地球科学进展 ›› 2009, Vol. 24 ›› Issue (10): 1094 -1104. doi: 10.11867/j.issn.1001-8166.2009.10.1094

综述与评述 上一篇    下一篇

地震海洋学研究进展
胡毅 1,2,刘怀山 1,陈坚 2,许江 2   
  1. 1.中国海洋大学海洋地球科学学院,山东  青岛  266100;2.国家海洋局第三海洋研究所,福建  厦门  361005
  • 收稿日期:2009-04-29 修回日期:2009-06-26 出版日期:2009-10-10
  • 通讯作者: 胡毅 E-mail:hu1976yi@163.com[
  • 基金资助:

    国家海洋局第三海洋研究所基本科研业务费专项资金项目“我国近海海洋水体特性的地震探测方法研究”(编号:海三科2009004);福建省908专项“福建省海砂资源综合评价”(编号:FJ908-02-02-06);国家908专项“海洋底质调查成果集成”(编号:908-ZC-I-05)资助.

Recent progress in Seismic Oceanography

Hu Yi 1,2,Liu Huaishan 1,Chen Jian 2, Xu Jiang 2   

  1. 1. College of Geosciences, Chinese Ocean University, Qingdao  266100, China;
    2.Third Institute of Oceanography, SOA, Xiamen  361005, China
  • Received:2009-04-29 Revised:2009-06-26 Online:2009-10-10 Published:2009-10-10

    传统船舶调查获取海洋水体温盐资料的方法在水平方向上分辨率较低,而用反射地震探测海洋水体特性的方法——地震海洋学,能有效提高海水温盐资料在水平方向上的分辨率。概述了近5年来地震海洋学的发展过程,重点介绍了地震海洋学方法在海洋锋面观测、水团边界划分、海洋内波分析、中尺度涡旋等方面的研究成果,以及AVO、全波形反演等反射地震处理方法在海洋水体特性研究中的应用。比较了地震海洋学方法与声层析技术、高频声技术等声学方法应用于海洋水体特性研究的异同。并展望了下一步研究工作的重点:①有关地震反射剖面的各种参数与海洋水体温盐结构物理模型的联系及其定量分析;②以研究海洋水体特性为目标的地震反射剖面的处理方法;③海洋地震调查历史数据的应用。

      Thermohaline fine structures are traditionally measured by ship-loaded instruments. This method has a high vertical resolution, but alimited horizontal resolution. The reflection seismic method, which is to study the physical oceanography, can effectively improve the horizontal resolution of thermohaline, so as to understand horizontal variation of thermohaline fine structure, and to provide high resolution basic data for researches in ocean and climatic change, which is called “Seismic Oceanography”. The recent progress in development and applications of seismic oceanography in the past  five years are summarized in the paper, mainly including observing oceanographic front , imagining water mass boundaries, analyzing ocean internal wave spectra and mesoscale eddies fine structure, as well as the full waveform inversion of reflection seismic data for ocean and amplitude-versus-offset analysis of acoustic reflections for temperature contrasts in the water column. The difference and relation among seismic oceanography, marine acoustical tomography and high frequency technology applying in the physical oceanography is discussed respectively. Future associated research may emphasize the relationship and quantitative analysis between seismic parameters and thermohaline physical model, seismic processing method for studying water column, application of the historical data of marine seismic integration and so on.

中图分类号: 

