地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 523 -533. doi: 10.11867/j.issn.1001-8166.2020.040

生态水文学理论与实践 上一篇    下一篇

西北干旱区灌溉绿洲农田生态系统冠层导度估算及其在蒸散计算中的应用
郭飞 1, 2( ),吉喜斌 1( ),金博文 1,赵丽雯 1,焦丹丹 3,赵文玥 1, 2,张靖琳 1, 2   
  1. 1.中国科学院西北生态环境资源研究院临泽内陆河流域研究站,中国科学院生态水文与流域科学重点 实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.北京师范大学地理科学学部,地表过程与资源生态国家重点实验室,北京 100875
  • 收稿日期:2019-12-31 修回日期:2020-04-14 出版日期:2020-05-10
  • 通讯作者: 吉喜斌 E-mail:guofei18@lzb.ac.cn;xuanzhij@lzb.ac.cn
  • 基金资助:
    国家自然科学基金项目“干旱区绿洲—荒漠过渡带能水交换及其组分拆分研究”(41771041)

Quantification of Canopy Conductance of the Agroecosystem in an Irrigated Oasis in Arid Regions of Northwest China and Its Application in Evapotranspiration Estimation

Fei Guo 1, 2( ),Xibin Ji 1( ),Bowen Jin 1,Liwen Zhao 1,Dandan Jiao 3,Wenyu Zhao 1, 2,Jinglin Zhang 1, 2   

  1. 1.Linze Inland River Basin Research Station,Key Laboratory of Ecohydrology and Watershed Science,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
    3.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • Received:2019-12-31 Revised:2020-04-14 Online:2020-05-10 Published:2020-06-05
  • Contact: Xibin Ji E-mail:guofei18@lzb.ac.cn;xuanzhij@lzb.ac.cn
  • About author:Guo Fei (1996-), female, Shijiazhuang City, Hebei Province, Master student. Research areas include ecohydrology and micrometeorology. E-mail: guofei18@lzb.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Study on energy-water exchange and its composition in oasis-desert transition zone in arid region"(41771041)

冠层导度是植被与大气间碳、水、热交换的关键调控因子,可靠合理的冠层导度估计对于量化陆地表面蒸散的物质与能量交换具有重要意义。基于Jarvis模型原理,采用叶片气孔导度对环境因子响应的分时段函数和叶面积指数构建了适用于西北干旱区灌溉绿洲农田生态系统的冠层导度模型,并用Penman-Monteith方程结合环境因子观测数据和涡度相关数据的反推计算结果对模型进行了验证,结果表明冠层导度模型能够提供合理的预测;应用该模型进一步计算了在叶面积指数大于3时的蒸散,模拟值与实测值也具有很好的一致性;此外,叶片气孔导度向冠层导度的尺度提升需要考虑遮荫系数(shelter factor),并拟合得到了其与叶面积指数的对应函数关系。这为干旱区土壤水分条件较好的农田生态系统提供了估算冠层导度和提高蒸散计算准确度的方法,对于理解植物与大气间物质和能量交换机制以及当地的水资源管理具有重要意义。

Canopy conductance (gc) is a key regulating factor of carbon, water and heat exchange between vegetation and atmosphere. Reliable and reasonable gc estimation is of great significance for quantifying evapotranspiration (ET) mass and energy exchange at terrestrial surface. Based on the Jarvis model, a canopy conductance model of agroecosystem in an irrigated oasis, located in arid regions of Northwestern China, was formulated by using the time-piecewise functions of the response of leaf stomatal conductance (gs) to environmental factors and Leaf Area Index (LAI). The developed gc model was tested with the calculated results derived from the inversion of the Penman-Monteith (PM) equation, in combination with observations of environmental variables and ET measured by the Eddy Covariance (EC) method, suggesting that the developed gc model can provide reasonable prediction. In order to further assess the performance of the developed gc model, we consequently calculated ET under the conditions that LAI was larger than three, indicating that the estimation was in good agreement with the observations from EC method. It should be noted that the scaling leaf stomatal conductance to canopy conductance needs to take into account shelter factor (fs), and the corresponding function relation with LAI is obtained by fitting. These results from our present study will provide a useful approach to quantifying the gc of agroecosystems under the well-watered conditions in arid climatic areas, and then can improve the performance of ET estimation, which have important implications for well understanding the controlling mechanisms of plant on energy exchange and ET, and even for local water resources management.

