地球科学进展 ›› 2009, Vol. 24 ›› Issue (10): 1084 -1093. doi: 10.11867/j.issn.1001-8166.2009.10.1084

综述与评述 上一篇    下一篇

钙锰矿的研究进展
崔浩杰 1,2,冯雄汉 1,刘凡 1*,谭文峰 1,邱国红 1,陈秀华 1   
  1. 1.华中农业大学农业部亚热带农业资源与环境重点开放实验室,湖北  武汉  430070;2.中国科学院城市环境研究所,福建  厦门  361021
  • 收稿日期:2008-12-29 修回日期:2009-07-14 出版日期:2009-10-10
  • 通讯作者: 刘凡(1957-),男,湖北武汉人,教授,主要从事土壤矿物与环境化学等研究. E-mail:liufan@mail.hzau.edu.cn
  • 基金资助:

    国家自然科学基金重点项目“土壤中锰氧化物的生物形成及对物质形态和转化的影响”(编号:40830527)和“氧化锰矿物结构中的八面体空穴与其表面化学性质的关系”( 编号:40771102);高等学校全国优秀博士学位论文作者专项资金“土壤中锰氧化物的生物与化学成矿耦合机制及其环境效应研究”( 编号:200767);湖北省自然科学基金青年杰出人才项目“土壤锰矿物氧化Cr(III)的动力学过程与反应途径及Mn(III)的环境意义”( 编号:2007ABB014)资助.

Progress in the Study of Todorokite

Cui Haojie 1,2, Feng Xionghan 1, Liu Fan 1, Tan Wenfeng 1, Qiu Guohong 1, Chen Xiuhua 1   

  1. 1.Key Laboratory of Subtropical Agricultural Resources and Environment of the  Ministry of Agriculture, Huazhong Agricultural University,Wuhan  430070, China;
    2. Institute of Urban Environment, Chinese Academy of Sciences, Xiamen  361021, China
  • Received:2008-12-29 Revised:2009-07-14 Online:2009-10-10 Published:2009-10-10
  • Contact: Haojie Cui E-mail:liufan@mail.hzau.edu.cn

  钙锰矿是土壤、沉积物及海洋锰结核中常见的以3×3结构为主的一族大隧道构造氧化锰矿物。隧道中存在水分子和阳离子,形貌以片状、针状或纤维状为主。水钠锰矿→布塞尔矿→钙锰矿的转化是钙锰矿形成的一个重要途径。这种转化在常压条件下受体系温度、pH、共存粘土矿物、转化时间以及前驱物布塞尔矿亚结构特点,如层间交换离子类型、浓度、以水合离子形态或与MnO6八面体空穴上方键合的强弱、结晶度、Mn(III)的含量与迁移特点等因素影响。钙锰矿独特的结构使其所具有的离子吸附、氧化与催化特性及分子级的隧道空间等有望作为特异的分子筛、二次电池正极材料、有机反应催化剂等在环境科学和材料科学等领域具有广阔的应用前景。

       Todorokite is one of common manganese oxides with a basic 3×3 tunnel structure in soils, sediments and ocean Mn nodules. The tunnels in todorokites are partially filled with water molecules and a variety of cations, and the morphology of todorokites mostly consist of plate-, needle-and fiber-shaped crystallites. The transformation of birnessite→buserite→todorokite is an important pathway for todoroktie formation. The influencing factors, such as type and amount of interlayer cation in buserite precursor, the amount of Mn(III) in the structure of layered precursor, the average manganese oxidation state and crystallinities of the precursors, reaction temperature, pH and clay minerals, would affect the formation of todorokite under hydrothermal and refluxing conditions. The influencing effects are apparent for formation of todorokite at atmospheric pressure. These manganese oxide octahedral molecular sieves could be used widely in sorbents, catalysis, separations, chemical sensors, and batteries due to their unique structure and high surface areas.

