Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (9): 908-918    DOI: 10.11867/j.issn.1001-8166.2017.09.0899
综述与评述     
干旱区包气带土壤水分运移及其对地下水补给研究进展
赵文智, 周宏, 刘鹄
中国科学院西北生态环境资源研究院,中国生态系统研究网络临泽内陆河流域研究站,中国科学院内陆河流域生态水文重点实验室,甘肃 兰州 730000
Advances in Moisture Migration in Vadose Zone of Dryland and Recharge Effects on Groundwater Dynamics
Zhao Wenzhi, Zhou Hong, Liu Hu
Northwest Institute of Eco-Environment and Resources, CAS, Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Key Laboratory of Ecohydrology of Inland River Basin, Lanzhou 730000, China
 全文: PDF  HTML
摘要: 包气带是指地表到地下水之间垂直剖面中土壤孔隙没有被水充满、水分处于非饱和状态的区域,是地表水进入地下水的通道。包气带土壤水分运移过程不仅影响到地下水补给,而且与相邻景观之间存在水力联系。评述了干旱区包气带土壤水分运移模拟、地球化学示踪技术、地球物理技术在包气带土壤水分运移研究中的应用、影响包气带土壤水分运移及对地下水补给的因素、包气带水分运移对景观间水分交换的影响等方面的研究进展,提出在未来的研究中,应加强包气带土壤水分运移参数的试验观测及数据库建立、加强包气带土壤水分运移及其对地下水补给的研究,应借鉴地球关键带研究的思路,开展包气带土壤水分运移、溶质运移、地下水补给耦合研究。
关键词: 干旱区土壤水分运移地下水补给包气带    
Abstract: The vadose zone is the zone in between the land surface and above the groundwater table at vertical profile with partial water saturation and under the unsaturation condition, which constitutes the connections among atmospheric water, surface water and groundwater. Soil moisture migration in the vadose zone is a rather complicate process, which controls the rates of groundwater depletion and recharge, and has close hydraulic connections with highly frequent water transfers on the interfaces among the irrigation farmland, sand dunes, wetlands, lakes, and other landscape types. Recent development on soil moisture migration simulations and the application of tracer techniques, geophysical techniques and other geological methods in the vadose zone research, the factors affecting soil moisture migration and groundwater recharge,and soil moisture migration effects on moisture exchange between different landscapes were reviewed in this paper. Several suggestions on the future research were presented here: ① An intense field observation and research database should be initiated and constructed to determine the soil hydraulic parameters, and quantify the influence of moisture migration in vadose zone on the groundwater recharge; ② The proposed observations and researches should learn from the “Critical Zone Observatory”, and focus on the coupling of the soil moisture migration, solute transport and groundwater recharge.
Key words: Soil moisture migration    Dryland    Vadose zone    Groundwater recharge.
收稿日期: 2017-02-01 出版日期: 2017-09-20
ZTFLH:  P641.131  
基金资助: 国家自然科学基金重点项目“荒漠绿洲非饱和带土壤水分运移及对地下水补给作用”(编号:41630861)资助
作者简介: 赵文智(1966-),男,陕西定边人,研究员,主要从事生态水文学研究.E-mail:zhaowzh@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵文智
周宏
刘鹄

引用本文:

赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.

Zhao Wenzhi, Zhou Hong, Liu Hu. Advances in Moisture Migration in Vadose Zone of Dryland and Recharge Effects on Groundwater Dynamics. Advances in Earth Science, 2017, 32(9): 908-918.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.09.0899        http://www.adearth.ac.cn/CN/Y2017/V32/I9/908

[1] Lei Zhidong, Yang Shixiu, Xie Senchuan. Soil Water Dynamics[M].Beijing: Tsinghua University Press, 1988.
[雷志栋, 杨诗秀, 谢森传. 土壤水动力学[M]. 北京: 清华大学出版社, 1988.]
[2] Cook P G, Edmunds W M, Gaye C B. Estimating paleorecharge and paleoclimate from unsaturated zone profiles[J]. Water Resources Research , 1992, 28(10): 2 721-2 731.
[3] Edmunds W, Tyler S. Unsaturated zones as archives of past climates:Toward a new proxy for continental regions[J]. Hydrogeology Journa l, 2002, 10(1): 216-228.
[4] Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science , 2006, 313(5 790): 1 068-1 072.
[5] Alley W M, Healy R W, LaBaugh J W, et al. Flow and storage in groundwater systems[J]. Science , 2002, 296(5 575): 1 985-1 990.
