    下一篇

关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义
王兆夺( ), 黄春长 *( ), 周亚利, 庞奖励, 查小春   
  1. 陕西师范大学地理科学与旅游学院 地理学国家级实验教学示范中心,陕西 西安 710119
  • 收稿日期:2017-11-09 修回日期:2018-02-27 出版日期:2018-03-20
  • 通讯作者: 黄春长 E-mail:joedonwang@163.com;cchuang@snnu.edu.cn
  • 基金资助:
    *国家自然科学基金项目“黄河上游官亭盆地全新世群发性重大自然灾害发生年代与成因机制研究”(编号:41771110);中央高校基本科研业务费专项“全新世黄土古土壤序列高分辨率沉积旋回划分”(编号:GK201704013)资助.

Characteristics of Holocene Loess-Palaeosol Particle Size Composition and Paleoclimatic Significance in East Guanzhong, Shaanxi Province

Zhaoduo Wang( ), Chunchang Huang *( ), Yali Zhou, Jiangli Pang, Xiaochun Zha   

  1. Department of Geography Shannxi Normal University National Demonstration Center for Experimental Geography Education, Xi’an 710119 ,China
  • Received:2017-11-09 Revised:2018-02-27 Online:2018-03-20 Published:2018-05-02
  • Contact: Chunchang Huang E-mail:joedonwang@163.com;cchuang@snnu.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Occurrence dating and mechanism research for Holocene massive natural disasters within the Guanting Basin along the Upper Yellow River”(No.41771110);The Fundamental Research Funds for the Central Universities “The high resolution sedimentary cycle of loess palaeosol sequence in Holocene”(No.GK201704013).

通过在陕西关中东部的一条全新世黄土古土壤剖面(尧禾村剖面)进行高分辨率采样,对150个样品的粒度数据做了端元分析,并进一步对各端元组分含量在深度变化的时间尺度上做了小波变换。粒度端元分析结果认为,可以把代表3种不同沉积动力以及改造动力的组分端元分离出来。并结合磁化率、地球化学指标的对比分析,初步认为,尧禾村剖面端元1可能代表了沉积物沉积后在东亚夏季风作用下的风化及成壤改造作用;端元2可能代表了东亚冬季风作用下典型的风成黄土组分特征;端元3可能代表了区域东北风或北风搬运的近源沉积物。小波分析认为,各端元所代表的动力强弱大致在1.5,3.0和4.5 ka的尺度上具有较为明显的准周期性。通过对沉积物进行粒度端元划分,在识别沉积物沉积动力环境和物源特征上具有良好的效果,各端元组合特征能够很敏感地反映出沉积动力组合特征,对全新世各动力变化特征能够很好地反映,同时在更长时间尺度上重建古季风气候具有参考意义,应用小波分析对划分相应时间尺度上的周期性和推断未来可能的变化趋势提供了可能。

This paper made an end-member analysis of particle size data collected from 150 samples based on the continuous Holocene Loess-Paleosol profile (Yaohecun profile) in east Guanzhong, Shaanxi Province. Wavelet analysis was also performed for the EMs along the time scale of depth.The result shows that three end members can be separated from different sediment particle sizes. Based on comparative analysis of magnetic susceptibility and geochemical index, it was considered that the End-member 1 might indicate the weathering and pedogenic remoulding after sediment deposition under the east Asian summer monsoon. The End-member 2 might indicate dynamic effect of dust storm accumulation under the influence of northwest monsoon, representing typical component characteristics of aeolian loess.The End-member 3 indicated the stronger transporting force for coarse components, which should belong to the northeasterly winds for the coarse-grained near-source sediments from the Yellow River flood plain. Results of wavelet analysis show that each EM has different periodic characteristics at 1.5 ka, 3.0 ka and 4.5 ka scales.The End-element analysis method has a good effect in indicating the sedimentary environment and provenance characteristics of sediments. The combination characteristics of each End-member can reflect the characteristics of sedimentary dynamics combination and can well reflect the Holocene dynamic change course. At the same time, it hasreference significance to reconstruct the paleoclimate on the longer time scale.The wavelet analysis method provides significant results in terms of inversion cycles and trends of dynamics change of sedimentary particle size within each EM.

