地球科学进展 ›› 2017, Vol. 32 ›› Issue (12): 1307 -1318. doi: 10.11867/j.issn.1001-8166.2017.12.1307

所属专题: 深海科学研究专刊

大洋钻探科学目标展望 上一篇    下一篇

大洋红层的分布、组成及其科学研究意义综述
吕璇( ), 刘志飞   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2017-10-10 修回日期:2017-11-10 出版日期:2017-12-20
  • 基金资助:
    *国家自然科学基金重点项目“南海中央海盆中新世以来深水沉积作用及其区域构造与环境演化意义”(编号:41530964);国家自然科学基金重大研究计划集成项目“南海深海沉积过程与机制”(编号:91528304)资助.

Distribution, Compositions and Significance of Oceanic Red Beds

Xuan Lyu( ), Zhifei Liu   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2017-10-10 Revised:2017-11-10 Online:2017-12-20 Published:2018-03-06
  • About author:

    First author:Lyu Xuan (1991-), female, Qingdao City, Shandong Province, Ph.D student. Research areas include marine sedimentology and paleoceanography.E-mail:2014lvxuan@tongji.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Deepwater sedimentation since the Miocene in the central basin of the South China Sea and its regional tectonic and environmental evolution significance” (No.41530964) and “Deep-sea sedimentation process and mechanism in the South China Sea” (No.91528304).

大洋红层作为一种特殊的海相沉积,代表了典型的富氧沉积环境,具有重要的科学研究价值。从大洋红层发现以来已开展大量的研究,但研究主要集中在白垩纪大洋红层,对整个大洋红层的特征及其科学研究意义的认识还不够全面。因此,在回顾大洋红层研究进展的基础上,总结其全球性的空间分布特征,对矿物和元素组成进行对比,发现主要矿物组分和元素组成与大洋红层的致色并无直接关系,而主要受到区域环境和物源来源的影响。大洋红层的致红是由铁氧化物或者含锰方解石控制,主要有2种成因机制:①因氧化条件而形成致色矿物;②因低沉积速率而形成致色矿物。因此,大洋红层所具有的独特成因机制和全球分布特征,使其对指示古沉积环境特征、重建古洋流发育、推测古气候变化具有重要的科学研究意义。在已有研究进展的基础上,提出未来展望,以期从多元化方向对全球大洋红层开展深入的研究。

Oceanic red beds are widely distributed in the global oceans and across the entire Phanerozoic period, which mostly appeared after oceanic anoxic events. They represent typical oxygen-rich sedimentary environment and play a significant role on ocean science research. Numerous studies have been carried out since the oceanic red beds were discovered. However, previous studies mainly focused on the Cretaceous oceanic red beds, and the understanding of the characteristics and scientific significance of oceanic red beds are not comprehensive. Therefore, we here summarized the global distribution characteristics and compared mineral and element compositions of various lithological oceanic red beds, including marly, clayey and cherty oceanic red beds. The main mineral and element components of oceanic red beds have no direct relationship with the color of the sediments, and mainly are affected by the regional environment and provenances. Therefore, the mineralogical and geochemical characteristics of oceanic red beds should be analyzed in combination with the regional background. The red coloration of oceanic red beds is controlled mainly by hematite, goethite and manganese-bearing calcite, which have two main mechanisms: ① Colored minerals formed in oxic conditions; ② Colored minerals formed due to low deposition rates. These two mechanisms are not completely independent, but complement one another with either dominance in most oceanic red beds. Lithological characteristics of oceanic red beds are controlled by three factors, including water depth, productivity and nutrients. Therefore, the formation of oceanic red beds should be considered with global changes and regional events. The unique origin mechanism and global distribution characteristics of long time-scale oceanic red beds can be used to indicate sedimentary paleoenvironment, paleo-oceanic current, and paleoclimate change. In addition, hydrothermal or magmatic activities on the ocean floor could also produce red-color deposits that are strongly different from sedimentary oceanic red beds. Based on the existing research, we also put forward the future in-depth studies on the oceanic red beds from multidisciplinary perspectives.

