地球科学进展 ›› 2006, Vol. 21 ›› Issue (4): 372 -382. doi: 10.11867/j.issn.1001-8166.2006.04.0372

综述与评述 上一篇    下一篇

含U副矿物的地质年代学研究综述
钟玉芳,马昌前   
  1. 中国地质大学地球科学学院和地质过程与矿产资源国家重点实验室,湖北 武汉 430074
  • 收稿日期:2005-07-20 修回日期:2006-01-20 出版日期:2006-04-15
  • 通讯作者: 钟玉芳 E-mail:zhongyufang@cug.edu.cn
  • 基金资助:

    中国地质大学优秀青年教师基金项目;地质过程与矿产资源国家重点实验室开放基金项目;国家自然科学基金项目“大别造山带中生代侵入岩类成因、岩浆动力学与构造体制转换”(编号:40334037)资助.

A Review of Geochronology of U-bearing Accessory Minerals

Zhong Yufang, Ma Changqian   

  1. Faculty of Earth Sciences,State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China
  • Received:2005-07-20 Revised:2006-01-20 Online:2006-04-15 Published:2006-04-15

简要介绍了目前已经发展起来的各种微区原位测年技术的特点和研究矿物内部结构的技术。微区原位测年技术有离子探针、激光探针同位素测年技术、电子探针、质子探针和X射线荧光探针Th-U-全Pb化学等时线年龄技术。综述了锆石、独居石、磷钇矿、榍石、磷灰石、金红石、斜锆石等含U副矿物在U-Th-Pb年代学研究方面的应用及进展,并介绍了锆石、独居石、磷钇矿、榍石等具有多世代性的矿物的成因判别方法,概括了用于岩浆过程、变质过程和沉积过程年代学研究常用的含U副矿物,及其相应的年代学研究需要注意及可解决的地质问题和适用性。总结了岩石年代学研究的主要进展和提取贮存在副矿物中有价值的年龄和成因信息需要解决的问题。

Over the past dacade, there have been many significant advances in the area of accessory mineral's geochronology, notably permitted by the development of imaging and in situ microanalytical dating techniques, which include isotopic dating technique and chemical Th-U-total Pb isochron method. The isotopic microanalytical dating techniques include ion microprobe and laser ablation micro-probe-inductively coupled plasma mass spetrometry. There are three kinds of  techniques to perform Th-U-total Pb isochron dating analyses, including electron probe X-ray microanalysis, proton-induced x-ray emission micro-probe and X-ray fluorescence  probe. The internal textural complexity can be revealed by means of cathodoluminescence(CL)or back-scattered electron (BSE)imaging, HF etching imaging and laser raman spectrometry. Zircon, monazite, xenolite, apatite, titanite, rutile and baddeleyite are usually used to U-Th-Pb dating. A review has been made on their applicabilities to geochronology (including each mineral’s superiority or limitation in U-Th-Pb dating, closure temperature). Methods of determining genesis of those minerals (such as zircon, monazite, xenolite, titanite )which usually show multiple generations in a single crystal have been introduced. In addition , some recent advances of geochronology and their geological applications have also been introduced. The accessible accessory minerals used for dating magma, metamorphism and deposition processes have been summed up. Besides,  the corresponding requirements , limitations and resoluble problems have been listed. Finally, Main advances in geochronology have been summarized. Viewpoints have been put forward that main problems should be dealt with to extract valuable chronological and genetic information locked in accessory minerals that are often used in petrographical study, mineral microtexture and or microchemical investigations, mechanisms of element mobility within crystals.

中图分类号: 

[1] Poitrasson F, Hanchar J M, Schaltegger U. The current state of accessory mineral research[J]. Chemical Geology, 2002, 191:3-24.

[2] Cherniak D J, Hanchar J M, Watson E B. Diffusion of tetravalent cations in zircon[J]. Contributions to Mineralogy and Petrology,1997,127:383-390.

[3] Cherniak D J, Watson E B. Pb diffusion in zircon[J]. Chemical Geology ,2001, 172: 1 999-2 017.

[4] Ireland T R.Williams I S. Considerations in zircon geochronology by SIMS[J]. Reviews in Mineralogy & Geochemistry, 2003,53:215-227.

[5] Wang Qinyan, Chen Nengsong, Liu Rong. Site-directed and in-situ dating microbeam techniques and crystal chemistry microanalysis fof U-Th-Pb bearing accessory minerals[J]. Geological Science and Technology Information, 2005,24(1):7-13.[王勤燕,陈能松,刘嵘.U-Th-Pb副矿物的原地原位测年微束分析方法比较与微区晶体化学研究[J].地质科技情报,2005,24(1):7-13.]

[6] Moser D E, Scott D J. Towards a more accurate U-Pb geochoronology[J]. Chemical Geology, 2000, 172:1-3.