中图分类号: 

图1 气孔导度(a)和光合有效辐射(b)、饱和水汽压差(c)、大气温度(d)的平均日变化
Fig.1 Mean diurnal variations of stomatal conductance (gs) (a), Photosynthetically Active Radiation (PAR) (b), Vapor Pressure Deficit (VPD) (c) and air temperature (T) (d)
图2 叶片气孔导度对光合有效辐射(a)、饱和水汽压差(b)和大气温度(c)的迟滞响应
Fig.2 Hysteresis loops between stomatal conductance and environmental variables (Photosynthetically Active Radiation (PAR) (a), Vapor Pressure Deficit (VPD) (b), air temperature (T) (c)
表1 各响应函数表达式及决定系数
Table 1 Fitting functions and its coefficient of determination
表2 白天各时段模型表达式及决定系数
Table 2 Fitting functions of stomatal conductance and its coefficient of determination for different periods of daytime
图3 气孔导度模拟值与实测值比较
分时段模型:(a)2010年拟合,(b)2011年验证;未分时段模型:(c)2010年拟合,(d)2011年验证
Fig.3 Comparison between simulated and measured values of stomatal conductance
Time-piecewise model: (a) Fitting in 2010, (b) Validation in 2011; Unsegmented model: (c) Fitting in 2010,(d) Validation in 2011
表3 模型拟合结果统计分析
Table 3 Statistical analyses between measured and estimated values
图4 冠层导度模拟值与实测值日变化
(a)晴天;(b)阴天和多云天
Fig.4 Diurnal variation of simulated and measured canopy conductance
(a) Sunny days; (b) Cloudy days
图5 半小时蒸散模拟值与实测值日变化
(a)晴天;(b)阴天和多云天
Fig.5 Diurnal variation of simulated and measured evapotranspiration for 30 min
(a) Sunny days; (b) Cloudy days
1 Kelliher F M, Leuning R, Raupach M R, et al. Maximum conductances for evaporation from global vegetation types[J]. Agricultural & Forest Meteorology, 1995, 73(1/2): 1-16.
2 Pataki D E, Oren R, Katul G, et al. Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions[J]. Tree Physiology, 1998, 18(5): 307-315.
3 Rochette P, Pattey E, Desjardins R L, et al. Estimation of maize (Zea mays L.) canopy conductance by scaling up leaf stomatal conductance[J]. Agricultural & Forest Meteorology, 1991, 54(2/4): 241-261.
4 Dickinson R E. Evapotranspiration in global climate models[J]. Advances in Space Research, 1987, 7(11): 17-26.
5 Eamus D, Huete A, Yu Q, et al. Vegetation Dynamics: Modelling Stomatal and Canopy Conductance[M]. Cambridge, New York, USA: Cambridge University Press, 2016.
6 Li Xianyue, Yang Peiling, Ren Shumei,et al. Characteristics and simulation of canopy conductance of chery[J]. Acta Ecologica Sinica, 2010, 30(2): 300-308.
李仙岳,杨培岭,任树梅,等.樱桃冠层导度特征及模拟[J].生态学报, 2010, 30(2): 300-308.
7 Ball J T, Woodrow I E, Berry J A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[M]//Biggins J. Progress in Photosynthesis Research. Dordrecht: Springer, 1987.
8 Jarvis P G. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transactions of the Royal Society of London, 1976, 273(927): 593-610.
9 Stewart J. Modelling surface conductance of pine forest[J]. Agricultural and Forest Meteorology, 1988, 43(1): 19-35.
10 Whitley R, Medlyn B, Zeppel M, et al. Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance[J]. Journal of Hydrology, 2009, 373(1/2): 256-266.
11 Irmak S, Mutiibwa D, Irmak A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J]. Agricultural & Forest Meteorology, 2008,148(6): 1 034-1 044.
12 Sellers P J, Berry J A, Collatz G J, et al. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme[J]. Remote Sensing of Environment, 1992, 42(3): 187-216.
13 Cox P M, Huntingford C, Harding R J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme[J]. Journal of Hydrology, 1998, 212/213(1/4): 79-94.
14 Williams M, Rastetter E B, Fernandes D N, et al. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties[J]. Plant Cell & Environment, 1996, 19(8): 911-927.
15 Grant R F, Wall G W, Kimball B A, et al. Crop water relations under different CO2 and irrigation: Testing of ecosys with the Free Air CO2 Enrichment (FACE) experiment[J]. Agricultural & Forest Meteorology, 1999, 95(1): 1-51.