中图分类号: 

图1 白水县尧禾村黄土古土壤剖面位置(a)及周边若干地点1961—1970年优势风向(b)
Fig.1 The site of the Yaohecun(YHC) profile of loess palaeosol in East Guanzhong(a)and the diagram showing the most frequency characteristics of wind in ten years from 1961 to 1970 in study area(b)
图1 白水县尧禾村黄土古土壤剖面位置(a)及周边若干地点1961—1970年优势风向(b)
Fig.1 The site of the Yaohecun(YHC) profile of loess palaeosol in East Guanzhong(a)and the diagram showing the most frequency characteristics of wind in ten years from 1961 to 1970 in study area(b)
表1 白水县尧禾村(YHC)剖面地层划分与特征
Table 1 Pedostratigraphic descriptions of the YHC profile
表1 白水县尧禾村(YHC)剖面地层划分与特征
Table 1 Pedostratigraphic descriptions of the YHC profile
图2 白水县尧禾村(YHC)剖面和二趟村(ETC)剖面、格大张(GDZ)剖面地层对比 [ 21 , 22 ]
Fig.2 The stratigraphy comparison of YHC profile, ETC profoile and GDZ profile [ 21 , 22 ]
图2 白水县尧禾村(YHC)剖面和二趟村(ETC)剖面、格大张(GDZ)剖面地层对比 [ 21 , 22 ]
Fig.2 The stratigraphy comparison of YHC profile, ETC profoile and GDZ profile [ 21 , 22 ]
图3 端元划分的线性相关和角度离差
Fig.3 Linear correlation and Angular deviation of end members
图3 端元划分的线性相关和角度离差
Fig.3 Linear correlation and Angular deviation of end members
图4 白水县尧禾村(YHC)剖面粒度频率曲线(a)和谢帕德三角分类(b)
Fig.4 The grain size frequency curves(a) and triangle diagram of Shephard(b) of YHC profile
图4 白水县尧禾村(YHC)剖面粒度频率曲线(a)和谢帕德三角分类(b)
Fig.4 The grain size frequency curves(a) and triangle diagram of Shephard(b) of YHC profile
图5 白水县尧禾村(YHC)剖面各端元频率分布曲线
Fig.5 Frequency distribution curves of each end member in the YHC profile
图5 白水县尧禾村(YHC)剖面各端元频率分布曲线
Fig.5 Frequency distribution curves of each end member in the YHC profile
表2 关中东部白水县尧禾村(YHC)剖面各端元粒度参数特征
Table 2 The end member parameters characteristic of YHC profile
表2 关中东部白水县尧禾村(YHC)剖面各端元粒度参数特征
Table 2 The end member parameters characteristic of YHC profile
图6 白水县尧禾村(YHC)剖面沉积物粒度端元组分和其他相应气候指标垂向上变化特征
Fig.6 The changing of climatic indexes and each end member content in depth of YHC profile
图6 白水县尧禾村(YHC)剖面沉积物粒度端元组分和其他相应气候指标垂向上变化特征
Fig.6 The changing of climatic indexes and each end member content in depth of YHC profile
表3 白水县尧禾村(YHC)剖面各端元组分含量、磁化率以及地球化学指标随深度变化对比分析简表
Table 3 Analysis of the depth change of end member contents, magnetic susceptibility and geochemical index of YHC profile
表3 白水县尧禾村(YHC)剖面各端元组分含量、磁化率以及地球化学指标随深度变化对比分析简表
Table 3 Analysis of the depth change of end member contents, magnetic susceptibility and geochemical index of YHC profile
图7 白水县尧禾村(YHC)剖面沉积物粒度参数在深度上的变化特征
Fig.7 Variation of sediment grain size parameters in depth in YHC profile
图7 白水县尧禾村(YHC)剖面沉积物粒度参数在深度上的变化特征