[6] Lerner D N, Issar A S, Simmers I. Groundwater Recharge: A Guide to Understanding and Estimating Natural Recharge[M]. Hannover: Heise, 1990.
[7] Sophocleous M. Groundwater recharge estimation and regionalization: The Great Bend Prairie of central Kansas and its recharge statistics[J]. Journal of Hydrology , 1992, 137(1):113-140.
[8] Favreau G, Leduc C, Marlin C, et al . Estimate of recharge of a rising water table in semiarid Niger from 3 H and 14 C modeling[J]. Groundwater , 2002, 40(2): 144-151.
[9] Gong Z N, Gong H L, Deng W, et al . An overview of water movement in groundwater-soil-plant-atmosphere continuum with shallow water table[J]. Journal of Agro-Environment Science , 2006, 25: 365-373.
[10] Shao Ming’an, Wang Quanjiu, Huang Mingbin. Soil Physics[M]. Beijing: Higher Education Press,2006.
[邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006.]
[11] Ji X B, Kang E S, Zhao W Z, et al. Simulation of heat and water transfer in a surface irrigated, cropped sandy soil[J]. Agricultural Water Management , 2009, 96(6): 1 010-1 020.
[12] Alley W M, Healy R W, LaBaugh J W, et al . Flow and storage in groundwater systems[J]. Science , 2002, 296(5 575): 1 985-1 990.
[13] Hamerlynck E P, McAuliffe J R, McDonald E V, et al. Ecological responses of two Mojave Desert shrubs to soil horizon development and soil water dynamics[J]. Ecology , 2002, 83(3): 768-779.
[14] Bachmair S, Weiler M, Nützmann G. Controls of land use and soil structure on water movement: Lessons for pollutant transfer through the unsaturated zone[J]. Journal of Hydrology , 2009, 369(3): 241-252.
[15] Shen Q, Gao G Y, Fu B J, et al . Soil water content variations and hydrological relations of the cropland-treebelt-desert land use pattern in an oasis-desert ecotone of the Heihe River Basin, China[J]. Catena , 2014, 123: 52-61.
[16] Darcy H. Les Fontaines Publiques de La Ville De Dijon: Distribution d’Eau et Filtrage Des Eaux, Appendice-Note D[M]. Paris:Victor Dalmont, 1856.
[17] Sadeghi M, Ghahraman B, Ziaei A N, et al. Invariant solutions of Richards’ equation for water movement in dissimilar soils[J]. Soil Science Society of America Journal , 2012, 76(1): 1-9.
[18] Williamson T N, Lee B D, Schoeneberger P J, et al. Simulating soil-water movement through Loess-Veneered landscapes using nonconsilient saturated hydraulic conductivity measurements[J]. Soil Science Society of America Journal , 2014, 78(4): 1 320-1 331.
[19] Kang Shaozhong, Liu Xiaoming, Gao Xinke, et al . Computer simulation of water transport in soil-plant-atmosphere continuum[J]. Journal of Hydraulic Engineering , 1992, (3): 1-12.
[康绍忠, 刘晓明,高新科,等. 土壤—植物—大气连续体水分传输的计算机模拟[J]. 水利学报, 1992, (3): 1-12.]
[20] Kang S Z, Zhang F C, Zhang J H. A simulation model of water dynamics in winter wheat field and its application in a semiarid region[J]. Agricultural Water Management , 2001, 49(2): 115-129.
[21] Nie Weibo, Ma Xiaoyi, Wang Shuli. Infiltration model and numerical simulation of the soil water movement in furrow irrigation[J]. Advance in Water Science , 2009, 20(5): 668-676.
[聂卫波, 马孝义, 王术礼. 沟灌土壤水分运动数值模拟与入渗模型[J]. 水科学进展, 2009, 20(5): 668-676.]
[22] Yao W W, Ma X Y, Li J, et al. Simulation of point source wetting pattern of subsurface drip irrigation[J]. Irrigation Science , 2011, 29(4): 331-339.
[23] Šimunek J, van Genuchten M T, Šejna M. The HYDRUS-2D Software Package for Simulating the Two-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media[M]. Prague, Czech Republic: US Salinity Laboratory, Agricultural Research Service, US Department of Agriculture, 1999.
[24] Mailhol J C, Crevoisier D, Triki K. Impact of water application conditions on nitrogen leaching under furrow irrigation: Experimental and modeling approaches[J]. Agricultural Water Management , 2007, 87(3): 275-284.
