地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 513 -522. doi: 10.11867/j.issn.1001-8166.2020.021

生态水文学理论与实践 上一篇    下一篇

河流生态需水计算及空间满足率分析——以济南市为例
杨阳 1, 2( ),汪中华 4,王雪莲 5,赵长森 1, 2, 3( ),张纯斌 3,潘天力 3   
  1. 1.北京师范大学 水科学研究院 地下水污染控制与修复教育部工程研究中心,北京 100875
    2.北京师范 大学 水科学研究院 城市水循环与海绵城市技术北京市重点实验室,北京 100875
    3.北京师范大学 地理科学学部 遥感科学国家重点实验室,北京 100875
    4.济南市水文局,山东 济南 250013
    5.北京市水文总站,北京 100089
  • 收稿日期:2019-12-23 修回日期:2020-03-04 出版日期:2020-05-10
  • 通讯作者: 赵长森 E-mail:yangyoga@163.com;zhaochangsen@bnu.edu.cn
  • 基金资助:
    国家自然科学基金项目“喀斯特生物多样性形成和维持的钙依赖机制及其应用基础”(U1812401)

Calculation of Environment Flow and Analysis of Spatial Environment flow Satisfaction Rate: A Case Study of Ji'nan City

Yang Yang 1, 2( ),Zhonghua Wang 4,Xuelian Wang 5,Changsen Zhao 1, 2, 3( ),Chunbin Zhang 3,Tianli Pan 3   

  1. 1.College of Water Sciences,Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology,Beijing Normal University,Beijing 100875,China
    2.Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences,Beijing Normal University,Beijing 100875,China
    3.Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities,School of Geography,Beijing Normal University,Beijing 100875,China
    4.Ji'nan Survey Bureau of Hydrology and Water Resources,Ji'nan 250013,China
    5.Beijing Hydrological Center,Beijing 100089,China
  • Received:2019-12-23 Revised:2020-03-04 Online:2020-05-10 Published:2020-06-05
  • Contact: Changsen Zhao E-mail:yangyoga@163.com;zhaochangsen@bnu.edu.cn
  • About author:Yang Yang (1995-), male, Handan City, Hebei Province, Master student. Research areas include ecological hydrology. E-mail: yangyoga@163.com
  • Supported by:
    the National Natural Science Foundation Program of China "Calcium-dependent mechanism of karst biodiversity formation and maintenance and its application basis"(U1812401)

随着经济社会发展,用水量增大,导致河流生态需水常常得不到满足。生态需水作为河流生态系统的重要指标,对维持生态系统可持续具有关键作用。充分考虑河流生态系统的生物需求,采用食物网模型(Ecopath)识别了鱼类关键物种,在此基础上确定生态流速,结合无人机反演河段大断面,采用改进的生态水力半径法(AEHRA)计算生态需水,在生态需水计算结果的基础上采用River2D模型模拟河段流量,进而计算河段的生态需水满足率。计算结果表明汛期各河段生态需水基本能够得到满足,非汛期绝大多数河段生态需水不能得到满足,并且满足率极低,导致生态系统健康无法维持。因此,应加强非汛期的河流生态调度以满足河流生态需水。研究提出的计算河段生态需水的新方法可为水生态修复提供方法基础,研究结果可为济南市河流水生态修复与管理提供重要的科学依据。

With the socio-economic development, water demand has increased, resulting in river environment flow often not being met. As an important indicator of river ecosystem, environment flow plays a key role in maintaining the sustainability of the ecosystem. This study fully considered the biological needs of river ecosystems, used food web models (Ecopath) to identify key species of fish, determined the ecological flow velocity, combined the river sections, and used the Adapted Ecological Hydraulic Radius Method (AEHRA) to calculate the environment flow. Based on the calculation results of the environment flow, the River2D model was used to simulate the river flow, and the environment flow satisfaction rate of the river was calculated. The calculation results show that the environment flow of each river in the flood season can be satisfied, and the environment flow of most rivers in the non-flood season cannot be satisfied, and the satisfaction rate is extremely low, which causes the ecosystem health to be destroyed. Therefore, ecological regulation of rivers during non-flood seasons should be strengthened to meet river environment flow. The new method for calculating the environment flow of the river provided in this paper can provide a method for aquatic ecological restoration, and the research results can provide important scientific basis for the aquatic ecological restoration and management of rivers in Jinan.

