1 |
Kelliher F M, Leuning R, Raupach M R, et al. Maximum conductances for evaporation from global vegetation types[J]. Agricultural & Forest Meteorology, 1995, 73(1/2): 1-16.
|
2 |
Pataki D E, Oren R, Katul G, et al. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions[J]. Tree Physiology, 1998, 18(5): 307-315.
|
3 |
Rochette P, Pattey E, Desjardins R L, et al. Estimation of maize (Zea mays L.) canopy conductance by scaling up leaf stomatal conductance[J]. Agricultural & Forest Meteorology, 1991, 54(2/4): 241-261.
|
4 |
Dickinson R E. Evapotranspiration in global climate models[J]. Advances in Space Research, 1987, 7(11): 17-26.
|
5 |
Eamus D, Huete A, Yu Q, et al. Vegetation Dynamics: Modelling Stomatal and Canopy Conductance[M]. Cambridge, New York, USA: Cambridge University Press, 2016.
|
6 |
Li Xianyue, Yang Peiling, Ren Shumei,et al. Characteristics and simulation of canopy conductance of chery[J]. Acta Ecologica Sinica, 2010, 30(2): 300-308.
|
|
李仙岳,杨培岭,任树梅,等.樱桃冠层导度特征及模拟[J].生态学报, 2010, 30(2): 300-308.
|
7 |
Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[M]//Biggins J. Progress in Photosynthesis Research. Dordrecht: Springer, 1987.
|
8 |
Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London, 1976, 273(927): 593-610.
|
9 |
Stewart J. Modelling surface conductance of pine forest[J]. Agricultural and Forest Meteorology, 1988, 43(1): 19-35.
|
10 |
Whitley R, Medlyn B, Zeppel M, et al. Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance[J]. Journal of Hydrology, 2009, 373(1/2): 256-266.
|
11 |
Irmak S, Mutiibwa D, Irmak A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J]. Agricultural & Forest Meteorology, 2008,148(6): 1 034-1 044.
|
12 |
Sellers P J, Berry J A, Collatz G J, et al. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme[J]. Remote Sensing of Environment, 1992, 42(3): 187-216.
|
13 |
Cox P M, Huntingford C, Harding R J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme[J]. Journal of Hydrology, 1998, 212/213(1/4): 79-94.
|
14 |
Williams M, Rastetter E B, Fernandes D N, et al. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties[J]. Plant Cell & Environment, 1996, 19(8): 911-927.
|
15 |
Grant R F, Wall G W, Kimball B A, et al. Crop water relations under different CO2 and irrigation: Testing of ecosys with the Free Air CO2 Enrichment (FACE) experiment[J]. Agricultural & Forest Meteorology, 1999, 95(1): 1-51.
|
16 |
Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell and Environment, 2003, 26(7): 1 097-1 116.
|
17 |
Yu Guirui, Wang Qiufeng. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use[M]. Beijing: Science Press, 2010.
|
|
于贵瑞, 王秋凤. 植物光合、蒸腾与水分利用的生理生态学[M]. 北京: 科学出版社, 2010.
|
18 |
Han Lei,He Jun,Qi Tuoye,et al. Responses and modeling of canopy stomatal conductance of Platycladus orientalis to environmental factors in Hedong sandy land,Ningxia[J]. Chinese Journal of Ecology, 2018, 37(9): 2 862-2 868.
|
|
韩磊, 何俊, 齐拓野, 等. 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟[J]. 生态学杂志, 2018, 37(9): 2 862-2 868.
|
19 |
Sun Lin,Guan Wei,Wang Yanhui, et al. Simulations of Larix principis-rupprechtii stand mean canopy stomatal conductance and its responses to environmental factors[J]. Chinese Journal of Ecology, 2011, 30(10): 2 122-2 128.
|
|
孙林, 管伟, 王彦辉, 等. 华北落叶松冠层平均气孔导度模拟及其对环境因子的响应[J]. 生态学杂志, 2011, 30(10): 2 122-2 128.
|
20 |
Zheng Hailei, Huang Zichen. Simulation of stomatal behaviour and transpiration of single leaf of spring wheat[J]. Plateau Meteorology, 1992, 11(4): 423-430.
|
|
郑海雷,黄子琛.春小麦单叶气孔行为及蒸腾作用的模拟[J]. 高原气象, 1992, 11(4): 423-430.
|
21 |
Schelde K, Kelliher F M, Massman W J, et al. Estimating sensible and latent heat fluxes from a temperate broad-leaved forest using the Simple Biosphere (SiB) model[J]. Agricultural & Forest Meteorology, 1997, 84(3): 285-295.
|
22 |
Liu H, Cohen S, Lemcoff J H, et al. Sap flow, canopy conductance and microclimate in a banana screenhouse[J]. Agricultural and Forest Meteorology, 2015, 201:165-175.
|
23 |
Zhao W Z, Ji X B. Spatio-temporal variation in transpiration responses of maize plants to vapor pressure deficit under an arid climatic condition[J]. Journal of Arid Land, 2016, 8(3): 409-421.
|
24 |
Carlson T N. Modeling stomatal resistance: An overview of the 1989 workshop at the Pennsylvania State University[J]. Agricultural & Forest Meteorology, 1991, 54(2/4): 103-106.
|
25 |
Shuttleworth W J. Below-canopy fluxes in a simplified one-dimensional theoretical description of the vegetation-atmosphere interaction[J]. Boundary Layer Meteorology, 1979, 17(3): 315-331.