[25] Ebrahimian H, Liaghat A, Parsinejad M, et al. Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation[J]. Irrigation Science , 2013, 31(3): 301-316.
[26] Allison G B, Gee G W, Tyler S W. Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions[J]. Soil Science Society of America Journal , 1994, 58(1): 6-14.
[27] Vereecken H, Huisman J A, Bogena H, et al . On the value of soil moisture measurements in vadose zone hydrology: A review[J]. Water Resources Research , 2008, 44(4): 1-21.
[28] Wang Y Q, Ma J Z, Zhang Y L, et al. A new theoretical model accounting for film flow in unsaturated porous media[J]. Water Resources Research , 2013, 49(8): 5 021-5 028.
[29] Aggarwal P K, Froehlich K F O, Gat J R. Isotopes in the Water Cycle[M]. Dordrecht: Springer, 2005.
[30] Edmunds W M, Ma J Z, Aeschbach-Hertig W, et al. Groundwater recharge history and hydrogeochemical evolution in the Minqin Basin, Northwest China[J]. Applied Geochemistry , 2006, 21(12): 2 148-2 170.
[31] Scanlon B R, Reedy R C, Tachovsky J A. Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the Southern High Plains, United States[J]. Water Resources Research , 2007, 43(6),doi:10.1029/2006WR005769.
[32] Scanlon B R, Reedy R C, Gates J B. Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas[J]. Water Resources Research , 2010, 46(9),doi:10.1029/2009WR008427.
[33] Scanlon B R, Gates J B, Reedy R C, et al. Effects of irrigated agroecosystems: 2. Quality of soil water and groundwater in the Southern High Plains, Texas[J]. Water Resources Research , 2010, 46(9),doi:10.1029/2009WR008428.
[34] Gates J B. Conceptual model of recharge to southeastern Badain Jaran desert groundwater and lakes from environmental tracers[J]. Applied Geochemistry , 2008, 23(12):3 519-3 534.
[35] Scanlon B R, Keese K E, Flint A L, et al . Global synthesis of groundwater recharge in semiarid and arid regions[J]. Hydrological Processes , 2006, 20(15): 3 335-3 370.
[36] Ma J Z, Edmunds W M, He J H, et al. 2000 years geochemical record of palaeoclimate and hydrology derived from dune sand moisture[J]. Paleogeography , 2009, 276(1/4): 38-46.
[37] Mathieu R, Bariac T. An isotopic study ( 2 H and 18 O) of water movements in clayey soils under a semiarid climate[J]. Water Resources Research , 1996, 32(4): 779-789.
[38] Hubbell J M, Nicholl M J, Sisson J B, et al. Application of a darcian approach to estimate liquid flux in a deep vadose zone[J]. Vadose Zone Journal , 2004, 3 (2): 560-569.
[39] West L J, Truss S W. Borehole time domain reflectometry in layered sandstone: Impact of measurement technique on vadose zone process identification[J]. Journal of Hydrology , 2006, 319 (1/4): 143-162.
[40] Timms W A, Young R R, Huth N. Implications of deep drainage through saline clay for groundwater recharge and sustainable cropping in a semi-arid catchment Australia[J]. Hydrology and Earth System Sciences , 2012, 16 (4): 1 203-1 219.
[41] Wang Shiqin, Song Xianfang, Xiao Guoqiang, et al . Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advance in Water Science , 2009, 20(4):495-501.
[王仕琴, 宋献方, 肖国强,等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展, 2009, 20(4):495-501.]
[42] Brooks J R, Barnard H R, Coulombe R, et al . Ecohydrologic separation of water between trees and streams in a Mediterranean climate[J]. Nature Geoscience , 2010, 3(2):100-104.
[43] Cheng Liping, Liu Wenzhao. Characteristics of stable isotopes in soil water under several typical land use patterns on Loess Tableland[J]. Chinese Journal of Applied Ecology , 2012, 23(3): 651-658.
[程立平, 刘文兆. 黄土塬区几种典型土地利用类型的土壤水稳定同位素特征[J]. 应用生态学报, 2012, 23(3): 651-658.]
[44] Edmunds W, Tyler S. Unsaturated zones as archives of past climates: Toward a new proxy for continental regions[J]. Hydrogeology Journal , 2002, 10(1): 216-228.