16 Tuzet A, Perrier A, Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant, Cell and Environment, 2003, 26(7): 1 097-1 116.
17 Yu Guirui, Wang Qiufeng. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use[M]. Beijing: Science Press, 2010.
于贵瑞, 王秋凤. 植物光合、蒸腾与水分利用的生理生态学[M]. 北京: 科学出版社, 2010.
18 Han Lei,He Jun,Qi Tuoye,et al. Responses and modeling of canopy stomatal conductance of Platycladus orientalis to environmental factors in Hedong sandy land,Ningxia[J]. Chinese Journal of Ecology, 2018, 37(9): 2 862-2 868.
韩磊, 何俊, 齐拓野, 等. 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟[J]. 生态学杂志, 2018, 37(9): 2 862-2 868.
19 Sun Lin,Guan Wei,Wang Yanhui, et al. Simulations of Larix principis-rupprechtii stand mean canopy stomatal conductance and its responses to environmental factors[J]. Chinese Journal of Ecology, 2011, 30(10): 2 122-2 128.
孙林, 管伟, 王彦辉, 等. 华北落叶松冠层平均气孔导度模拟及其对环境因子的响应[J]. 生态学杂志, 2011, 30(10): 2 122-2 128.
20 Zheng Hailei, Huang Zichen. Simulation of stomatal behaviour and transpiration of single leaf of spring wheat[J]. Plateau Meteorology, 1992, 11(4): 423-430.
郑海雷,黄子琛.春小麦单叶气孔行为及蒸腾作用的模拟[J]. 高原气象, 1992, 11(4): 423-430.
21 Schelde K, Kelliher F M, Massman W J, et al. Estimating sensible and latent heat fluxes from a temperate broad-leaved forest using the Simple Biosphere (SiB) model[J]. Agricultural & Forest Meteorology, 1997, 84(3): 285-295.
22 Liu H, Cohen S, Lemcoff J H, et al. Sap flow, canopy conductance and microclimate in a banana screenhouse[J]. Agricultural and Forest Meteorology, 2015, 201:165-175.
23 Zhao W Z, Ji X B. Spatio-temporal variation in transpiration responses of maize plants to vapor pressure deficit under an arid climatic condition[J]. Journal of Arid Land, 2016, 8(3): 409-421.
24 Carlson T N. Modeling stomatal resistance: An overview of the 1989 workshop at the Pennsylvania State University[J]. Agricultural & Forest Meteorology, 1991, 54(2/4): 103-106.
25 Shuttleworth W J. Below-canopy fluxes in a simplified one-dimensional theoretical description of the vegetation-atmosphere interaction[J]. Boundary Layer Meteorology, 1979, 17(3): 315-331.
26 Allen R G, Jensen M E, Wright J L, et al. Operational estimates of reference evapotranspiration[J]. Agronomy Journal, 1989, 81(4): 650-662.
27 Szeicz G, Long I F. Surface resistance of crop canopies[J]. Water Resources Research, 1969, 5(3): 622-633.
28 Finnigan J J. Turbulence in waving wheat. Part II: Structure of momentum transfer[J]. Boundary-Layer Meteorology, 1979, 16(3): 213-236.
29 Jiang Yao. Simulation Analysis and Optimal Regulation for Agro-Hydrological Processes and Water Use Efficiency on Multiple Scales of the Middle Heihe River Basin[D]. Beijing: China Agricultural University, 2017.
姜瑶. 黑河中游绿洲多尺度农业水文过程及用水效率的模拟分析与优化调控研究[D]. 北京: 中国农业大学, 2017.
30 Tang Qiuhong, Liu Xingcai, Li Zhe, et al. Integrated water systems model for terrestrial water cycle simulation[J]. Advances in Earth Science, 2019, 34(2): 115-123.
汤秋鸿, 刘星才, 李哲, 等. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
31 Xie Zhenghui, Chen Si, Qin Peihua, et al. Research on climate feedback of human water use and its impact on terrestrial water cycles—Advances and challenges[J]. Advances in Earth Science, 2019, 34(8): 801-813.
谢正辉. 陈思, 秦佩华,等. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
32 Ji X B, Zhao W Z, Kang E S, et al. Carbon dioxide exchange in an irrigated agricultural field within an oasis, Northwest China[J]. Journal of Applied Meteorology and Climatology, 2011, 50(11): 2 298-2 308.