中图分类号: 

[1] Golden D C, Chen C C, Dixon J B. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment[J].Clays and Clay Minerals,1987, 35: 271-280.
[2] Mellin T A, Lei G. Stabilization of 10Å-manganates by interlayer cations and hydrothermal treatment: Implications for the mineralogy of marine manganese concretions[J].Marine Geology,1993, 115: 67-83.
[3] Post J E. Manganese oxide minerals: Crystal structures and economic and environmental significance[J].Proceedings of the National Academy of Sciences of the United States of America,1999, 96: 3 447-3 454.
[4] Tan Wenfeng, Liu Fan, Li Yonghua, et al. Mineralogy of manganese in ironmanganese nodules of several soils in China[J]. Acta Pedologica Sinica,2000, 37(2): 192-201.[谭文峰, 刘凡, 李永华,等. 我国几种土壤铁锰结核中的锰矿物类型[J]. 土壤学报, 2000, 37(2): 192-201.]
[5] McKeown D A, Post J E. Characterization of manganese oxide mineralogy in rock varnish and dendrites using X-ray absorption spectroscopy[J].American Mineralogist,2001, 86: 701-713.
[6] Buatier M D, Guillaume D, Wheat C G, et al. Mineralogical characterization and genesis of hydrothermal Mn oxides from the flank of the Juan the Fuca Ridge[J].American Mineralogist,2004, 89: 1 807-1 815.
[7] Takahashi Y, Manceau A, Geoffroy N, et al. Chemical and structural control of the partitioning of Co, Ce, and Pb in marine ferromanganese oxides[J].Geochimica et Cosmochimica Acta,2007, 71(4): 984-1 008.
[8] Frondel C, Marvis U B, Ito J. New occurrence of todorokite[J].American Mineralogist,1960,45:1 167-1 173.
[9] Turner S, Buseck P. Todorokies: A new family of naturally occurring manganese oxides[J].Science,1981, 212: 1 024-1 027.
[10] Siegel M D, Turner S. Crystalline todorokite associated with biogenic debris in manganese nodules[J].Science,1983, 219: 172-174.
[11] Golden D C, Chen C C, Dixon J B. Synthesis of Todorokite[J].Science,1986, 231: 717-719.
[12] Shen Y F, Zerger R P, Suib S L, et al. Manganese oxide octahedral molecular sieves: Preparation, characterization and application[J].Science,1993, 260: 511-515.
[13] Feng Q, Kanoh H, Miyai Y, et al. Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase[J].Chemistry of Materials,1995, 7: 1 722-1 727.
[14] Luo J, Zhang Q, Huang A, et al. Double-aging method for preparation of stabilized Na-buserite and Transformations to todorkites incorporated with various metals[J].Inorganic Chemistry,1999, 38: 6 106-6 113.
[15] Liu J, Cai J, Son Y C, et al. Magnesium manganese oxide nanoribbons: Synthesis, characterization, and catalytic application[J].The Journal of Physical Chemistry B,2002, 106: 9 761-9 768.
[16] Post J E, Heaney P J, Hanson J. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite [J].American Mineralogist,2003, 88: 142-150.
[17] Feng X H, Tan W F, Liu F, et al. Synthesis of todorokite at atmospheric pressure[J].Chemistry of Materials,2004, 16: 4 330-4 336.
[18] Al-Sagheer F A, Zaki M L. Synthesis and surface characterization of todorokite-type microporous manganese oxides: Implications for shapeselective oxidation catalysts[J].Microporous and Mesoporous Materials,2004, 67: 43-52.
[19] Liu Z H, Kang L, Ooi K, et al. Studies on the formation of todorokite-type manganese oxide with different crystalline birnessitres by Mg2+-templating reaction[J].Journal of Colloid and Interface Science,2005, 285: 239-246.
[20] Onda A, Hara S, Kakiyoshi K, et al. Synthesis of manganese oxide octahedral molecular sieves containing cobalt, nickel, or magnesium, and the catalytic properties for hydration of acrylonitrile[J].Applied Catalysis A: General,2007, 321: 71-78.
[21] Abakumov A M, Hadermann J, Tendeloo G V, et al.[SrF0.8(OH)0.2]2.526[Mn6O12]:Columnar rocksalt fragments inside the todorokite-type tunnel structure[J].Chemistry of Materials,2007, 19: 1 181-1 189.