[1] Broecker W S. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance?[J].Science,1997, 278:1 582-1 588.
[2] Fukasawa M, Freeland H, Perkin R, et al. Bottom water warming in the North Pacific Ocean[J].Nature,2004 ,427: 825-827.
[3] Osborn T R. Finestructure, microstructure, and thin layers[J].Oceanography,1998, 11(1):36-43.
[4] Rudnick D, Ferrari R. Compensation of horizontal temperature and salinity gradients in the ocean mixed layer[J].Science,1999, 283: 526-529.
[5] Holbrook W S, Paramo P, Pearse S, et al. Thermohaline fine structure in an oceanographic front from seismic reflection profiling[J].Science,2003, 301:821-824.
[6] Gonella J, Michon D. Deep internal waves measured by seismic-reflection within the eastern Atlantic water mass (in French with English abstract)[J].Comptes Renduse Academie Des Sciences (Series IIA),1988, 306:781-787.
[7] Phillips J D, Dean D F. Multichannel acoustic reflection profiling of ocean watermass temperature/salinity interfaces[M]//Potter J,Warn-Varnas A,eds. Ocean Variability and Acoustic Propagation. New York:Springer,1991: 199-214.
[8] Song Haibin, Dong Chongzhi, Chen Lin, et al. Reflection seismic methods for studying physical oceanography: Introduction of seismic oceanography[J].Progress in Geophysics,2008,23(4):1 156-1 164.[宋海斌,董崇志,陈林,等.用反射地震方法研究物理海洋—地震海洋学简介[J].地球物理学进展,2008,23(4):1 156-1 164.]
[9] Tsuji T, Noguchi T, Niino H, et al. Two-dimensional mapping of fine structures in the Kuroshio Current using seismic reflection data[J].Geophysical Research Letters,2005, 32,L14609,doi:10.1029/2005GL023733.
[10] Nakamura Y, Noguchi T, Tsuji T, et al. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front[J].Geophysical Research Letters,2006, 33,L23605,doi:10.1029/2006GL027437.
[11] Nandi P, Holbrook W S, Pearse S, et al. Seismic reflection imaging of water mass boundaries in the Norwegian Sea[J]. Geophysical Research Letters,2004, 31,L23311,doi:10.1029/2004GL021325.
[12] Lennert Cody C E, Franks P J S. Plankton patchiness in high-frequency internal waves[J].Marine Ecology Progress Series,1999, 186:59-66.
[13] Cacchione D A, Pratson L F, Ogston A S. The shaping of continental slopes by internal tides[J].Science,2002, 296:724-727.[14] Garrett C. Internal tides and ocean mixing[J].Science,2003, 301:1 858-1 859.
[15] Holbrook W S, Fer I. Ocean internal wave spectra inferred from seismic reflection transects[J].Geophysical Research Letters, 2005, 32,L15604,doi:10.1029/2003GL023733.
[16] Benitez Nelson C R, McGillicuddy D J. Mesoscale Physical-Biological-Biogeochemical Linkages in the Open Ocean: Results from the E-FLUX and EDDIES Programs[J].Deep Sea Research Part II,2008,55(10/13):1 133-1 138.
[17] McGillicuddy D J, Robinson A R, Siegel D A, et al. Influence of mesoscale eddies on new production in the Sargasso Sea[J]. Nature,1998, 394:263-266.
[18] Biescas B, Sallare S V, Pelegr J L, et al. Imaging meddy finestructure using multichannel seismic reflection data[J]. Geophysical Research Letters,2008, 35,L11609,doi:10.1029/2008GL033971.
[19] Páramo P, Holbrook W S. Temperature contrasts in the water column inferred from amplitude-versus-offset analysis of acoustic reflections[J].Geophysical Research Letters,2005, 32,L24611,doi:10.1029/2005GL024533.
[20] Tarantola A. Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation[M].New York: Elsevier, 1987.[21] Menke W.Geophysical Data Analysis: Discrete Inverse Theory[M]. San Diego: Acedemic,1989.
[22] Wood W T, Holbrook W S, Sen M K, et al. Full waveform inversion of reflection seismic data for ocean temperature profiles[J].Geophysical Research Letters,2008, 35,L04608,doi:10.1029/2007GL032359.
[23] Zhang Y, Zhang U, Bleistein N. Theory of true amplitude one-way wave equations and true amplitude common-shot migration[J].Geophyscis,2005,70(3):1-10.
[24] Zhang Yu. The theory of true amplitude one-way wave equation migration[J].Chinese Journal of Geophysics,2006,49(5):1 410-1 430.[张宇.振幅保真的单程波方程偏移理论[J].地球物理学报,2006,49(5):1 410-1 430.]
[25] Nandi P, Schmitt R W, Holbrook W S. Seismic imaging of a thermohaline staircase in the western tropical Atlantic[C]//Eos Transactions AGU, 2006, 87(36), Ocean Sciences Meeting Suppl, Abstract OS14I-01.
[26] Seymour J C, Holbrook W S, Schmitt R W. Velocity structure of a Loop Current eddy using the gradient-current method on a seismic section from the Gulf of Mexico[C]//Eos Transactions AGU, 2006,87(36), Ocean Sciences Meeting Supplement, Abstract OS13I-05.
[27] Bullock A D, Holbrook W S, Ruddick B. Enhanced finestructure around an intrathermocline lens in the Norwegian Sea[C]//Eos Transactions AGU,2006, 87(36), Ocean Sciences Meeting Supplement, Abstract OS13I-04.
[28] Huthnance J, Alvarado R, Ambar I, et al. Gulf of Cadiz oceanography for comparison with seismic image[C]//EGU,2008,10: EGU2008-A-03530.
[29] Klaeschen D, Papenberg C, Krahmann G, et al. Vertical seismic profiling (VSP) in seismic oceanography-a proof of concept[C]//EGU, 2008, 10: EGU2008-A-05539.
[30] Lucas Laursen. Watery echoes give clues to the past and future of the seas[J].Science,2008,320:309.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[4] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[5] 顾菊, 张勇, 刘时银, 王欣. 青藏高原冰川底部滑动估算方法研究: 进展、问题与展望[J]. 地球科学进展, 2021, 36(3): 307-316.
[6] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[7] 郭飞,吉喜斌,金博文,赵丽雯,焦丹丹,赵文玥,张靖琳. 西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用[J]. 地球科学进展, 2020, 35(5): 523-533.
[8] 李亚龙, 刘先贵, 胡志明, 端祥刚, 张杰, 詹鸿铭. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
[9] 郑明贵,李期. 中国 20202030年石油资源需求情景预测[J]. 地球科学进展, 2020, 35(3): 286-296.
[10] 郭彦龙,赵泽芳,乔慧捷,王然,卫海燕,王璐坤,顾蔚,李新. 物种分布模型面临的挑战与发展趋势[J]. 地球科学进展, 2020, 35(12): 1292-1305.
[11] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[12] 王鹏,邓红卫. 基于 GISLogistic回归模型的洪涝灾害区划研究[J]. 地球科学进展, 2020, 35(10): 1064-1072.
[13] 魏勇,许强,王卓,李骅锦,李松林. 动态摄影测量在物理模型实验全过程地形数据获取中的应用[J]. 地球科学进展, 2020, 35(10): 1087-1098.
[14] 杜欣儒,路紫,董雅晴,丁疆辉. 机场终端空域航空流量热区云图模型及其北京首都国际机场案例研究[J]. 地球科学进展, 2019, 34(8): 879-888.
[15] 李家科,刘周立,张蓓. DRAINMOD模型研究与应用进展[J]. 地球科学进展, 2019, 34(7): 679-687.
阅读次数
全文


摘要