[7] Ko ler J, Fonneland H, Sylvester P, et al. U Pb dating of detrital zircons for sediment provenance studies—A comparison of laser ablation ICPMS and SIMS techniques[J]. Chemical Geology, 2002,182: 605-618.

[8] Asami M, Suzuki K, Grew E S. Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, East Antarctica: Evidence for ultra-high-temperature metamorphism at 2400 Ma [J]. Precambrian Research, 2002,114:249-275.

[9] French J E, Heaman L M, Chacko T. Feasibility of chemical U-Th-total Pb baddeleyite dating by electron microprobe[J]. Chemical Geology,2002,188: 85-104.

[10] Engi M, Cheburkin A K, Köppel V. Nondestructive chemical dating of young monazite using XRF1. Design of a mini-probe, age data for samples from the Central Alps, and comparison to U-Pb (TIMS) data[J]. Chemical Geology, 2002,191:225-241.

[11] Mazzoli C, Hanchar J M, DellaMea G, et al. μ-PIXE analysis of monazite for total U-Th-Pb age determination [J]. Nuclear In-struments in Physics Research B, 2002, 189: 394-399.

[12] Scherrer N C, Engi M, Berger A, et al. Nondestructive chemical dating of young monazite using XRF2. Context sensitive microanalysis and comparison with Th-Pb laser-ablation mass spectrometric data[J]. Chemical Geology, 2002,191: 243-255.

[13] Catlos, E J, Gilley L D, Harrison T M. Interpretation of monazite ages obtained via in situ analysis[J]. Chemical Geology, 2002,188:193-215.

[14] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[C]Hanchar J M, Hoskin P W O, eds, Zircon. Mineralogical Society of America Reviews in Mineralogy & Geochemistry, 2003,53:469-495.

[15] Wu Yuanbao, Zheng Yongfei. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin,2004,49(15):1 554-1 569.[吴元保,郑永飞.锆石成因矿物学研究及其对 U-Pb 年龄解释的制约[J].科学通报,2004,49(16):1 589-1 604.]

[16] Hoskin P W O, Schaltegger U. The composition of zircon and ignous and metamorphic petrogenesis[J]. Reviews in Mineralogy & Geochemistry, 2003,53:27-62.

[17] Zheng Yongfei, Wu Yuanbao, Chen Fukun, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic[J]. Geochimica et Cosmochimica Acta, 2004, 68:4 145-4 165.

[18] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous zircon: Trace element composition as an indicator of source rock type [J]. Contributions to Mineralogy and Petrology,2002,143:602-622.

[19] Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002,184:123-138.

[20] Wu Yuanbao, Chen Daogong, Xia Qunke, et al. In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LAM-ICP-MS[J]. Science in China(Series D),2003,46(11):1 161-1 170. [吴元保,陈道公,夏群科,.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学:D,2003, 33(1):20-28.]

[21] Liati A, Gebauer D. Constraining the prograde and retrograde P-T-t of Eocene HP rocks by SHRIMP dating of different zircon domains: inferred rates of heating, burial, cooling and exhumation for central Rhodope, northern Greece[J]. Contributions to Mineralogy and Petrology, 1999, 135:340-354.

[22] Knudsen T-L, Griffin W L, Hartz E H, et al. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking[J]. Contributions to Mineralogy and Petrology,2001, 141:83-94.

[23] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf isotope evidence from detrial zircons[J]. Precambrian Research,2004,131:231-282.

[24] Veevers J J, Saeed A, Belousova E A, et al. U-Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton[J]. Earth-Science Reviews,2005,68:245-279.

[25] Keay S, Steele D, Compston W. Identifying granite sources by SHRIMP U-Pb zircon geochronology:An application to the Lachlan foldbelt[J]. Contributions to Mineralogy and Petrology,1999,137:323-341.

[26] Rosa J D, Jenner G A, Cartro A. A study of inherited zircons in granitoid rocks from the south Portuguese and Ossa-morena Zones, Iberian Massif: Support for the exotic origin of the South Portuguese Zone[J]. Tectonophysics, 2002,353: 245-256.

[27] Zhu X K, O’Nions R K. Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: A case study from the Lewisian terrain[J]. Earth and Planetary Science Letters,1999,171:209-220.

[28] Kohn M J, Malloy M A. Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations[J]. Geochimica et Cosmochimica Acta, 2004,68(1):101-113.

[29] Foster G, Gibson D, Horstwood M, et al. Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite[J]. Chemical Geology, 2002, 191:181-207.

[30] Zhang Hongfei, Harris N, Parrish R, et al. U-Pb ages of Kude and sajia leucogranites in Sajia dome from North Himalaya and their geological implications[J]. Chinese Science Bulletin,2004,49:2 087-2 092.