中图分类号: 

图1 现代大洋红色黏土分布图 [ 15 ]
Fig.1 The distribution map of modern oceanic red clays [ 15 ]
图2 白垩纪大洋红层分布图 [ 19 ]
Fig.2 The distribution map of Cretaceous oceanic red beds [ 19 ]
图3 大洋红层的长期古地理分布和海洋氧化还原条件与溶解Fe含量的演化 [ 27 ]
Fig.3 Secular distributions of oceanic red beds and the evolution of marine redox and iron states [ 27 ]
图4 基于主量元素相对含量的大洋红层分类三角图(据参考文献[ 5 ]修改)
现代大洋红色黏土的数据来自参考文献[4,29]
Fig.4 CaO-Al 2O 3 -SiO 2 ternary diagram on the classification of oceanic red beds(modified after reference[5])
The data of modern oceanic red clays from references[4,29]
图5 钙质大洋红层主要矿物组成(除碳酸盐后)(北大西洋ODP 1049C钻孔) [ 10 ]
Fig.5 Mineral compositions of Ca-ORBs in non-carbonate fraction (ODP Hole 1049C in the North Atlantic Ocean) [ 10 ]
图6 大洋红层铁氧化物组成(北大西洋ODP 1049C钻孔) [ 10 ]
Fig.6 Iron oxide mineral compositions of oceanic red beds (ODP Hole 1049C in the North Atlantic Ocean) [ 10 ]
图7 大洋红层主量和微量元素EF图(据参考文献[5,30,31]数据绘制)
Fig.7 Enrichment factors of major and trace elements of oceanic red beds(the data from references[5,30,31])
图8 基于岩性的大洋红层分类和沉积的主要控制因素 [ 46 ]
Fig.8 Major controlling factors of different lithological oceanic red beds [ 46 ]
[1] Wang Chengshan, Hu Xiumian.Cretaceous world and oceanic red beds[J].Earth Science Frontiers, 2005, 12(2):11-21.[王成善, 胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,2005,12(2): 11-21.]
[2] Sverdrup H U, Johnson M W, Fleming R H.The Oceans: Their Physics, Chemistry, and General Biology[M]. New York:Prentice-Hall, Inc., 1942.
[3] Bryant W, Bennet R.Origin, physical, and mineralogical nature of red clays: The Pacific Ocean Basin as a model[J].Geo-Marine Letters, 1988, 8(4): 189-249.
[4] Glasby G P.Mineralogy, geochemistry, and origin of Pacific red clays: A review[J]. New Zealand Journal of Geology and Geophysics, 1991, 34(2): 167-176.
[5] Hu X, Scott R W, Cai Y,et al. Cretaceous Oceanic Red Beds (CORBs): Different time scales and models of origin[J]. Earth-Science Reviews, 2012, 115(4): 217-248.
[6] Wang C, Hu X, Huang Y,et al. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events[J]. Sedimentary Geology, 2011, 235(1/2): 27-37.
[7] Hu Xiumian.Distribution, types and origins of phanerozoic marine red beds[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 335-342.[胡修棉. 显生宙海相红层的分布、类型与成因机制[J]. 矿物岩石地球化学通报, 2013, 32(3): 335-342.]
[8] Wang C, Hu X, Sarti M,et al. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-sea environments[J]. Cretaceous Research, 2005, 26(1): 21-32.
[9] Neuhuber S, Wagreich M, Wendler I,et al. Turonian Oceanic Red Beds in the Eastern Alps: Concepts for palaeoceanographic changes in the Mediterranean Tethys[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 251(2): 222-238.
[10] Li X, Hu X, Cai Y,et al. Quantitative analysis of iron oxide concentrations within Aptian-Albian cyclic oceanic red beds in ODP Hole 1049C, North Atlantic[J]. Sedimentary Geology, 2011, 235(1/2): 91-99.
[11] Caspari W A.The composition and character of oceanic red clay[J].Proceedings of the Royal Society of Edinburgh, 1910, 30,doi:10.1017/S037016460003062.
[12] Gray M, McAfee Jr R, Wolf C. Glossary of Geology[M].Washington DC:American Geological Institute, 1972.
[13] Gleason J D, Moore T C, Rea D K,et al. Ichthyolith strontium isotope stratigraphy of a Neogene red clay sequence: Calibrating eolian dust accumulation rates in the central North Pacific[J]. Earth and Planetary Science Letters, 2002, 202(3/4): 625-636.
[14] Bostr?m K, Kraemer T, Gartner S.Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments[J].Chemical Geology, 1973, 11(2): 123-148.
[15] Dutkiewicz A, O’Callaghan S, Müller R D. Controls on the distribution of deep-sea sediments[J].Geochemistry, Geophysics, Geosystems, 2016, 17(8): 3 075-3 098.
[16] Yamamoto S.Thickness distribution of reddish brown clay in the western North Pacific[J].Journal of Oceanography, 1987, 43(3): 139-148.
[17] Berger W H. Calcite Compensation Depth (CCD)[M]∥Encyclopedia of Marine Geosciences. Netherlands: Springer Netherlands, 2016.