[45] Yuan R, Song X, Han D, et al. Rate and historical change of direct recharge from precipitation constrained by unsaturated zone profiles of chloride and oxygen-18 in dry river bed of North China Plain[J]. Hydrological Processes , 2012, 26(9): 1 291-1 301.
[46] Scanlon B R, Mukherjee A, Gates J, et al . Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India[J]. Hydrogeology Journal , 2010, 18(4): 959-972.
[47] Zhang Zhijie, Yang Shuqing, Shi Haibin, et al . Irrigation infiltration and recharge coefficient in Hetao irrigation district in Inner Mongolia[J]. Chinese Society of Agricultural Engineering , 2011, 27(3):61-66.
[张志杰, 杨树青, 史海滨,等. 内蒙古河套灌区灌溉入渗对地下水的补给规律及补给系数[J]. 农业工程学报, 2011, 27(3): 61-66.]
[48] Lin D, Jin M, Liang X, et al. Estimating groundwater recharge beneath irrigated farmland using environmental tracers:Fluoride, chloride and sulfate[J]. Hydrogeology Journal , 2013, 21(7): 1 469-1 480.
[49] Qin D J, Qian Y P, Han L F, et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China[J]. Journal of Hydrology , 2011, 405(1): 194-208.
[50] Busenberg E, Plummer L N. Dating young groundwater with sulfur hexafluoride: Natural and anthropogenic sources of sulfur hexafluoride[J]. Water Resources Research , 2000, 36(10): 3 011-3 030.
[51] Thony J L, Morat P, Vachaud G, et al . Field characterization of the relationship between electrical potential gradients and soil water flux[J]. Comptes Rendus de l'Académie des Sciences — Series IIA — Earth and Planetary Science , 1997, 325(5): 317-321.
[52] Doussan C, Jouniaux L, Thony J L. Variations of self-potential and unsaturated water flow with time in sandy loam and clay loam soils[J]. Journal of Hydrology , 2002, 267(3): 173-185.
[53] Yang Lei, Zhou Qiyou. Monitoring water flow process based on streaming potential forward model in unsaturated zone[J]. Advances in Water Science , 2012, 23(5):673-679.
[杨磊, 周启友. 基于流动电位正演模型的非饱和带水流过程监测[J]. 水科学进展, 2012, 23(5): 673-679.]
[54] Doolittle J A, Collins M E. Use of soil information to determine application of ground penetrating radar[J]. Journal of Applied Geophysics , 1995, 33(1/3): 101-108.
[55] Boll J, Van Rijn R P G, Weiler K W, et al . Using ground-penetrating radar to detect layers in a sandy field soil[J]. Geoderma , 1996, 70(2/4): 117-132.
[56] Schmalz B, Lennartz B. Analyses of soil water content variations and GPR attribute distributions[J]. Journal of Hydrology , 2002, 267(3): 217-226.
[57] Vanderborght J, Kasteel R, Herbst M, et al . A set of analytical benchmarks to test numerical models of flow and transport in soils[J]. Vadose Zone Journal , 2005, 4(1): 206-221.
[58] Rose D A. The dynamics of soil water following single surface wettings[J]. European Journal of Soil Science , 1996, 47(1): 21-31.
[59] Zhang Guanghui, Fei Yuhong, Shen Jianmei, et al . Influence of unsaturated zone thickness on precipitation infiltration for recharge of groundwater[J]. Journal of Hydraulic Engineering , 2007, 38(5): 611-617.
[张光辉, 费宇红, 申建梅, 等. 降水补给地下水过程中包气带变化对入渗的影响[J]. 水利学报, 2007, 38(5): 611-617.]
[60] Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research ,1982, 18(5): 1 311-1 325.
[61] Tanasienko A A, Yakutina O P, Chumbaev A S. Snowmelt runoff parameters and geochemical migration of elements in the dissected forest-steppe of West Siberia[J]. Catena , 2009, 78(2): 122-128.
[62] Chang Longyan, Dai Changlei, Shang Yunhu, et al . Analysis of the frozen soil moisture profile changes in aeration zone under the conditions of freezing-thawing and non-freezing-thawing[J]. Journal of Glaciology and Geocryology , 2014, 539(4):1 031-1 041.
[常龙艳, 戴长雷, 商允虎, 等. 冻融和非冻融条件下包气带土壤墒情垂向变化的试验与分析[J]. 冰川冻土, 2014, 36(4): 1 031-1 041.]
[63] Boucoyous G T. Effect of temperature on the movement of water vapor and capillary moisture in soils[J]. Journal of Agricultural Engineering Research , 1915, 5: 141-172.