[22] McKenzie R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese[J]. Mineralogical Magazine,1971, 38: 493-503.
[23] McKenzie R M. Manganese oxides and hydroxides[M]//Dixon J B, Weed S B, eds. Minerals in Soil Environments (2nd edition). Madison: Soil Science Society of America,1989: 439-465.
[24] Burns R G, Burns V M, Stockman H W. A review of the todorokite-buserite problem: Implications to the mineralogy of marine manganese nodules[J].American Mineralogist,1983, 68: 972-980.
[25] Giovanoli R. A review of the todorokite-buserite problem: Implications to the mineralogy of marine manganese nodules: Discussion[J].American Mineralogist,1985, 70: 202-204.
[26] Turner S, Siegel M D, Buseck P R. Structure features of tordorkite intergrowths in manganese nodules[J].Nature,1982, 296: 841-842.
[27] BodeïS, Manceau A, Geoffroy N, et al. Formation of todorokite from vernadite in Ni-rich hemipelagic sediments[J].Geochimica et Cosmochimica Acta, 2007, 71: 5 698-5 716.
[28] Chukhrov F V, Gorshkov A I, Sivtsov A V. New data on natural todorkites[J].Nature,1979, 278: 631-632.
[29] Chukhrov F V, Gorschkov A I, Rudnitskaya E S, et al. Manganese minerals in clays—A reviews[J].Clays and Clay Minerals, 1980, 28: 346-354.
[30] Post J E, Bish D L. Rietveld refinement of the todorokite structure[J].American Mineralogist,1988, 73: 861-869.
[31] Gutzmer J, Beukes N J. Asbestiform manjiroite and todorokite from the Kalahari manganese field, South Africa[J].Journal of Geology,2000, 103(3/4):163-174.
[32] Zhou H, Wang J Y, Chen X, et al. Studies of oxidative dehydrogenation of ethanol over manganese oxide octahedral molecular sieve catalysts[J].Microporous and Mesoporous Materials,1998, 21: 315-324.
[33] Ching S, Krukowska K S, Suib S L. A new synthetic route to todorokite-type manganese oxides[J].Inorganica Chimica Acta, 1999, 294: 123-132.
[34] Kumagai N, Komaba S, Abe K, et al. Synthesis of metal-doped todoroktie-type MnO2 and its cathode characteristics for rechargeable lithium batteries[J].Journal of Power Sources,2005, 146: 310-314.
[35] Shen Y F, Suib S L, O'Yang C L. Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide[J].Journal of American Chemistry Society,1994, 116: 11 020-11 029.
[36] Malinger K A, Laubernds K, Son Y C, et al. Effects of microwave processing on chemical, physical and catalytic properties of todorokite-type manganese oxide[J].Chemistry of Materials,2004, 16: 4 296-4 303.
[37] Tan Wenfeng. The Composition and Surface Chemistry Characteristics of Fe-Mn Nodules of Several Soils in China[D].Wuhan: Huazhong Agricultural University, 2000.[谭文峰. 我国几种土壤中铁锰结核的物质组成与表面化学性质[D].武汉: 华中农业大学,2000.][38] Tan W F, Liu F, Li Y H, et al. Mineralogy of manganese oxides in ironmanganese nodules of several main types of soils in China[J].Pedosphere,2000, 10: 365-274.
[39] Burns R G, Burns V M, Sung w, et al. Ferromanganese mineralogy suggested terminology of the principal manganese oxide phases[J].Geological Society of America,1974, 6:1 029-1 030.
[40] Tebo B M, Bargar J R, Clement B, et al. Manganese biooxides: Properties and mechanisms of formation[J].Annual Review of Earth and Planetary Science,2004, 32: 287-328.
[41] Villalobos M, Lanson B, Manceau A, et al. Structural model for the biogenic Mn oxide produced by Pseudomonas putida[J]. American Mineralogist,2006, 91: 489-502.
[42] Miyata N, Tani Y, Sakata M,et al. Microbial manganese oxide formation and interaction with toxic metal ions[J].Journal of Bioscience and Bioengineering,2007, 104(1): 1-8.
