Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (9): 983-993    DOI: 10.11867/j.issn.1001-8166.2018.09.0983
新学科·新发展·新技术     
蚯蚓方解石颗粒——一种新的古气候信息记录载体
宗秀兰1,2(), 宋友桂1,*(), 李越1,2
1.中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西 西安 710061
2.中国科学院大学,北京 100049
Earthworm Calcite Granule —A New Proxy for Paleoenvironmental Reconstruction
Xiulan Zong1,2(), Yougui Song1,*(), Yue Li1,2
1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
2.University of the Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(7751 KB)   HTML
摘要:

近年的研究表明在第四纪土壤和沉积物中广泛存在由蚯蚓特殊腺体产生的方解石颗粒 (ECG)。它们一方面可为放射性碳测年提供有效的测年材料,另一方面能够反映其形成时的温度和降水特征。ECG作为潜在的古环境变化信息的新载体,成为古气候研究领域的新方向。在前人研究工作的基础上,分析了ECG的研究现状,介绍了ECG的产生机理及特征,详细阐述了ECG的碳、氧同位素反映古气候、古环境变化的原理与机制,并介绍了其在年代学、古气候环境重建中的应用,探讨了其作为新指标的可靠性及存在的问题,展望了该领域的研究方向和趋势,希望能对未来的黄土古气候研究提供参考。

关键词: 蚯蚓方解石颗粒碳、氧同位素年代学古气候重建    
Abstract:

Earthworm calcite granules (ECG), generally produced in Morren's glands of the earthworm Lumbricus terrestris and Lumbricus rubellus, are commonly preserved in Quaternary soils and sediments well. These granules can not only provide radio-carbon dating (Carbon-14) with the efficacious materials, but accurately record a wealth of climatic and environmental information on temperature and precipitation. For instance, researchers from France reconstructed the paleotemperature and paleoprecipitation during the last glacial in west part of Europe by taking advantage of δ18O and δ13C signal contained in ECG. Additionally, scientists from Germany and France carried out radiocarbon dating of ECG from two different loess-paleosol sequences, and the results showed consistency with the dating results of other materials (such as charcoal, bone, plant calcified root cells, etc.). Therefore, this new bio-indicator has been confirmed as a proxy for paleoenvironmental and paleoclimatic reconstruction, hopefully becoming the golden key to understanding the paleoclimate change. This paper, based on the previous literatures, reviewed the present research status of ECG in paleoclimatology, mainly consisting of five aspects: (i) ECGs' production mechanism and their characteristics; (ii) The theoretical foundation of stable carbon and oxygen isotopes in terrestrial fossil earthworm calcite granules for paleoclimatic reconstruction; (iii) The pre-treatment of ECG samples; (iv) Current applications in chronology and paleoclimatology of earthworm calcite granules;(v) Major problems at present regarding paleoclimatic explanation and radiocarbon-14 dating of ECG. Finally, we proposed the future research and development direction in this field, which is expected to make a reference to the future researches.

Key words: Earthworm calcite granules    Carbon and oxygen isotopes    Chronology    Paleoclimatology.
收稿日期: 2018-05-08 出版日期: 2018-10-24
ZTFLH:  P532  
基金资助: *国家自然科学基金项目“中亚干旱区黄土记录的末次冰期以来气候变化与驱动机制”(编号:41572162);中国科学院国际合作重点项目“中亚黄土与第四纪气候变化”(编号:132B61KYS20160002) 资助.
通讯作者: 宋友桂     E-mail: zongxiulan@ieecas.cn;syg@ieecas.cn
作者简介:

作者简介:宗秀兰(1995-), 女,新疆伊宁人,硕士研究生,主要从事中亚黄土与第四纪气候变化研究.E-mail:zongxiulan@ieecas.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宗秀兰
宋友桂
李越

引用本文:

宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.

Xiulan Zong, Yougui Song, Yue Li. Earthworm Calcite Granule —A New Proxy for Paleoenvironmental Reconstruction. Advances in Earth Science, 2018, 33(9): 983-993.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.09.0983        http://www.adearth.ac.cn/CN/Y2018/V33/I9/983