Fig.7 Variation of sediment grain size parameters in depth in YHC profile
图8 白水县尧禾村(YHC)剖面沉积物沉积学粒级组分划分在深度上的变化特征
Fig.8 Variation of sediment grain-size fractions by sedimentary in depth in YHC profile
图8 白水县尧禾村(YHC)剖面沉积物沉积学粒级组分划分在深度上的变化特征
Fig.8 Variation of sediment grain-size fractions by sedimentary in depth in YHC profile
图9 白水县尧禾村(YHC)剖面沉积物土壤学粒级组分划分在深度上的变化特征
Fig.9 Variations of sediment grai-size fractions by soil science in depth in YHC profile
图9 白水县尧禾村(YHC)剖面沉积物土壤学粒级组分划分在深度上的变化特征
Fig.9 Variations of sediment grai-size fractions by soil science in depth in YHC profile
图10 白水县尧禾村(YHC)剖面各端元百分含量在时间尺度上的小波变换
Fig.10 The wavelet analysis of YHC profile each end member content in time scale
图10 白水县尧禾村(YHC)剖面各端元百分含量在时间尺度上的小波变换
Fig.10 The wavelet analysis of YHC profile each end member content in time scale
[1] Lu Huayu, An Zhisheng.The paleoclimate significance of the grain size of loess in Chinese Loess Plateau[J]. Science in China (Series D), 1998, 28(3):278-283.
[鹿化煜, 安芷生. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学:D辑, 1998, 28(3):278-283.]
[2] Ding Zhongli, Sun Jimin, Liu Dongsheng.The sedimentology indicators of evolution process between desert and loess[J].Science in China (Series D), 1999, 29(1):82-87.
[丁仲礼,孙继敏,刘东生. 联系沙漠—黄土演变过程中耦合关系的沉积学指标[J]. 中国科学:D辑,1999,29(1):82-87.]
[3] Sun D, Bloemendal J, Rea D K,et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications[J]. Catena, 2004,55: 325-340.
doi: 10.1016/S0341-8162(03)00109-7     URL    
[4] Lu Huayu, An Zhisheng.Paleoclimatic significance of the composition of Luochuan loess[J].Chinese Science Bulletin, 1997, 42(1): 66-69.
[鹿化煜, 安芷生. 洛川黄土粒度组成的古气候意义[J]. 科学通报, 1997, 42(1): 66-69.]
[5] An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research, 1991, 36(1): 29-36.
doi: 10.1016/0033-5894(91)90015-W     URL    
[6] Xiao J L, Zheng H, Zhao H.Variation of winter monsoon intensity on the Loess Plateau, Central China during the last 130,000 years[J]. The Quaternary Research (Daiyonki-Kenkyu),1992, 31(1):13-19.
[7] Ding Z L, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.
doi: 10.1016/0277-3791(94)90124-4     URL    
[8] Liu Tungsheng.Loess and Drought Environment[M].Hefei:Anhui Science and Technology Press,2009.
[刘东生. 黄土与干旱区环境[M].合肥:安徽科学技术出版社,2009.]
[9] An Zhisheng, Porter S C,Chappell J, et al. Recently record 130 ka Luochuan Loess stacking sequence and Greenland Ice Core[J]. Chinese Science Bulletin, 1994, 39(24):2 254-2 256.
[安芷生, Porter S C,Chappell J,等. 最近130 ka洛川黄土堆积序列与格陵兰冰芯记录[J]. 科学通报, 1994, 39(24):2 254-2 256.]