[18] Hu X, Jansa L, Wang C,et al. Upper Cretaceous Oceanic Red Beds (CORBs) in the Tethys: Occurrences, lithofacies, age, and environments[J]. Cretaceous Research, 2005, 26(1): 3-20.
[19] Wang C S, Hu X M, Huang Y J, et al. Overview of Cretaceous Oceanic Red Beds (CORBs): A window on global oceanic and climate change[M]∥Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance. SEPM Special Publication, 2009:13-33,doi:10.2110/sepmsp.091.013.
[20] Wang C, Huang Y, Hu X,et al. Cretaceous oceanic redbeds: Implications for paleoclimatology and paleoceanography[J]. Acta Geologica Sinica, 2004, 3(3): 873-877.
[21] Cheng Wenbin, Gu Xuexiang, Hu Xiumian,et al. Comparative element geochemistry of recent oceanic red clay and cretaceous oceanic red bed[J]. Acta Geologica Sinica, 2008, 82(1): 37-47.[程文斌, 顾雪祥, 胡修棉,等.现代大洋红色粘土与白垩纪大洋红层元素地球化学对比[J]. 地质学报, 2008, 82(1): 37-47.]
[22] Neuhuber S, Wagreich M.Geochemistry of cretaceous oceanic red beds—A synthesis[J].Sedimentary Geology, 2011, 235(1/2): 72-78.
[23] Hu Xiumian, Wang Chengshan.Cretaceous oceanic red beds: Characters, occurrences, and origin[J].Geological Journal of China Universities, 2007, 13(1): 1-13.[胡修棉, 王成善. 白垩纪大洋红层:特征、分布与成因[J]. 高校地质学报, 2007, 13(1): 1-13.]
[24] Hu X, Jansa L, Sarti M.Mid-Cretaceous oceanic red beds in the Umbria-Marche Basin, central Italy: Constraints on paleoceanography and paleoclimate[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(3/4): 163-186.
[25] Franke W, Paul J.Pelagic redbeds in the Devonian of Germany —Deposition and diagenesis[J]. Sedimentary Geology, 1980, 25(3): 231-256.
[26] Li C F, Li J B, Ding W W,et al. Seismic stratigraphy of the central South China Sea Basin and implications for neotectonics[J]. Journal of Geophysical ResearchSolid Earth, 2015, 120(3): 1 377-1 399.
[27] Song H, Jiang G, Poulton S W,et al. The onset of widespread marine red beds and the evolution of ferruginous oceans[J].Nature Communications, 2017, 8(1): 399.
[28] Expedition 349 Scientists. South China Sea Tectonics: Opening of the South China Sea and Its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Processes Since the Late Mesozoic[R]. International Ocean Discovery Program Preliminary Report, 349. 2014, doi:10.14379/iodp.pr.349.2014.
[29] Dunlea A G, Murray R W, Sauvage J,et al. Dust, volcanic ash, and the evolution of the South Pacific Gyre through the Cenozoic[J]. Paleoceanography, 2015, 30(8): 1 078-1 099.
[30] Hu X, Wang C, Li X,et al. Upper Cretaceous oceanic red beds in southern Tibet: Lithofacies, environments and colour origin[J]. Science in China (Series D), 2006, 49(8): 785-795.
[31] Kato Y, Nakao K, Isozaki Y.Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change[J].Chemical Geology, 2002, 182(1): 15-34.
[32] Hein J, Vallier T L, Allan M A.Chert petrology and geochemistry, Mid-Pacific Mountains and Hess Rise[M]∥Vallier T L, Thiede J, eds. Initial Reports of the Deep Sea Drilling Project. US Government Printing Office, 1981: 711-748.
[33] Cai Y, Hu X, Li X,et al. Origin of the red colour in a red limestone from the Vispi Quarry section (central Italy): A high-resolution transmission electron microscopy analysis[J]. Cretaceous Research, 2012, 38(Suppl. C): 97-102.
[34] Li J, Hu X, Zhao K,et al. Paleoceanographic evolution and chronostratigraphy of the Aptian Oceanic Anoxic Event 1a (OAE1a) to oceanic red bed 1 (ORB1) in the Gorgo a Cerbara section (central Italy)[J]. Cretaceous Research, 2016, 66: 115-128.
[35] Han Zhiyan, Hu Xiumian, Ji Junfeng,et al. Origin of the Aptian Albian High Cyclic Oceanic Red Beds in the ODP Hole 1049C, North Atlantic: Mineralogical evidence[J]. Acta Geologica Sinica, 2008, 82(1): 124-132.[韩志艳, 胡修棉, 季峻峰,等. 北大西洋ODP1049C孔Aptian-Albian期高频旋回大洋红层的成因:矿物学证据[J]. 地质学报, 2008, 82(1): 124-132.]
[36] Turekian K K, Wedepohl K H.Distribution of the elements in some major units of the Earth’s crust[J].Geological Society of America Bulletin, 1961, 72(2): 175.