图1  蚯蚓方解石颗粒 (ECG) 在蚯蚓体内的产生部位及内外部形貌特征(据参考文献[6]修改) (a) 蚯蚓体内钙腺的位置[11,12];(b) 扫描电镜下的正正蚓方解石颗粒;(c) 蚯蚓方解石颗粒的显微镜下照片;(d) 蚯蚓方解石颗粒的剖面图
图2  蚯蚓方解石颗粒 δ13C值与植被类型关系示意图
图3  蚯蚓方解石颗粒δ18O反映大气来源渗流水氧同位素示意图
图4  Schattenhausen黄土—古土壤序列碳酸盐14C年龄[8]
图5  Nussloch P4-P8黄土—古土壤序列中ECG的放射性年龄及其与格陵兰间冰期(Greenland Interstadials, GI)的关系[7] 图中红色线条代表被弃用的年龄数据;灰色阴影部分表示放射性14C年龄误差在2σ范围内
图6  德国Nussloch P8剖面中ECG的δ18O值推算的土壤和空气温度[22]
图7  德国Nussloch P8剖面中ECG的δ13C值恢复的古降水量[6]
[1] Edwards Clive A.Earthworm Ecology[M]. Boca Raton,FL:CRC Press, 2004.
[2] Feng Xiaoyi.Taxonomic characteristics of Chinese terrestrial earthworms[J]. Chinese Journal of Zoology, 1985, 20(1):44-47.
[2] [冯孝义. 中国陆栖蚯蚓各属的分类特征[J]. 动物学杂志, 1985, 20(1): 44-47.]
[3] Edwards C A, Lofty J R.Biology of Earthworms[M]. London, UK: Chapman and Hall, 1977.
[4] Versteegh Emma A A, Black Stuart, Canti Matthew G, et al. Earthworm-produced calcite granules: A new terrestrial palaeothermometer?[J]. Geochimica et Cosmochimica Acta, 2013, 123:351-357.
doi: 10.1016/j.gca.2013.06.020
[5] Prud'Homme Charlotte, Antoine Pierre, Moine Olivier, et al. Earthworm calcite granules: A new tracker of millennial-timescale environmental changes in last glacial loess deposits[J]. Journal of Quaternary Science, 2015, 30(6):529-536.
[6] Prud'Homme Charlotte, Lécuyer Christophe, Antoine Pierre, et al. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the last glacial in western Europe[J]. Quaternary Science Reviews, 2018, 179:158-166.
[7] Moine Olivier, Antoine Pierre, Hatté Christine, et al.The impact of last glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules[J]. Proceedings of the National Academy of Sciences, 2017, 114(24):6 209-6 214.
[8] Pustovoytov Konstantin, Terhorst Birgit.An isotopic study of a late Quaternary loess-paleosol sequence in SW Germany[J]. Revista Mexicana de Ciencias Geologicas, 2004, 21(1):88-93.
[9] Canti M G.Deposition and taphonomy of earthworm granules in relation to their interpretative potential in Quaternary stratigraphy[J]. Journal of Quaternary Science, 2007, 22(2):111-118.
[10] Br?m H.Was sind arion kinkelini wenz und a. Hochheimensis wenz[J]. Eclogae Geologicae Helvetiae, 1956, 49:593-598.
[11] Darwin Charles.The Formation of Vegetable Mould: Through the Action of Worms, with Observations on Their Habits[M]. D. Appleton: John Murray, 1896.
[12] Canti Matthew.Origin of calcium carbonate granules found in buried soils and Quaternary deposits[J]. Boreas, 1998, 27(2):275-288.
doi: 10.1111/j.1502-3885.1998.tb01421.x
[13] Stein Julie K.Earthworm activity: A source of potential disturbance of archaeological sediments[J]. American Antiquity, 1983, 48:277-289.
doi: 10.2307/280451
[14] Becze-Deak J, Langohr Roger, Verrecchia E P.Small scale secondary CaCO3 accumulations in selected sections of the European loess belt. Morphological forms and potential for paleoenvironmental reconstruction[J]. Geoderma, 1997, 76(3/4):221-252.
[15] Canti Matthew G, Piearce Trevor G.Morphology and dynamics of calcium carbonate granules produced by different earthworm species: The 7th international symposium on earthworm ecology· cardiff· wales· 2002[J]. Pedobiologia, 2003, 47:511-521.
[16] Gago-Duport L,Briones M J I,Rodríguez J B, et al.Amorphous calcium carbonate biomineralization in the earthworm's calciferous gland: Pathways to the formation of crystalline phases[J]. Journal of Structural Biology, 2008, 162(3):422-435.
[17] Robertson James D.The function of the calciferous glands of earthworms[J]. Journal of Experimental Biology, 1936, 13(3):279-297.
doi: 10.1111/j.1469-185X.1936.tb00912.x
[18] Briones M J I, López E, Méndez J, et al. Biological control over the formation and storage of amorphous calcium carbonate by earthworms[J]. Mineralogical Magazine, 2008, 72(1):227-231.
[19] Versteegh E A A, Black S, Hodson M E. Carbon isotope fractionation between amorphous calcium carbonate and calcite in earthworm-produced calcium carbonate[J]. Applied Geochemistry, 2017, 78:351-356.