[43] Webb S M, Dick G J, Bargar J R, et al. Evidence for the presence of Mn(III) intermediates in the bacterial oxidation of Mn(II)[J].Proceedings of the National Academy of Sciences of the United States of America,2005, 102: 5 558-5 563.
[44] Saratovsky I, Wightman P G, Pasten P A, et al. Manganese oxides: Parallels between abiotic and biotic structures[J].Journal of American Chemistry Society,2006, 128: 11 188-11 198.
[45] Miyata N, Maruo K, Tani Y, et al. Produce of biogenic manganese oxides by Anamorphic Ascomycete Fungi isolated from streambed pebbles[J].Geomicrobiology Journal,2006, 23: 63-73.
[46] Burns V M, Burns R G. Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific[J].Earth and Planetary Science Letters,1978, 39:341-348.
[47] Chen Jianlin, Zhang Fusheng, Lin Chengyi, et al.Biogenesis study of manganese nodules from the Chinese pioneer area in the Pacific ocean[J].Acta Geologica Sinica,2001, 75(2): 228-232.[陈建林, 张富生, 林承毅, 等. 太平洋中国开辟区锰结核生物成因研究[J].地质学报,2001, 75(2): 228-232.]
[48] Kim H S, Pasten P A, Gaillard J F, et al. Nanocrystalline todorokite-like manganese oxide produce by bacterial catalysis[J]. Journal of American Chemistry Society, 2003, 125: 14 284-14 285.
[49] Kim H S, Stair P C. Bacterially produced manganese oxide and todorokite: UV raman spectroscopic comparison[J].The Journal of Physical Chemistry B,2004, 108: 17 019-17 026.
[50] Webb S M, Fuller C C, Tebb B M, et al. Determination of Uranly incorporation into biogenic manganese oxides X-ray absorption spectroscopy and scattering[J].Environmental Science & Technology,2006, 40: 771-777.
[51] Ostwald J.Some observations on the chemical composition of todorokite[J].Mineralogical Magazine,1986, 50: 336-340.
[52] Chukhrov F V, Gorshkov A I, Sivtsov A V. New data on natural todorkites[J].Nature,1979, 278: 631-632.
[53] Turner S, Buseck P R. Manganese oxide tunnel structures and their intergrowths[J].Science,1979, 203: 456-458.
[54] Liu Bin, Xia Xi. Doped Ca-,doped Ba-,doped Ni-todorokites and their electrochemical behavior in aqueous electrolytes[J]. Journal of Applied Sciences,2001, 19(2): 636-640.[刘斌, 夏熙. 含钙、含钡和含镍镁锰矿的合成及在水溶液中的电化学性能[J]. 应用科学学报, 2001, 19(2): 636-640.]
[55] Ali A A, Al-Sagheer F A, Zaki M I. Surface texture morphology and chemical composition of hydrothermally synthesized tunnel-structure manganese(IV) oxide[J].International Journal of Inorganic Materials,2001, 3: 427-435.
[56] Vileno E, Zhou H, Zhang Q, et al. Synthetic todorkite produce by microwave heating: An active oxidation catalyst[J].Journal of Catalysis,1999, 187: 285-297.
[57] Feng Xionghan, Liu Fan, Tan Wenfeng, et al. Synthesis of todorokite by refluxing process and its primary characterization[J].Science in China (Series D),2003, 33(11): 1 084-1 093.[冯雄汉, 刘凡, 谭文峰,等.回流条件下钙锰矿的合成及其初步表征[J]. 中国科学:D辑,2003, 33(11): 1 084-1 093.]
[58] Feng Xionghan, Tan Wenfeng, Liu Fan, et al. Hydrothermal synthesis of todorokite and its influencing factors[J].Earth Science—Journal of China University of Geosciences,2005, 30(3): 347-352.[冯雄汉,谭文峰,刘凡,等.热液条件下钙锰矿的合成及其影响因素[J]. 地球科学——中国地质大学学报, 2005, 30(3): 347-352.]
[59] Cui H J, Feng X H, Liu F, et al. Factors governing formation of todorokite at atmospheric pressure[J].Science in China(Series D),2005, 48:1 678-1 689.
[60] Cui H, Feng X, Tan W, et al. Synthesis of todorokite-type manganese oxide from Cu-buserite by controlling the pH at atmospheric Pressure[J].Microporous and Mesoporous Materials,2009, 117: 41-47.
[61] Cui Haojie. Factors Governing the Chemical Formation of Todorokite at Atmospheric Pressure[D]. Wuhan: Huazhong Agricultural University, 2007.[崔浩杰. 常压下钙锰矿化学形成的影响因素研究[D]. 武汉:华中农业大学, 2007.]