[10] Porter S C, An Z S.Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6 529):305-308.
doi: 10.1038/375305a0     URL    
[11] Weltje G J.End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J].Mathematical Geology, 1997, 29(4): 503-549.
doi: 10.1007/BF02775085     URL    
[12] Weltje G J, Prins M A.Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J].Sedimentary Geology, 2003, 162(1): 39-62.
doi: 10.1016/S0037-0738(03)00235-5     URL    
[13] Bouma A H.Coarse-grained and fine-grained turbidite systems as end member models: Applicability and dangers[J].Marine and Petroleum Geology, 2000, 17(2): 137-143.
doi: 10.1016/S0264-8172(99)00020-3     URL    
[14] Dietze E, Hartmann K, Diekmann B,et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243: 169-180.
[15] IJmker J, Stauch G, Dietze E,et al. Characterisation of transport processes and sedimentary deposits by statistical end-member mixing analysis of terrestrial sediments in the Donggi Cona lake catchment, NE Tibetan Plateau[J]. Sedimentary Geology, 2012, 281: 166-179.
doi: 10.1016/j.sedgeo.2012.09.006     URL    
[16] Toonen W H J, Winkels T G, Cohen K M,et al. Lower Rhine historical flood magnitudes of the last 450 years reproduced from grain-size measurements of flood deposits using End Member Modelling[J]. Catena, 2015, 130: 69-81.
doi: 10.1016/j.catena.2014.12.004     URL    
[17] Zhang Xiaodong, Ji Yang, Yang Zuosheng, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science in China (Series D), 2015,45(10): 1 515-1 523.
[张晓东,季阳,杨作升,等.南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J].中国科学:D辑, 2015, 45(10): 1 515-1 523.]
[18] Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 2007, 26(1): 230-242.
doi: 10.1016/j.quascirev.2006.07.002     URL    
[19] Vandenberghe J.Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J].Earth-Science Reviews, 2013, 121: 18-30.
doi: 10.1016/j.earscirev.2013.03.001     URL    
[20] China Meteorological Administration.Chinese Wind Data 1961-1970[M]. Beijing: China Meteorological Administration,1974.
[中国气象局.中国风资料1961—1970年[M].北京:中国气象局,1974.]
[21] Huang C C, Pang J, Chen S, et al. Charcoal records of fire history in the holocene loess-soil sequences over the southern loess plateau of china[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 239(1/2): 28-44.
doi: 10.1016/j.palaeo.2006.01.004     URL    
[22] Huang C C,Pang J L,Su H X, et al. Holocene environmental change inferred from the loess-palaeosol sequences adjacent to the floodplain of the Yellow River,China[J].Quaternary Science Reviews, 2009, 28:2 633-2 646.
doi: 10.1016/j.quascirev.2009.05.024     URL    
[23] Paterson G A, Heslop D.New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(12): 4 494-4 506.
[24] Chen Xiaoqiu, Yu Yangping, Li Jing, et al. Wavelet analysis of natural runoff and climatic factors in the Yellow River Basin[J]. Yellow River, 2012, 34(1):1-4.
[陈效逑, 尉杨平, 李静,等. 黄河流域天然径流量与气候因子的小波分析[J]. 人民黄河, 2012, 34(1):1-4.]
[25] Shepard F P.Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology, 1954,24: 151-158.
[26] Folk R L, Ward W C.Brazos River bar [Texas]: A study in the significance of grain size parameters[J]. Journal of Sedimentary Research, 1957, 27(1):3-26.
doi: 10.1306/74D70646-2B21-11D7-8648000102C1865D     URL    
[27] Kukla G, Heller F, Ming L X, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9): 811-814.
doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2     URL    
[28] An Z, Kukla G, Porter S C,et al. Late Quaternary dust flow on the Chinese Loess Plateau[J]. Catena, 1991,18(2): 125-132.
doi: 10.1016/0341-8162(91)90012-M     URL    
[29] Nesbitt H W, Young G M.Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J].Nature, 1982, 299(5 885): 715-717.
doi: 10.1038/299715a0     URL    
[30] Li Xusheng, Han Zhiyong, Yang Shouye,et al. Chemical weathering intensity and element migration features of the Xiashu Loess profile in Zhenjiang[J]. Acta Geographica Sinica, 2007, 62(11): 1 174-1 184.