[64] Haridasan M, Jensen R D. Effect of temperature on pressure head-water content relationship and conductivity of two soils[J]. Soil Science Society of America Journal , 1972, 36(5): 703-708.
[65] Novak V. Non-isothermal flow of water in unsaturated soils[J]. Journal of Hydrology , 1975, 2: 37-52.
[66] Haverkamp R T, Parlange J Y,Haverkamp R, et al . Predicting the water-retention curve from particle-size distribution[J]. Soil Science , 1986, 142(6): 325-339.
[67] Milly P C D. A simulation analysis of thermal effects on evaporation from soil[J]. Water Resources Research , 1984, 20(8): 1 087-1 098.
[68] Zeng Yijian, Wan Li, Su Zhongbo, et al . The diurnal pattern of soil water fluxes in subsurface zone and its simulation analysis[J]. Earth Science Frontier , 2008, 15(5): 329-343.
[曾亦键, 万力, 苏中波, 等. 浅层包气带水汽昼夜运移规律及其数值模拟研究[J]. 地学前缘, 2008, 15(5): 329-343.]
[69] Scanlon B R, Milly P C D. Water and heat fluxes in desert soils: 2. Numerical simulations[J]. Water Resources Research , 1994, 30(3): 721-733.
[70] Andraski B J, Stonestrom D A, Michel R L, et al. Plant-based plume-scale mapping of tritium contamination in desert soils[J]. Vadose Zone Journal , 2005, 4(3): 819-827.
[71] Saito H, Šimûnek J, Mohanty B P. Numerical analysis of coupled water, vapor, and heat transport in the vadose zone[J]. Vadose Zone Journa l, 2006, 5(2): 784-800.
[72] Garcia C A, Andraski B J, Stonestrom D A, et al. Interacting vegetative and thermal contributions to water movement in desert soil[J]. Vadose Zone Journal , 2011, 10(2): 552-564.
[73] Si Jianhua, Feng Qi, Li Jianlin, et al. Spatial distribution pattern of Populus euphratica fine roots in desert riparian forest[J]. Chinese Journal of Ecology , 2007, 26(1):1-4.
[司建华, 冯起, 李建林, 等. 荒漠河岸林胡杨吸水根系空间分布特征[J]. 生态学杂志, 2007, 26(1): 1-4.]
[74] Kellner E, Hubbart J A. Continuous and event-based time series analysis of observed floodplain groundwater flow under contrasting land-use types[J]. Science of the Total Environment , 2016, 566: 436-445.
[75] Fischer J M. Sediment Properties and Water Movement Through Shallow Unsaturated Alluvium at an Arid Site for Disposal of Low-Level Radioactive Waste Near Beatty, Nye County, Nevada[R]. Nevada:US Department of the Interior, US Geological Survey, 1992.
[76] Andraski B J. Soil-water movement under natural-site and waste-site conditions: A multiple-year field study in the Mojave Desert, Nevada[J]. Water Resources Research , 1997, 33(8): 1 901-1 916.
[77] Scanlon B R, Keese K, Reedy R C, et al. Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0-90 kyr): Field measurements, modeling, and uncertainties[J]. Water Resources Research , 2003, 39(7): 303-303.
[78] Gee G W, Wierenga P J, Andraski B J, et al. Variations in water balance and recharge potential at three western desert sites[J]. Soil Science Society of America Journal , 1994, 58(1): 63-72.
[79] Scanlon B R, Levitt D G, Reedy R C, et al. Ecological controls on water-cycle response to climate variability in deserts[J]. Proceedings of the National academy of Sciences , 2005, 102(17): 6 033-6 038.
[80] Corwin D L, Lesch S M, Oster J D, et al. Monitoring management-induced spatial-temporal changes in soil quality through soil sampling directed by apparent electrical conductivity[J]. Geoderma , 2006, 131(3): 369-387.
[81] Bormann H, Klaassen K. Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils[J]. Gendarme , 2008, 145(3): 295-302.
[82] Duan Zhenghu.Effect, status quo and development orientation of soil water research in the eco-hydrological processes of catchment[J]. Advances in Earth Science , 2008, 23(7): 682-684.
[段争虎. 土壤水研究在流域生态—水文过程中的作用, 现状与方向[J]. 地球科学进展, 2008, 23(7): 682-684.]
[83] Wang Jun, Fu Bojie, Qiu Yang, et al . Spatiotemporal variability of soil moisture in small catchment on Loess Plateau—Semivariograms[J]. Journal of Geographical Sciences , 2000,55(4): 428-438.