[31] Rasmussen B, Fletcher I R. Indirect dating of mafic intrusions by SHRIMP U-Pb analysis of monazite in contact metamorphosed shale:An example from the Palaeoproterozoic Capricorn Orogen, Western Australia[J]. Earth and Planetary Science Letters,2002,197:287-299.

[32] Rasmussen B. Radiometric dating of sedimentary rocks: The application of diagenetic xenotime geochronology[J]. Earth-Science Reviews,2005,68:197-243.

[33] McNaughton, N J, Rasmussen B, Fletcher I R. SHRIMP uranium-lead dating of diagenetic xenotime in siliciclastic sedimentary rocks[J]. Science, 1999,285:78-80.

[34] Kositcin N, McNaughton N J, Griffin B J, et al. Textural and geochemical discrimination between xenotime of  different origin in the Archaean Wit watersr and Basin, South Africa[J]. Geochimica et Cosmochimica Acta, 2003, 67(4 ):709-731.

[35] Rasmussen B, Fletcher I R, McNaughton N J. Dating low-grade metamorphic events by SHRIMP U-Pb analysis of monazite in shales[J]. Geology, 2001,29:963-966.

[36] Dawson G C, Krapez B, Fletcher I R, et al. 1.2 Ga thermal metamorphism in the Albany-Fraser Orogen of Western Australia: Consequence of collision or regional heating by dyke swarms? [J]. Journal of the Geological Society of London, 2003,160:29-37.

[37] Simpson R L, Parrish R R, Searle M P, et al. Two episodes of monazite crystallization during metamorphism and crustal melting in the Everest region of the Nepalese Himalaya[J]. Geology, 2000, 28:403-406.

[38] Viskupic K, Hodges K V. Monazite-xenotime thermochronometry:Methodology and an example from the Nepalese Himalaya[J]. Contributions to Mineralogy and Petrology, 2001,141:233-247.

[39] Petersson J, Whitehouse M J, Eliasson T. Ion microprobe U-Pb dating of hydrothermal xenotime from an episyenite: Evidence for rift-related reactivation[J]. Chemical Geology,2001,175:703-712.

[40] Brown S M, Fletcher I R, Stein H J, et al. Geochronological constraints on pre-, syn-, and post-mineralization events at the world-class Cleo gold deposit, Eastern Goldfields Province, Western Australia[J]. Economic Geology, 2002,97: 541-559.

[41] Andrehs G, Heinrich W. Experimental determination of REE distributions between monazite and xenotime: Potential for temperature-calibrated geochronology[J]. Chemical Geology,1998,149: 83-96.

[42] Rasmussen B, Fletcher I R, Bengtson S, et al. SHRIMP U-Pb dating of diagenetic xenotime in the Stirling Range Formation, Western Australia: 1.8 billion year minimum age for the Stirling biota[J]. Precambrian Research, 2004,133: 329-337.

[43] Vallini D, Rasmussen B, Krapez B, et al. Obtaining diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusually coarse xenotime cement in phosphatic sandstone [J]. Geology, 2002,30:1 083-1 086.

[44] Guo Chunli, Wu Fuyuan. High precision dating of deposition of clastic sedimentary rocks-U-Pb SHRIMP dating on authigenic xenotime[J]. Earth Science Frontiers,2003,10(2):327-334.[郭春丽, 吴福元.碎屑沉积岩沉积作用的高精度定年——自生磷钇矿离子探针U-Pb年龄测定[J].地学前缘,2003,10(2):327-334.]

[45] Frost B R,Chamberlain K R,Schumacher J C. Sphene(titanite): Phase relations and role as a geochronometer[J]. Chemical Geology, 2000,172:131-148.

[46] Aleinikoff J N, Wintsch R P, Fanning A, et al. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study[J]. Chemical Geology,2002,188:125-147.

[47] Nemchin A A, Pidgeon R T. U-Pb ages on titanite and apatite from the Darling Range granite: Implications for Late Archaean history of the southwestern Yilgarn Craton [J]. Precambrian Research,1999,96:125-139.

[48] Corfu F, StoneD. The significance of titanite and apatite U-Pb ages: Constraints for the post-magmatic thermal-hydrothermal evolution of a batholithic complex, Berens River area,northwestern Superior Province, Canada[J]. Geochimica et Cosmochimica Acta, 1998, 62:2 979-2 995.

[49] Scott D J, St-Onge M R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava Orogen, Canada; implications for U-Pb geochronology and P-T-t path determinations[J]. Geology, 1995, 23:1 123-1 126.

[50] Bibikova E, Skiöld T, Bogdanova S. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield[J]. Precambrian Research, 2001,105: 315-330.

[51] Cox R A, Indares A, Dunning G R. Temperature-time paths in the high-P Manicouagan Imbricate zone, eastern Grenville Province: Evidence for two metamorphic events[J]. Precambrian Research,2002,117: 225-250.