[李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1 174-1 184.]
[31] Chen Jun,Wang Yongjin, Ji Junfeng,et al. Rb/Sr variations and its climatic stratigraphical significance of a loess-palaeosol from Luochuan,Shaanxi Province[J]. Quaternaryences, 1999, 19(4):350-356.
[陈骏, 汪永进, 季峻峰, 等. 陕西洛川黄土剖面的 Rb/Sr 值及其气候地层学意义[J]. 第四纪研究, 1999, 19(4): 350-356.]
[32] Chen Jun,Wang Yongjin,Chen Yang,et al. Rb and Sr geochemical characterization of the Chinese Loess and its implications for palaeomonsoon climate[J].Acta Geologica Sinica, 2001, 75(2): 259-266.
[陈骏, 汪永进, 陈旸, 等. 中国黄土地层 Rb 和 Sr 地球化学特征及其古季风气候意义[J]. 地质学报, 2001, 75(2): 259-266.]
[33] Jin Zhangdong, Zhang Enlou.Palaeoclimate implication of Rb/Sr ratios from Lake sediments[J]. Science Technology and Engineering, 2002,(3): 20-22.
[金章东, 张恩楼. 湖泊沉积物Rb/Sr比值的古气候含义[J]. 科学技术与工程, 2002,(3): 20-22.]
[34] Huo Wen, He Qing, Yang Xinghua, et al. The research on grain size characteristic of desert in north of China[J]. Research of Soil and Water Conservation, 2011, 18(6):6-11.
[霍文, 何清, 杨兴华,等. 中国北方主要沙漠沙尘粒度特征比较研究[J]. 水土保持研究, 2011, 18(6):6-11.]
[35] Liu Tungsheng, et al.The Material Composition and Structure of Loess[M]. Beijing: Science Press,1966.
[刘东生, 等.黄土的物质成分和结构[M].北京:科学出版社,1966.]
[36] Liu Tungsheng, et al.Loess and the Environment[M]. Beijing: Science Press,1985.
[刘东生, 等.黄土与环境[M].北京:科学出版社,1985.]
[37] Zhang Xiaoye, An Zhisheng, Zhang Guangyu, et al. Climatic change reflection by transport of particulate matter, deposition in China inland—I. Modern atmospheric aerosols[J]. Science in China (Series B), 1994, 24(11): 1 206-1 215.
[张小曳, 安芷生, 张光宇, 等.中国内陆大气颗粒物的搬运、沉积及反映的气候变化——Ⅰ.现代大气气溶胶[J]. 中国科学:B辑, 1994,24(11): 1 206-1 215.]
[38] Zhang Xiaoye, An Zhisheng, Zhang Guangyu, et al. Climatic change reflection by transport of particulate matter, deposition in China inland—Ⅱ. The atmospheric-mineral aerosol deposition in the Central Loess Plateau since late Quaternary[J]. Science in China (Series B), 1994, 24(12): 1 314-1 322.
[张小曳, 安芷生, 张光宇,等. 中国内陆大气颗粒物的搬运、沉积及反映的气候变化——Ⅱ.黄土高原中部晚第四纪大气矿物气溶胶沉积[J]. 中国科学:B辑, 1994,24(12):1 314-1 322.]
[39] Ding Zhongli, Ren Jianzhang, Liu Tungsheng, et al. The Irregular changes and mechanisms of monsoon-desert system under the millennium scale since Late Pleistocene[J]. Science in China (Series D), 1996, 26(5): 385-391.
[丁仲礼, 任剑璋, 刘东生,等. 晚更新世季风—沙漠系统千年尺度的不规则变化及其机制问题[J]. 中国科学:D辑, 1996, 26(5): 385-391.]
[40] Ding Zhongli, Liu Tungsheng, Liu Xiuming, et al. 37 climatic cycles since 2.5 million years[J]. Chinese Science Bulletin, 1989, 34(19): 1 494-1 496.