[20] Lee M R, Hodson M E, Langworthy G N.Crystallization of calcite from amorphous calcium carbonate: Earthworms show the way[J]. Mineralogical Magazine, 2008, 72(1):257-261.
[21] Brinza Loredana, Schofield Paul F, Hodson Mark E, et al.Combining μxanes and μxrd mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm lumbricus terrestris[J]. Journal of Synchrotron Radiation, 2014, 21(1):235-241.
[22] Prud'Homme Charlotte, Lécuyer Christophe, Antoine Pierre, et al. Palaeotemperature reconstruction during the last glacial from δ18O of earthworm calcite granules from Nussloch loess sequence, Germany[J]. Earth and Planetary Science Letters, 2016, 442: 13-20.
[23] Cerling Thure E, Quade Jay.Stable carbon and oxygen isotopes in soil carbonates[J]. Climate Change in Continental Isotopic Records, 1993,78: 217-231.
doi: 10.1029/GM078p0217
[24] Huang Wei, Liu Dianbing, Wang Luyao, et al.Research status and advance in carbon isotope (δ13C) variation from stalagmite[J]. Advances in Earth Science, 2016, 31(9):968-983.
doi: 10.11867/j.issn.1001-8166.2016.09.0968
[24] [黄伟, 刘殿兵, 王璐瑶, 等. 洞穴石笋δ13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9):968-983.]
doi: 10.11867/j.issn.1001-8166.2016.09.0968
[25] O'Leary Marion H.Carbon isotope fractionation in plants[J]. Phytochemistry, 1981, 20(4):553-567.
doi: 10.1016/0031-9422(81)85134-5
[26] Canti M G.Experiments on the origin of 13C in the calcium carbonate granules produced by the earthworm lumbricus terrestris[J]. Soil Biology and Biochemistry, 2009, 41(12):2 588-2 592.
[27] Canti M, Bronk-Ramsey C, Hua Q, et al.Chronometry of pedogenic and stratigraphic events from calcite produced by earthworms[J]. Quaternary Geochronology, 2015, 28:96-102.
doi: 10.1016/j.quageo.2015.05.001
[28] Wanamaker A D, Kreutz K J, Borns H W, et al.Experimental determination of salinity, temperature, growth, and metabolic effects on shell isotope chemistry of mytilus edulis collected from Maine and Greenland[J]. Paleoceanography, 2007, 22(2):237-254.
[29] Ullmann Clemens V, Wiechert Uwe, Korte Christoph.Oxygen isotope fluctuations in a modern north sea oyster (crassostrea gigas) compared with annual variations in seawater temperature: Implications for palaeoclimate studies[J]. Chemical Geology, 2010, 277(1):160-166.
[30] Versteegh E A A, Vonhof H B, Troelstra S R, et al. Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry[J]. Geochemistry Geophysics Geosystems, 2013, 11(8).DOI: 10.1029/2009GC002961.
[31] Kim S T, ONeil J R.Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16):3 461-3 475.
doi: 10.1016/S0016-7037(97)00169-5
[32] Epstein Samuel, Buchsbaum Ralph, Lowenstam Heinz A, et al.Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(1 953):1 315-1 326.
doi: 10.1130/0016-7606(1951)62[417:CITS]2.0.CO;2
[33] Dansgaard Willi.Stable isotopes in precipitation[J]. Tellus, 1964, 16:436-468.
[34] Lacka Bozena,Lanczont Maria, Madeyska Teresa.Oxygen and carbon stable isotope composition of authigenic carbonates in loess sequences from the carpathian margin and podolia, as a palaeoclimatic record[J]. Quaternary International, 2009, 198(1):136-151.
[35] Zhang Tingjun.Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4). DOI:10.1029/2004RG000157.
doi: 10.1029/2004RG000157
[36] Zhang T, Osterkamp T E, Stamnes K.Effects of climate on the active layer and permafrost on the north slope of alaska, USA[J]. Permafrost and Periglacial Processes, 1997, 8(1):45-67.
[37] Satchell J.Lumbricidae[M]∥Burges A, Raw F, eds. Soil Biology. London: Academic Press,1967.
[38] Kohn M J.Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46):19 691-19 695.
[39] Diefendorf Aaron F, Hayes John M.Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13):5 738-5 743.