[王军, 傅伯杰, 邱扬, 等. 黄土丘陵小流域土壤水分的时空变异特征——半变异函数[J]. 地理学报, 2000,55(4): 428-438.]
[84] Zong Luping, Jiao Yuanmei, Li Shihua, et al . Spatial and temporal variability of soil moisture in water source region of Hani terrace landscape[J]. Chinese Journal of Ecology , 2015, 34(6): 1 650-1 659.
[宗路平, 角媛梅, 李石华, 等. 哈尼梯田景观水源区土壤水分时空变异性[J]. 生态学杂志, 2015, 34(6): 1 650-1 659.]
[85] Brocca L, Tullo T, Melone F, et al . Catchment scale soil moisture spatial-temporal variability[J]. Journal of Hydrology , 2012, 422: 63-75.
[86] Bronstert A, Niehoff D, Bürger G. Effects of climate and land-use change on storm runoff generation: Present knowledge and modeling capabilities[J]. Hydrological Processes , 2002, 16(2): 509-529.
[87] Meng Suhua, Fei Yuhong, Zhang Zhaoji, et al . Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China Plain[J]. Advances in Earth Science , 2013, 28(8): 923-929.
[孟素花, 费宇红, 张兆吉, 等. 50 年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展, 2013, 28(8): 923-929.]
[88] Wu Yongqiu, Zhang Jianfeng, Du Shisong, et al . Temporal and spatial variation of soil moisture in dunes with different vegetation coverage in Southern Margin of the Mu Us Sandy Land[J]. Journal of Desert Research , 2015,35(6): 1 612-1 619.
[伍永秋, 张健枫, 杜世松, 等. 毛乌素沙地南缘不同活性沙丘土壤水分时空变化[J]. 中国沙漠, 2015,35(6):1 612-1 619.]
[89] Yoo C, Kim S. EOF analysis of surface soil moisture field variability[J]. Advances in Water Resources , 2004, 27(8): 831-842.
[90] Kung K J, Donohue S V. Improved solute-sampling protocol in a sandy vadose zone using ground-penetrating radar[J]. Soil Science Society of America Journal , 1991, 55(6): 1 543-1 545.
[91] Sollins P, Radulovich R. Effects of soil physical structure on solute transport in a weathered tropical soil[J]. Soil Science Society of America Journal , 1988, 52(4): 1 168-1 173.
[92] Harari Z. Ground-Penetrating Radar (GPR) for imaging stratigraphic features and groundwater in sand dunes[J]. Journal of Applied Geophysic s, 1996, 36(1): 43-52.
[93] Kracht O, Gresch M, Gujer W. Innovative tracer methods for sewer infiltration monitoring[J]. Urban Water Journal , 2008, 5(3): 173-185.
[94] Bouma J. Influence of soil macroporosity on environmental quality[J]. Advances in Agronomy , 1991, 46: 1-37.
[95] Oswald S, Kinzelbach W, Greiner A, et al . Observation of flow and transport processes in artificial porous media via magnetic resonance imaging in three dimensions[J]. Geoderma , 1997, 80(3/4): 417-429.
[96] Wang K, Zhang R. Heterogeneous soil water flow and macropores described with combined tracers of dye and iodine[J]. Journal of Hydrology , 2011, 397(1): 105-117.
[97] Sheng Feng, Zhang Liyong, Wu Dan. Review on research theories and observation techniques for preferential flow in unsaturated soil[J]. Chinese Society of Agricultural Engineering , 2016, 32(6): 1-10.
[盛丰, 张利勇, 吴丹. 土壤优先流模型理论与观测技术的研究进展[J]. 农业工程学报, 2016, 32(6): 1-10.]
[98] Krause S, Hannah D M, Sadler J P, et al. Ecohydrology on the edge: Interactions across the interfaces of wetland, riparian and groundwater-based ecosystems Preface[J]. Ecohydrology , 2011, 4(4): 477-480.
[99] Stratford C J, Robins N S, Clarke D, et al. An ecohydrological review of dune slacks on the west coast of England and Wales[J]. Ecohydrology , 2013, 6(1): 162-171.
[100] Miller G R, Cable J M, McDonald A K, et al. Understanding ecohydrological connectivity in savannas: A system dynamics modeling approach[J]. Ecohydrology , 2012, 5(2): 200-220.