|
26 |
Allen R G, Jensen M E, Wright J L, et al. Operational estimates of reference evapotranspiration[J]. Agronomy Journal, 1989, 81(4): 650-662.
|
27 |
Szeicz G, Long I F. Surface resistance of crop canopies[J]. Water Resources Research, 1969, 5(3): 622-633.
|
28 |
Finnigan J J. Turbulence in waving wheat. Part II: Structure of momentum transfer[J]. Boundary-Layer Meteorology, 1979, 16(3): 213-236.
|
29 |
Jiang Yao. Simulation Analysis and Optimal Regulation for Agro-Hydrological Processes and Water Use Efficiency on Multiple Scales of the Middle Heihe River Basin[D]. Beijing: China Agricultural University, 2017.
|
|
姜瑶. 黑河中游绿洲多尺度农业水文过程及用水效率的模拟分析与优化调控研究[D]. 北京: 中国农业大学, 2017.
|
30 |
Tang Qiuhong, Liu Xingcai, Li Zhe, et al. Integrated water systems model for terrestrial water cycle simulation[J]. Advances in Earth Science, 2019, 34(2): 115-123.
|
|
汤秋鸿, 刘星才, 李哲, 等. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
|
31 |
Xie Zhenghui, Chen Si, Qin Peihua, et al. Research on climate feedback of human water use and its impact on terrestrial water cycles—Advances and challenges[J]. Advances in Earth Science, 2019, 34(8): 801-813.
|
|
谢正辉. 陈思, 秦佩华,等. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
|
32 |
Ji X B, Zhao W Z, Kang E S, et al. Carbon dioxide exchange in an irrigated agricultural field within an oasis, Northwest China[J]. Journal of Applied Meteorology and Climatology, 2011, 50(11): 2 298-2 308.
|
33 |
Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies[J]. Tree Physiology, 1998, 18(8/9): 633-644.
|
34 |
Huang Hui, Yu Guirui, Sun Xiaomin, et al. The environmental responses and simulation of canopy conductance in a winter wheat field of North China Plain[J]. Acta Ecologica Sinica, 2007, 27(12): 5 209-5 221.
|
|
黄辉, 于贵瑞, 孙晓敏, 等. 华北平原冬小麦冠层导度的环境响应及模拟[J]. 生态学报, 2007, 27(12): 5 209-5 221.
|
35 |
Allen R G, Pruitt W O, Wright J L, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method[J]. Agricultural Water Management, 2006, 81(1/2): 1-22.
|
36 |
Denmead O T, Millar B D. Field studies of the conductance of wheat leaves and transpiration[J]. Agronomy Journal, 1976, 68(2): 307-311.
|
37 |
Szeicz G, Bavel C H M V, Takami S. Stomatal factor in the water use and dry matter production by sorghum[J]. Agricultural Meteorology, 1973, 12: 361-389.
|
38 |
Mascart P, Taconet O, Pinty J P, et al. Canopy resistance formulation and its effect in mesoscale models: A HAPEX perspective[J]. Agricultural & Forest Meteorology, 1991, 54(2/4): 319-351.
|
39 |
Chen D X, Lieth J H. Two-dimensional model of water transport in the root zone and plant for container-grown chrysanthemum[J]. Agricultural & Forest Meteorology, 1992, 59(3/4): 129-148.
|
40 |
Liu Xuan, Wang Tianduo. Mathematical simulation of responses of wheat stomata to environment factors in the field[J]. Acta Phytophysiologica Sinica, 1988, 14(2): 136-144.
|
|
刘萱, 王天铎. 田间小麦叶片气孔对环境因子响应的模拟及叶片水分平衡的计算[J]. 植物生理学报, 1988, 14(2): 136-144.
|
41 |
Chu Xiaojing, Han Guangxuan, Xing Qinghui, et al. Net ecosystemexchange of CO2 on sunny and cloudy days over a reed wetland in the Yellow River Delta, China[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 661-673.
|
|
初小静, 韩广轩, 邢庆会, 等. 阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响[J]. 植物生态学报, 2015, 39(7): 661-673.
|
42 |
Bai Y, Zhu G F, Su Y Z, et al. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem[J]. Agricultural and Forest Meteorology, 2015, (214/215: 319-327.
|
43 |
María Elena Fernández, Gyenge J, Schlichter Tomás. Water flux and canopy conductance of natural versus planted forests in Patagonia, South America[J]. Trees, 2009, 23(2): 415-427.
|
44 |
Granier A, Denis L, Breda N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index [J]. Annals of Forest Science, 2000, 57(8): 755-765.
|
45 |
Ewers B E, Gower S T, Bond-Lamberty B, et al. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests[J]. Plant Cell and Environment, 2005, 28(5): 660-678.
|
46 |
Matheny A M, Bohrer G, Stoy P C, et al. Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(7): 1 458-1 473.
|
47 |
Zhang Q, Manzoni S, Katul G, et al. The hysteretic evapotranspiration-Vapor pressure deficit relation[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(2): 125-140.
|
48 |
Guan Xiaodan, Shi Rui, Kong Xiangning, et al. An overview of researches on land-atmosphere interaction over semi-arid region under global changes[J]. Advances in Earth Science, 2018, 33(10):995-1 004.
|
|
管晓丹, 石瑞, 孔祥宁, 等. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10):995-1 004.
|
49 |
Yu G R, Nakayama K, Matsuoka N, et al. A combination model for estimating stomatal conductance of maize (Zea mays L.) leaves over a long term[J]. Agricultural & Forest Meteorology, 1998, 92(1): 9-28.
|