中图分类号: 

图1 济南市概况图
Fig.1 The overview of Ji'nan City
表1 济南 2014201610次野外采集的鱼类种类
Table 1 Species of fish collected in Ji'nan from 2014 to 2016
图2 食物网图示例
Fig.2 Food web structure diagram
表2 关键鱼类产卵需求
Table 2 Key fish spawning needs
表3 典型控制点最小生态需水 ( Q E _ m i n )和最小生态水深 ( Z E _ m i n )
Table 3 Minimum environment flows ( Q E _ m i n ) and minimum ecological water depth ( Z E _ m i n ) at typical points
图3 各典型点河道空间连续最小生态需水满足率分布图
从上至下依次是并渡口、张工南临、巨野河、北大沙河,(a)、(c)、(e)和(g)为非汛期,(b)、(d)、(f)和(h)为汛期
Fig.3 Environment flows satisfaction rate of river channels at typical points
From top to bottom are Bingdukou, Zhanggongnanlin, Juyehe, and Beidashahe. (a),(c),(e),(g) are the non-flood season,
the (b),(d),(f),(h) are the flood season
1 Wilbers G J, Becker M, Sebesvari Z, et al. Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam[J]. Science of the Total Environment, 2014, 485: 653-665.
2 Zhao C, Yang S, Liu J, et al. Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control[J]. Water Research, 2018, 141: 96-108.
3 Fan Xiaoshan,He Ping. Research progress on river ecosystem services[J]. Advances in Earth Science,2018,33(8):852-864.
范小杉,何萍. 河流生态系统服务研究进展[J]. 地球科学进展,2018,33(8):852-864.
4 Xia Jun,Zuo Qiting,Han Chunhui. Eco-hydrology discipline system and discipline development strategy[J]. Advances in Earth Science, 2018, 33(7): 665-674.
夏军,左其亭,韩春辉.生态水文学学科体系及学科发展战略[J]. 地球科学进展,2018,33(7):665-674.
5 Yang H, Flower R J, Thompson J R. Sustaining China's water resources[J]. Science, 2013, 339(6 116): 141.
6 Conder A L, Annear T C. Test of weighted usable area estimates derived from a PHABSIM model for instream flow studies on trout streams[J]. North American Journal of Fisheries Management, 1987, 7(3): 339-350.
7 Horritt M S, Bates P D. Evaluation of 1D and 2D numerical models for predicting river flood inundation[J]. Journal of Hydrology, 2002, 268(1/2/3/4): 87-99.
8 Patel C G, Gundaliya P J. Floodplain delineation using HECRAS model—A case study of Surat City[J]. Open Journal of Modern Hydrology, 2016, 6(1): 34-42.
9 Stalnaker C B, Chisholm I, Paul A. Comment 2: Don't throw out the baby (PHABSIM) with the bathwater: Bringing scientific credibility to use of hydraulic habitat models, specifically PHABSIM[J]. Fisheries, 2017, 42(10): 510-516.
10 Cui Ling. Preliminary Study on Hydraulic Simulation of Lijiang River Guilin Section Using River2D Model [D]. Guilin:Guilin University of Technology, 2007.
崔玲.应用River2D模型对漓江桂林市区段水力模拟的初步研究[D].桂林:桂林理工大学, 2007.
11 Nassar M A. Multi-parametric sensitivity analysis of CCHE2D for channel flow simulations in Nile River[J]. Journal of Hydro-environment Research, 2011, 5(3): 187-195.
12 Tonyes S G, Wasson R J, Munksgaard N C, et al. Sand dynamics as a tool for coastal erosion management: A case study in Darwin Harbour, Northern Territory, Australia[J]. Procedia Engineering, 2015, 125: 220-228.
13 Kheireldin K, Fahmey A, Gasser M. Application of the FESWMS-2DH software to solve the navigation problem at EL-Menya bridge in Egypt[C]//Computing in Civil Engineering. ASCE, 1994: 1 244-1 250.
14 Steffler P, Blackburn J. River 2D-two-Dimensional Depth Averaged Model of River Hydrodynamics and Fish Habitat Introduction to Depth Averaged Modeling and User’s[Z]. 2002.
15 Ying Xiaoming. Simulation of River Ecological Environment Based on IFIM Method [D]. Nanjing: Hohai University, 2006.
英晓明. 基于 IFIM 方法的河流生态环境模拟研究[D]. 南京: 河海大学, 2006.
16 Yang Zhifeng, Yu Shiwei, Chen He, et al. Ecological water demand threshold model in spring flood season based on habitat mutation analysis [J]. Advances in Water Science, 2010, 21(4): 567-574.
杨志峰, 于世伟, 陈贺, 等. 基于栖息地突变分析的春汛期生态需水阈值模型[J]. 水科学进展, 2010, 21(4): 567-574.
17 Zhao C S, Yang S T, Zhang H T, et al. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities[J]. Journal of Hydrology, 2017, 551:470-483.
18 Zhao C S, Zhang C B, Yang S T, et al. Calculating e-flow using UAV and ground monitoring[J]. Journal of Hydrology, 2017, 552: 351-365.