[丁仲礼, 刘东生, 刘秀铭, 等.250万年以来的37个气候旋回[J]. 科学通报,1989, 34(19): 1 494-1 496.]
[41] An Zhisheng, Wu Xihao, Wang Pinxian, et al.Changes in monsoon and associated environmental changes in China since the last interglacial[M]∥Liu Tungsheng, ed. Loess, Environment and Global Change. Beijing:Science Press, 1991:1-29.
[42] An Zhisheng, Wu Xihao, Wang Pinxian, et al. The paleomonsoons during the last 130,000 years in China[J]. Science in China (Series B), 1991,34:1 007-1 024.
[43] Banerjee R, Gupta S M, Miura H, et al. A~400 ka supra-Milankovitch cycle in the Na, Mg, Pb, Ni, and Co records of a ferromanganese crust from the Vityaz fracture zone, central Indian ridge[J]. Climate of the Past Discussions, 2010, 6(4): 1 311-1 335.
doi: 10.5194/cpd-6-1311-2010     URL    
[44] Shi M, Wu H, Zhang S, et al. Weekly cycle of magnetic characteristics of the daily PM2.5 and PM2.5-10 in Beijing, China[J]. Atmospheric Environment, 2014, 98: 357-367.
doi: 10.1016/j.atmosenv.2014.08.079     URL    
[45] Xian Feng, Zhou Weijian, Yu Huagui.The abrupt changes and periodicities of climate during Holocene[J]. Marine Geology and Quaternary Geology, 2006, 26(5):109-115.
[鲜锋, 周卫健, 余华贵. 全新世气候系统的突变及周期性[J]. 海洋地质与第四纪地质, 2006, 26(5):109-115.]
[46] Li Zhipei, Yue Leping, Guo Li, et al. Holocene climate change and desertification in Northern China[J]. Northwest Geology, 2007, 40(3):1-29.
[李智佩, 岳乐平, 郭莉,等. 全新世气候变化与中国北方沙漠化[J]. 西北地质, 2007, 40(3):1-29.]
[47] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5 341):1 257-1 266.
doi: 10.1126/science.278.5341.1257     URL    
[48] Sirocko F, Garbe-Schönberg D, McIntyre A, et al. Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation[J]. Science, 1996, 272(5 261): 526-529.
doi: 10.1126/science.272.5261.526     URL    
[49] Campbell I D, Campbell C, Apps M J, et al. Late Holocene~1500 yr climatic periodicities and their implications[J]. Geology, 1998, 26(5):471-473.
doi: 10.1130/0091-7613(1998)026<0471:LHYCPA>2.3.CO;2     URL    
[50] Xu Jinghua.The sun,climate, starvation and nation’s migration[J]. Science in China(Series D), 1998,28(4):366-384.
[许靖华. 太阳、气候、饥饿与民族大迁移[J].中国科学:D辑,1998,28(4):366-384.]
[51] Chen F, Zhu Y, Li J, et al. Abrupt Holocene changes of the Asian monsoon at millennial and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China[J]. Chinese Science Bulletin, 2001, 46(23): 1 942-1 947.
doi: 10.1007/BF02901902     URL    
[52] Jin Liya, Chen Fahu, Zhu Yan.Holocene climatic periodicities recorded from lake sediments in the arid-semiarid areas of Northwestern China[J]. Marine Geology and Quaternary Geology, 2004, 24(2):101-108.
[靳立亚, 陈发虎, 朱艳. 西北干旱区湖泊沉积记录反映的全新世气候波动周期性变化[J]. 海洋地质与第四纪地质, 2004, 24(2):101-108.]
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[7] 赵绍华, 刘志飞. 海洋沉积物陆源碎屑粒度分析预处理方法研究[J]. 地球科学进展, 2017, 32(7): 769-780.
[8] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[9] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[10] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[11] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[12] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[13] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[14] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[15] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
阅读次数
全文


摘要