[37] Turgeon S, Brumsack H J.Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy[J].Chemical Geology, 2006, 234(3): 321-339.
[38] Goldberg E D, Arrhenius G O S. Chemistry of Pacific pelagic sediments[J].Geochimica et Cosmochimica Acta, 1958, 13(2/3): 153-212.
[39] Calvert S E, Pedersen T F.Sedimentary geochemistry of manganese: Implications for the environment of formation of manganiferous black shales[J].Economic Geology, 1996, 91(1): 36-47.
[40] Ding H, Yao S, Chen J.Authigenic pyrite formation and re-oxidation as an indicator of an unsteady-state redox sedimentary environment: Evidence from the intertidal mangrove sediments of Hainan Island, China[J].Continental Shelf Research, 2014, 78: 85-99.
[41] Wang Tiantian.Fe Isotope Compositions of the Upper Cretaceous Black Shales and Oceanic Red Beds and Its Implications to Pale Oceanography and Paleoclimate[D]. Beijing: China University of Geosciences, 2016.[王天天. 上白垩统黑色页岩和大洋红层的Fe同位素特征及其古海洋学和古气候学意义[D]. 北京: 中国地质大学,2016.]
[42] Clauer N, Hoffert M, Karpoff A M.The Rb Sr isotope system as an index of origin and diagenetic evolution of southern Pacific red clays[J].Geochimica et Cosmochimica Acta, 1982, 46(12): 2 659-2 664.
[43] Mamet B, Préat A.Iron-bacterial mediation in Phanerozoic red limestones: State of the art[J].Sedimentary Geology, 2006, 185(3): 147-157.
[44] Morford J L, Emerson S.The geochemistry of redox sensitive trace metals in sediments[J].Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1 735-1 750.
[45] Calvert S E, Pedersen T F.Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments interpretation and application[M]∥Developments in Marine Geology. Elsevier, 2007.
[46] Wagreich M, Neuhuber S, Egger H,et al. Cretaceous Oceanic Red Beds (CORBs) in the Austrian Eastern Alps: Passive-margin vs. active-margin depositional settings[J]. Sedimentary Geology, 2009, (91): 73-88.
[47] Hein A, Day P M, Cau Ontiveros M A,et al. Red clays from Central and Eastern Crete: Geochemical and mineralogical properties in view of provenance studies on ancient ceramics[J]. Applied Clay Science, 2004, 24(3/4): 245-255.
[48] Pattan J N, Pearce N J G, Mislankar P G. Constraints in using Cerium-anomaly of bulk sediments as an indicator of paleo bottom water redox environment: A case study from the Central Indian Ocean Basin[J].Chemical Geology, 2005, 221(3/4): 260-278.
[49] Poulsen C J, Barron E J, Arthur M A,et al. Response of the Mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings[J]. Paleoceanography, 2001, 16(6): 576-592.
[50] Hay W W.Cretaceous oceans and ocean modeling[M]∥Cretaceous Ocean Redbeds. Society for Sedimentary Geology, 2009,doi:10.21101sepmsp.091.
[51] Zeng Xuan.The Tempoarl and Spatial Evolution of CORBs[D]. Chengdu: Chengdu University of Technology, 2006.[曾萱. 白垩纪大洋红层的时空演化[D]. 成都: 成都理工大学, 2006.]
[52] Zhang Zhenguo, Duan Xingkuan, Gao Lianfeng,et al. Modern ocean iron release experiment and its implications for palaeoceanographic study: Forming mechanisms of CORBs[J]. Marine Geology Frontiers, 2013, 29(9): 1-8.[张振国, 段杏宽, 高莲凤,等.现代大洋铁盐投放实验对古海洋学研究的启示:白垩纪大洋红层产生的背景与机制[J]. 海洋地质前沿, 2013, 29(9): 1-8.]
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[4] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[5] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[6] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[7] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[8] 王萍, 谭先锋, 陈浩, 王佳, 梁迈, 罗龙, 冉天. 早志留世埃隆期上扬子海洋生物礁发育过程及制约机制——以渝南—黔北地区石牛栏组为例[J]. 地球科学进展, 2018, 33(6): 623-640.
[9] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[10] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[11] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[12] 蔡郁文, 王华建, 王晓梅, 何坤, 张水昌, 吴朝东. 铀在海相烃源岩中富集的条件及主控因素[J]. 地球科学进展, 2017, 32(2): 199-208.
[13] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[14] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[15] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
阅读次数
全文


摘要