[62] Drits V A, Silvester E, Gorshkov A I, et al. Structure of synthetic monoclinic Na-rich birnessiteand hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction[J].American Mineralogist,1997, 82: 946-961.
[63] Lanson B, Drits V A, Silvester E, et al. Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH[J].American Mineralogist,2000, 85: 826-838.
[64] Silvester E J, Manceau A, Drits V A. The structure of monoclinic Na-rich birnessite and hexagonal birnessite. Part 2 Results from chemical studies and EXAFS spectroscopy[J].American Mineralogist,1997, 82: 962-978.
[65] Lanson B, Drits V A, Feng Q, et al. Structure of synthetic birnessite: Evidence for a triclinic one-layer unit cell[J].American Mineralogist,2002, 87:1 662-1 671.
[66] Cui H J, Liu X W, Tan W F, et al. Influence of Mn(III) availability on the phase transformation from layered buserite to tunnelstructured todorokite[J].Clays and Clay Minerals,2008, 56: 397-403.
[67] Cui H J, Feng X H, He J Z, et al. Effects of reaction conditions on the formation of todorokite at atmospheric pressure[J].Clays and Clay Minerals, 2006, 54: 605-615.
[68] Tian Z R, Tong W, Wang J Y, et al. Manganese oxide mesoporous structures: mixed valent semiconducting catalysts[J]. Science,1997, 276: 926-930.
[69] Suib S L. Sorption, catalysis, and separation by design[J].Chemical Innovation,2000,(30): 27-33.
[70] Liu Fan, Tan Wenfeng, Liu Guiqiu, et al. Adsorption of heavy metal ions on Fe-Mn nodules in several soils and types of Mn oxide minerals[J].Acta Pedologica Sinica, 2002, 39(5): 699-706.[刘凡,谭文峰, 刘桂秋,等.几种土壤铁锰结核中锰氧化物的重金属离子吸附与锰矿物类型[J] .土壤学报,2002, 39(5): 699-706.]
[71] Balakhonov S V, Churagulov B R, Gudilin E A. Selective cleaning of ions of heavy metals from water solutions using the H-form of todorokite synthesized by the hydrothermal method[J].Journal of Surface Investigation X-ray, Synchrotron and Neutron Techniques,2008,2(1):152-155.
[72] Vileno E, Ma Y, Zhou H, et al. Facile synthesis of synthetic tordorkite(OMS-1), co-precipitation reactions in the presence of a microwave field[J].Microporous and Mesporous Materials,1998, 20: 3-15.
[73] Vileno E, Zhou H, Zhang Q, et al. Synthetic todorkite produce by microwave heating: An active oxidation catalyst[J].Journal of Catalysis,1999, 187: 285-297.
[74] De Guzman R N, Shen Y F, Shaw B R, et al. Role of cyclic voltammetry in characterizing solids: Natural and synthetic manganese oxide octahedral molecular sieves[J].Chemistry of Materials,1993,5:1 395-1 400.
[75] Duncan M J, Leroux F, Corbeit J M, et al. Todorokite as a Li insertion cathode: Comparison of a large tunnel framework “MnO2” structure with its related layered structure[J].Journal of The Electrochemical Society,1998, 145: 3 746-3 757.
[76] Kumagai N, Komaba S, Sakai H, et al. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode[J].Journal of Power Sources,2001, 97/98: 515-517.
[77] Suib S L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials[J].Accounts of Chemical research,2008, 41(4): 479-487.

[1] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[2] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[5] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[6] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[7] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[8] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[9] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[10] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[11] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[12] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[13] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[14] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[15] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
阅读次数
全文


摘要