[101] Danierhan S, Abudu S, Donghai G. Coupled GSI-SVAT model with groundwater-surface water interaction in the Riparian Zone of Tarim River[J]. Journal of Hydrologic Engineering , 2012, 18(10): 1 211-1 218.
[102] Curreli A, Wallace H, Freeman C, et al . Eco-hydrological requirements of dune slack vegetation and the implications of climate change[J]. Science of the Total Environment , 2013, 443: 910-919.
[103] Hu S, Zhao R, Tian C, et al . Empirical models of calculating phreatic evaporation from bare soil in Tarim River Basin, Xinjiang[J]. Environmental Earth Sciences , 2009, 59(3): 663-668.
[104] Zhao L W, Zhao W Z. Water balance and migration for maize in an oasis farmland of northwest China[J]. Chinese Science Bulletin , 2014, 59: 4 829-4 837.
[105] Huang T M, Pang Z H, Chen Y N, et al. Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river[J]. Chinese Science Bulletin , 2013, 58: 3 088-3 097.
[106] Kizito F, Sène M, Dragila M I, et al. Soil water balance of annual crop-native shrub systems in Senegal’s Peanut Basin: The missing link[J]. Agricultural Water Management , 2007, 90: 137-148.
[107] Kizito F, Dragila M I, Senè M, et al. Hydraulic redistribution by two semi-arid shrub species: Implications for Sahelian agro-ecosystems[J]. Journal of Arid Environments , 2012, 83: 69-77.
[108] Wu Y, Zhou H, Zheng X J, et al. Seasonal changes in the water use strategies of three co-occurring desert shrubs[J]. Hydrological Processes , 2014, 28: 6 265-6 275.
[109] Karray J A, Lhomme J P, Masmoudi M M, et al. Water balance of the olive tree-annual crop association: A modeling approach[J]. Agricultural Water Management , 2008, 95: 575-586.
[110] Campi P, Palumbo A D, Mastrorilli M. Effects of tree windbreak on microclimate and wheat productivity in a Mediterranean environment[J]. European Journal of Agronomy , 2009, 30: 220-227.
[111] Livesley S J, Gregory P J, Buresh R J. Competition in tree row agroforestry systems. 3. Soil water distribution and dynamics[J]. Plant and Soil , 2004, 264: 129-139.
[112] Ellis T, Hatton T, Nuberg I. An ecological optimality approach for predicting deep drainage from tree belts of alley farms in water-limited environments[J]. Agricultural Water Management , 2005, 75: 92-116.
[113] Yi J, Zhao Y, Shao M A, et al. Hydrological processes and eco-hydrological effects of farmland-forest-desert transition zone in the middle reaches of Heihe River Basin, Gansu, China[J]. Journal of Hydrology , 2015, 529: 1 690-1 700.
[114] Brooksbank K, Veneklaas E J, White D A, et al. Water availability determines hydrological impact of tree belts in dryland cropping systems[J]. Agricultural Water Managemen t, 2011, 100(1): 76-83.
[115] Cerdán C R, Rebolledo M C, Soto D, et al. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems[J]. Agricultural Systems , 2012, 110: 119-130.
[116] Campi P, Palumbo A D, Mastrorilli M. Evapotranspiration estimation of crops protected by windbreak in a Mediterranean region[J]. Agricultural Water Management , 2012, 104: 153-162.
[117] Thomas Z, Ghazavi R, Merot P, et al. Modelling and observation of hedgerow transpiration effect on water balance components at the hillslope scale in Brittany[J]. Hydrological Processes , 2012, 26(26): 4 001-4 014.
[118] Alley W M, Healy R W, LaBaugh J W, et al . Flow and storage in groundwater systems[J]. Science , 2002, 296(5 575): 1 985-1 990.
[119] Liu Xiuhua, Wang Rui.Research on impact process of irrigation amount on moisture migration and retention in vadose zone[J]. Agricultural Research in the Arid Areas , 2016, 34(5): 262-268.
[刘秀花, 王蕊. 灌水量对包气带水分运移与滞留影响过程研究[J]. 干旱地区农业研究, 2016, 34(5): 262-268.]
[120] Mooney S J, Nipattasuk W. Quantification of the effects of soil compaction on water flow using dye tracers and image analysis[J]. Soil Use and Management , 2003, 19(4): 356-363.
[121] Liu Xianzhao, Kang Shaozhong. A model of water exchange for hillslope with hysteresis considered[J]. Acta Pedologica Sinica , 2000, 37(1): 16-23.