33 Whitehead D. Regulation of stomatal conductance and transpiration in forest canopies[J]. Tree Physiology, 1998, 18(8/9): 633-644.
34 Huang Hui, Yu Guirui, Sun Xiaomin, et al. The environmental responses and simulation of canopy conductance in a winter wheat field of North China Plain[J]. Acta Ecologica Sinica, 2007, 27(12): 5 209-5 221.
黄辉, 于贵瑞, 孙晓敏, 等. 华北平原冬小麦冠层导度的环境响应及模拟[J]. 生态学报, 2007, 27(12): 5 209-5 221.
35 Allen R G, Pruitt W O, Wright J L, et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method[J]. Agricultural Water Management, 2006, 81(1/2): 1-22.
36 Denmead O T, Millar B D. Field studies of the conductance of wheat leaves and transpiration[J]. Agronomy Journal, 1976, 68(2): 307-311.
37 Szeicz G, Bavel C H M V, Takami S. Stomatal factor in the water use and dry matter production by sorghum[J]. Agricultural Meteorology, 1973, 12: 361-389.
38 Mascart P, Taconet O, Pinty J P, et al. Canopy resistance formulation and its effect in mesoscale models: A HAPEX perspective[J]. Agricultural & Forest Meteorology, 1991, 54(2/4): 319-351.
39 Chen D X, Lieth J H. Two-dimensional model of water transport in the root zone and plant for container-grown chrysanthemum[J]. Agricultural & Forest Meteorology, 1992, 59(3/4): 129-148.
40 Liu Xuan, Wang Tianduo. Mathematical simulation of responses of wheat stomata to environment factors in the field[J]. Acta Phytophysiologica Sinica, 1988, 14(2): 136-144.
刘萱, 王天铎. 田间小麦叶片气孔对环境因子响应的模拟及叶片水分平衡的计算[J]. 植物生理学报, 1988, 14(2): 136-144.
41 Chu Xiaojing, Han Guangxuan, Xing Qinghui, et al. Net ecosystemexchange of CO2 on sunny and cloudy days over a reed wetland in the Yellow River Delta, China[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 661-673.
初小静, 韩广轩, 邢庆会, 等. 阴天和晴天对黄河三角洲芦苇湿地净生态系统CO2交换的影响[J]. 植物生态学报, 2015, 39(7): 661-673.
42 Bai Y, Zhu G F, Su Y Z, et al. Hysteresis loops between canopy conductance of grapevines and meteorological variables in an oasis ecosystem[J]. Agricultural and Forest Meteorology, 2015, (214/215: 319-327.
43 María Elena Fernández, Gyenge J, Schlichter Tomás. Water flux and canopy conductance of natural versus planted forests in Patagonia, South America[J]. Trees, 2009, 23(2): 415-427.
44 Granier A, Denis L, Breda N. A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index [J]. Annals of Forest Science, 2000, 57(8): 755-765.
45 Ewers B E, Gower S T, Bond-Lamberty B, et al. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests[J]. Plant Cell and Environment, 2005, 28(5): 660-678.
46 Matheny A M, Bohrer G, Stoy P C, et al. Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land-surface models: An NACP analysis[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(7): 1 458-1 473.
47 Zhang Q, Manzoni S, Katul G, et al. The hysteretic evapotranspiration-Vapor pressure deficit relation[J]. Journal of Geophysical Research Biogeosciences, 2014, 119(2): 125-140.
48 Guan Xiaodan, Shi Rui, Kong Xiangning, et al. An overview of researches on land-atmosphere interaction over semi-arid region under global changes[J]. Advances in Earth Science, 2018, 33(10):995-1 004.
管晓丹, 石瑞, 孔祥宁, 等. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10):995-1 004.
49 Yu G R, Nakayama K, Matsuoka N, et al. A combination model for estimating stomatal conductance of maize (Zea mays L.) leaves over a long term[J]. Agricultural & Forest Meteorology, 1998, 92(1): 9-28.
[1] 蔡福, 明惠青, 纪瑞鹏, 冯锐, 米娜, 赵先丽, 张玉书. 玉米冠层辐射传输参数优化对陆气通量模拟的影响[J]. 地球科学进展, 2014, 29(5): 598-607.
[2] 熊伟,杨婕,林而达,许吟隆. 未来不同气候变化情景下我国玉米产量的初步预测[J]. 地球科学进展, 2008, 23(10): 1092-1101.
[3] 孟磊;丁维新;蔡祖聪;钦绳武. 长期定量施肥对土壤有机碳储量和土壤呼吸影响[J]. 地球科学进展, 2005, 20(6): 687-692.
阅读次数
全文


摘要