[40] Freeman K H, Mueller K E, Diefendorf A F, et al.Clarifying the influence of water availability and plant types on carbon isotope discrimination by C3 plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(16):E59-E60.
doi: 10.1073/pnas.1102556108
[41] Rey K, Amiot R, Lecuyer C, et al.Late Miocene climatic and environmental variations in northern Greece inferred from stable isotope compositions (delta O-18, delta C-13) of equid teeth apatite[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 388:48-57.DOI: 10.1016/j.palaeo.2013.07.021.
[42] Leuenberger M, Siegenthaler U, Langway C C.Carbon isotope composition of atmospheric CO2 during the last ice-age from an Antarctic ice core[J]. Nature, 1992, 357(6 378):488-490.
[43] Schmitt J, Schneider R, Elsig J, et al.Carbon isotope constraints on the deglacial CO2 rise from ice cores[J]. Science, 2012, 336(6 082):711-714.
doi: 10.1126/science.1217161 pmid: 22461496
[44] Hatté Christine, Antoine Pierre, Fontugne Michel, et al.δ13C of loess organic matter as a potential proxy for paleoprecipitation[J]. Quaternary Research, 2001, 55(1):33-38.
doi: 10.1006/qres.2000.2191
[45] Hatté C, Guiot J.Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: Application to the Nussloch loess sequence (Rhine valley, Germany)[J]. Climate Dynamics, 2005, 25(2/3):315-327.
[46] Gocke M, Pustovoytov K, Kühn P, et al.Carbonate rhizoliths in loess and their implications for paleoenvironmental reconstruction revealed by isotopic composition:δ13C ,14C[J]. Chemical Geology, 2011, 283(3):251-260.
[47] Edwards C A, Bohlen P J.Biology and Ecology of Earthworms[M]. London, UK: Chapman and Hall, 1996.
[48] Curry James P.Factors affecting the abundance of earthworms in soils[M]∥Edwards C A, ed. Earthworm Ecology. Boca Raton,FL:CRC Press, 2004.
[49] Brown George G, Edwards Clive A, Brussaard Lijbert.How earthworms affect plant growth: Burrowing into the mechanisms[M]∥Edwards C A, ed. Earthworm Ecology. Boca Raton: CRC Press, 2004:13-49.
[50] Antoine Pierre, Rousseau Denis-Didier, Moine Olivier, et al.Rapid and cyclic aeolian deposition during the last glacial in European loess: A high-resolution record from Nussloch, Germany[J]. Quaternary Science Reviews, 2009, 28(25):2 955-2 973.
[51] Moine Olivier, Rousseau Denis-Didier, Jolly Dominique, et al.Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks[J]. Quaternary Research, 2002, 57(1):162-172.
doi: 10.1006/qres.2001.2286
[52] Xu Qin.Geographical distribution of terrestrial earthworms in China[J]. Journal of Beijing Institute of Education (Social Science Edition), 1996,(3):54-61.
[52] [徐芹. 中国陆栖蚯蚓地理分布概述[J]. 北京教育学院学报: 社会科学版, 1996, (3):54-61.]
[53] Xu Qin.A study on the classification of terrestrial earthworms in China[J]. Journal of Beijing Institute of Education (Social Science Edition), 1999, (3):52-57.
[53] [徐芹. 中国陆栖蚯蚓分类研究史探讨[J]. 北京教育学院学报: 社会科学版, 1999,(3): 52-57.]
[1] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[2] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[3] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[4] 汪正江,许效松,杜秋定,杨菲,邓奇,伍皓,周小琳. 南华冰期的底界讨论:来自沉积学与同位素年代学证据[J]. 地球科学进展, 2013, 28(4): 477-489.
[5] 徐争启,程发贵,唐纯勇,宋 昊,张成江,倪师军,郭景腾,祁家明. 广西大新地区辉绿岩地质地球化学、年代学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1080-1086.
[6] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[7] 张沛,周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.
[8] 丁汝鑫,周祖翼,王玮. 利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-456.
[9] 何世平,王洪亮,徐学义,张宏飞,任光明. 北祁连东段红土堡基性火山岩锆石LA -IC P-MS U-Pb年代学及其地质意义[J]. 地球科学进展, 2007, 22(2): 143-151.
[10] 钟玉芳,马昌前. 含U副矿物的地质年代学研究综述[J]. 地球科学进展, 2006, 21(4): 372-382.
[11] 王飞宇,金之钧,吕修祥,肖贤明,彭平安,孙永革. 含油气盆地成藏期分析理论和新方法[J]. 地球科学进展, 2002, 17(5): 754-762.
[12] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.
[13] 吴堑虹,刘厚昌. (U-Th)/He定年——低温热年代学研究的一种新技术[J]. 地球科学进展, 2002, 17(1): 126-131.
[14] 于晟;于贵华;艾印双;单新建. 地球物理与空间物理学15年回顾[J]. 地球科学进展, 2001, 16(6): 862-864.
[15] 郭进义;姜文英. 地球化学学科15年回顾[J]. 地球科学进展, 2001, 16(6): 858-861.