19 Liang Xingjun. Investigation and Study on Biomass and Carbon Storage of Forest Vegetation in Jinan City [D]. Ji'nan: Shandong Normal University, 2015.
梁兴军. 济南市森林植被生物量和碳储量调查研究[D]. 济南:山东师范大学, 2015.
20 Xia Tian. Regional Winter Eheat Biomass Dimulation and Good Decurity Evaluation Based on Hyperspectral Remote Sensing [D]. Wuhan: Huazhong Normal University, 2011.
夏天. 基于高光谱遥感的区域冬小麦生物量模拟及粮食安全评价[D]. 武汉: 华中师范大学, 2011.
21 Zhang Xin. Aquatic Function Zoning and Water Ecological Health Assessment in Jinan City [D]. Dalian:Dalian Ocean University, 2016.
张欣. 济南市水生态功能分区及水生态健康评价[D]. 大连:大连海洋大学, 2016.
22 Cui B, Wang C, Tao W, et al. River channel network design for drought and flood control: A case study of Xiaoqinghe River basin, Jinan City, China[J]. Journal of Environmental Management, 2009, 90(11): 3 675-3 686.
23 Zhi-guo Z, Yi-sheng S, Zong-xue X. Prediction of urban water demand on the basis of Engel's coefficient and Hoffmann index: Case studies in Beijing and Jinan, China[J]. Water Science and Technology, 2010, 62(2): 410-418.
24 Barbour M T, Gerritsen J, Snyder B D, et al. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish[M]. Washington DC: US Environmental Protection Agency, Office of Water, 1999.
25 Chen J X, Xu T. Fishes in Qinling Mountain Area[M]. Beijing:Science Press, 1987.
26 Libralato S, Christensen V, Pauly D. A method for identifying keystone species in food web models[J]. Ecological Modelling, 2006, 195(3/4): 153-171.
27 Zhao C, Zhang Y, Yang S, et al. Quantifying effects of hydrological and water quality disturbances on fish with food-web modeling[J]. Journal of Hydrology, 2018, 560: 1-10.
28 Liu C, Zhao C, Xia J, et al. An instream ecological flow method for data-scarce regulated rivers[J]. Journal of Hydrology, 2011, 398(1/2): 17-25.
29 Sun Jianing. Simulation of Fish Habitat in Heishui River, A Tributary of Baihetan Reservoir [D]. Hangzhou: Zhejiang University, 2013.
孙嘉宁. 白鹤滩水库回水支流黑水河的鱼类生境模拟研究[D]. 杭州: 浙江大学, 2013.
30 Feng Huili, Zhu Jiangfeng, Chen Yan. Construction and comparison of tropical East Pacific ecosystem models based on Ecopath[J]. Journal of Shanghai Ocean University, 2019, 28 (6): 921-932.
冯慧丽, 朱江峰, 陈彦. 基于 Ecopath 的热带东太平洋生态系统模型构建及其比较[J]. 上海海洋大学学报, 2019, 28(6): 921-932.
31 Liu Hongyan, Yang Chaojie, Zhang Peidong, et al. Ecosystem structure and function of Laoshan Bay artificial fish reef area based on Ecopath model[J]. Chinese Journal of Ecology, 2019, 39(11): 3 926-3 936.
刘鸿雁, 杨超杰, 张沛东, 等. 基于 Ecopath模型的崂山湾人工鱼礁区生态系统结构和功能研究[J]. 生态学报, 2019, 39(11): 3 926-3 936.
32 Zhang Yuan, Zhao Changsen, Yang Shengtian, et al. Calculation method of ecological water demand coupled with ecological velocity of multiple species [J]. Journal of Beijing Normal University (Natural Science Edition), 2017, 53(3): 337-343.
张远, 赵长森, 杨胜天, 等. 耦合多物种生态流速的生态需水计算方法[J]. 北京师范大学学报:自然科学版, 2017, 53(3): 337-343.
33 Zhang Yuan, Zhao Changsen, Yang Shengtian, et al. Calculation of ecological water demand in river channels based on key functional groups [J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 108-113.
张远, 赵长森, 杨胜天, 等. 基于关键功能组的河道内生态需水计算[J]. 南水北调与水利科技, 2018, 16(1): 108-113.
34 Zhao Ranhang, Peng Tao, Wang Haofang, et al. Research on the basic ecological water demand in the river channel based on the improved year calculation method [J]. South-to-North Water Transfers and Water Science & Technology, 2018,16(4):114-119.
赵然杭, 彭弢, 王好芳, 等. 基于改进年内展布计算法的河道内基本生态需水量研究[J]. 南水北调与水利科技, 2018,16(4):114-119.
35 Wang Qingguo, Wang Chao, Li Kefeng, et al. Application of two-dimensional hydraulic simulation to river ecological water demand and wet cycle method [J]. Yangtze River, 2018, 49 (7): 16-19.
王庆国, 王超, 李克锋, 等. 二维水力模拟在河流生态需水湿周法中的应用[J]. 人民长江, 2018, 49(7): 16-19.
[1] 冯起,李宗礼,高前兆,司建华. 石羊河流域民勤绿洲生态需水与生态建设[J]. 地球科学进展, 2012, 27(7): 806-814.
[2] 陈亚宁,郝兴明,李卫红,陈亚鹏,叶朝霞,赵锐锋. 干旱区内陆河流域的生态安全与生态需水量研究——兼谈塔里木河生态需水量问题[J]. 地球科学进展, 2008, 23(7): 732-738.
[3] 胡广录,赵文智,谢国勋. 干旱区植被生态需水理论研究进展[J]. 地球科学进展, 2008, 23(2): 193-200.
[4] 程国栋.赵传燕. 西北干旱区生态需水研究[J]. 地球科学进展, 2006, 21(11): 1101-1108.
阅读次数
全文


摘要