[52] Li Qiuli, Li Shuguang,Zheng Yongfei, et al. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history[J]. Chemical Geology, 2003,200(3/4):255-265.

[53] Wolfgang Hirdes, Donald W Davis. U-Pb zircon and rutile metamorphic ages of Dahomeyan garnet-hornblende gneiss in southeastern Ghana, West Africa[J]. Journal of African Earth Sciences, 2002,35: 445-449.

[54] Chandler F W, Parrish R R. Age of the Richmond Gulf Group and implications for rifting in the Trans-Hudson orogen[J]. Precambrian Research, 1989,44:277-288.

[55] Mojzsis S J,Harrisom T M,Arrheius G,et al. Reply: Origin of life from apatite dating?[J]. Nature,1999, 400:127-128.

[56] Barfod G H, Albare de F, Knoll A H, et al. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils[J]. Earth and Planetary Science Letters, 2002, 201: 203-212.

[57] Sano Y, Takayuki O, Terada K, et al. Direct ion microprobe U-Pb dating of fossil tooth of a Permian shark[J]. Earth and Planetary Science Letters, 1999, 174:75-80.

[58] Li Zhichang, Lu Yuanfa, Huang Guicheng. Methods and Advances of Radioactive Isotope Geology[M]. Wuhan: China University of Geosciences Press, 2004.[李志昌,路远发,黄圭成.放射性同位素地质学方法与进展[M].武汉:中国地质大学出版社,2004.]

[59] Wingate M T D, Compston W. Crystal orientation effects during ion microprobe U-Pb analysis of baddeleyite[J]. Chemical Geology,2000,168:75-97.

[60] French J E, Heaman L M, Chacko T. Feasibility of chemical U-Th-total Pb baddeleyite dating by electron microprobe[J]. Chemical Geology,2002,188: 85-104.

[61] Santos J O S, Breemen O B V, Groves D I. Timing and evolution of multiple Paleoproterozoic magmatic arcs in the Tapajós Domain, Amazon Craton:Constraints from SHRIMP and TIMS zircon,baddeleyite and titanite U-Pb geochronology[J]. Precambrian Research,2004,131:73-109.

[1] 单慧媚,马腾,刘存富,刘玲,杨杰. 有机溴化物的溴同位素测试技术及其生物地球化学指示意义[J]. 地球科学进展, 2011, 26(8): 811-821.
[2] 常华进,储雪蕾. 草莓状黄铁矿与古海洋环境恢复[J]. 地球科学进展, 2011, 26(5): 475-481.
[3] 李艳青,佘振兵,马昌前. 石英SEM-CL微结构及其在岩石学中的应用[J]. 地球科学进展, 2011, 26(3): 325-331.
[4] 焦若鸿,许长海,张向涛,阙晓铭. 锆石裂变径迹(ZFT)年代学:进展与应用[J]. 地球科学进展, 2011, 26(2): 171-182.
[5] 崔浩杰,冯雄汉,刘凡,谭文峰,邱国红,陈秀华. 钙锰矿的研究进展[J]. 地球科学进展, 2009, 24(10): 1084-1093.
[6] 周跃飞,陆现彩,王汝成,陆建军. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23.
[7] 高玉巧;刘立;曲希玉. 片钠铝石的成因及其对CO 2天然气运聚的指示意义[J]. 地球科学进展, 2005, 20(10): 1083-1088.
[8] 张世涛,宋学良,张子雄,冯庆来,刘本培. 星云湖表层沉积物矿物组成及其环境意义[J]. 地球科学进展, 2003, 18(6): 928-932.
[9] 陈忠,丘学林,颜文,杨惠宁,古森昌,陈木宏. 天然矿物自然铝的研究进展[J]. 地球科学进展, 2003, 18(4): 545-550.
[10] 金瞰昆,杜振川,李世峰. 欧洲有机质成矿作用研究进展[J]. 地球科学进展, 2002, 17(5): 787-788.
[11] 杨献忠. 伊利石单元粒子及其研究意义[J]. 地球科学进展, 2002, 17(5): 659-663.
[12] 侯渭,谢鸿森,周文戈. 陨石含水矿物成因评述和地球水来源的探讨[J]. 地球科学进展, 2001, 16(2): 209-214.
[13] 侯 渭,谢鸿森. 陨石氧同位素组成及其地学意义[J]. 地球科学进展, 2000, 15(5): 534-540.
[14] 马金龙,邱亮斌,程 真,曾乔松,许德如,金晓东. 急缺矿种金刚石合成固体密封传压介质叶蜡石资源开发研究及其对策[J]. 地球科学进展, 2000, 15(4): 477-478.
[15] 张刚生,谢先德. CaCO 3生物矿化的研究进展——有机质的控制作用[J]. 地球科学进展, 2000, 15(2): 204-209.
阅读次数
全文


摘要