[刘贤赵, 康绍忠. 黄土区考虑滞后作用的坡地水量转化模型[J]. 土壤学报, 2000, 37(1): 16-23.]
[122] Bundt M, Albrecht A, Froidevaux P, et al. Impact of preferential flow on radionuclide distribution in soil[J]. Environmental Science and Technology , 2000, 34(18): 3 895-3 899.
[123] Qi Denghong, Jin Menggui, Liu Yanfeng. Determination of preferential flow in precipitation infiltration recharges[J]. Earth Science — Journal of China University of Geosciences , 2007, 32(3): 420-424.
[齐登红, 靳孟贵, 刘延锋. 降水入渗补给过程中优先流的确定[J]. 地球科学——中国地质大学学报, 2007, 32(3): 420-424.]
[124] Rodriguez-Iturbe I, D'Odorico P, Laio F, et al . Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation[J]. Water Resources Research , 2007, 43(9),doi:10.1029/2007WR006073.
[125] Lu Xiaohui, Li Qilong. Analysis of hydrology response of groundwater using MIKE SHE Model[J]. Journal of Yangtze River Scientific Research Institute , 2015, 32(1):11-15.
[卢小慧, 李奇龙. 基于 MIKE SHE 模型的流域地下水水文响应[J]. 长江科学院院报, 2015, 32(1): 11-15.]
[126] Huang Tianming, Pang Zhonghe. Groundwater recharge in Badain Jaran Desert and Gurinai Oasis based on environmental tracers[J]. Geoscience , 2007, 21(4): 624-631.
[黄天明, 庞忠和. 应用环境示踪剂探讨巴丹吉林沙漠及古日乃绿洲地下水补给[J]. 现代地质, 2007, 21(4): 624-631.]
[127] Ma Jinzhu, Huang Tianming, Ding Zhenyu. Environmental isotopes as the indicators of the groundwater recharge in the south Badain Jaran Desert[J]. Advances in Earth Science , 2007, 22(9):922-930.
[马金珠, 黄天明, 丁贞玉. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930.]
[1] 王蕾彬, 魏海涛, 贾佳, 李国强, 陈发虎. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33(1): 93-102.
[2] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[3] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[4] 邓铭江, 石泉. 内陆干旱区水资源管理调控模式[J]. 地球科学进展, 2014, 29(9): 1046-1054.
[5] 程国栋,赵传燕,许仲林,彭守璋. 生物地理模型研究进展及在干旱半干旱区的应用[J]. 地球科学进展, 2013, 28(1): 17-23.
[6] 王国华,赵文智. 遥感技术估算干旱区蒸散发研究进展[J]. 地球科学进展, 2011, 26(8): 848-858.
[7] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.
[8] 蒲阳,张虎才,雷国良,常凤琴,杨明生,庞有智. 西北地区晚第四纪沉积地层一元正脂肪酸酰胺分布特征及古气候意义[J]. 地球科学进展, 2010, 25(5): 533-542.
[9] 马明国,刘强,阎广建,陈尔学,肖青,苏培玺,胡泽勇,李新,牛铮,王维真,钱金波,宋怡,丁松爽,辛晓洲,任华忠,黄春林,晋锐,车 涛,楚荣忠. 黑河流域遥感-地面观测同步试验:森林水文和中游干旱区水文试验[J]. 地球科学进展, 2009, 24(7): 681-696.
[10] 严登华,王浩,杨舒媛,刘明国,霍竹. 干旱区流域生态水文耦合模拟与调控的若干思考[J]. 地球科学进展, 2008, 23(7): 773-778.
[11] 冯起,司建华,李建林,席海洋. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7): 765-772.
[12] 庄艳丽,赵文智. 干旱区凝结水研究进展[J]. 地球科学进展, 2008, 23(1): 31-38.
[13] 马金珠,黄天明,丁贞玉,W.M.Edmunds. 同位素指示的巴丹吉林沙漠南缘地下水补给来源[J]. 地球科学进展, 2007, 22(9): 922-930.
[14] 赵鸿,肖国举,王润元,邓振镛,王鹤龄,杨启国. 气候变化对半干旱雨养农业区春小麦生长的影响[J]. 地球科学进展, 2007, 22(3): 322-327.
[15] 赵晓英,马晓东,徐郑伟. 外来植物刺萼龙葵及其在乌鲁木齐出现的生态学意义[J]. 地球科学进展, 2007, 22(2): 167-170.