地球科学进展 ›› 2001, Vol. 16 ›› Issue (2): 209 -214. doi: 10.11867/j.issn.1001-8166.2001.02.0209

综述与评述 上一篇    下一篇

陨石含水矿物成因评述和地球水来源的探讨
侯渭,谢鸿森,周文戈   
  1. 中国科学院地球化学研究所,贵州 贵阳  550002
  • 收稿日期:2000-05-26 修回日期:2000-08-28 出版日期:2001-04-01
  • 通讯作者: 侯渭(1942-),女,山西榆次人,研究员,主要从事天体化学、陨石学和地球深部物质科学研究. E-mail:xiehongsen@sina.com
  • 基金资助:

    国家自然科学基金项目“高温高压下熔体与流体的混溶和分离的实验研究”(编号:49772111)资助.

A REVIEW ON ORIGIN OF HYDROITES IN METEORITES AND A DISCUSSION ON SOURCE OF EARTH'S WATER

HOU Wei, XIE Hong-sen, ZHOU Wen-ge   

  1. Institute of Geochemistry,Chinese Academy of Sciences,Guiyang550002,China
  • Received:2000-05-26 Revised:2000-08-28 Online:2001-04-01 Published:2001-04-01

简要介绍了球粒陨石中含水矿物的种类和主要特点。根据陨石中含水矿物与无水矿物、有机质的关系,太阳星云凝聚模型中有关水蒸汽与无水矿物反应的理论,以及有关的同位素资料的综合分析,推断形成含水矿物的水化作用是太阳星云凝聚作用的一个阶段。通过不同类型球粒陨石氧同位素组成和含水矿物数量的比较,论证了太阳星云盘中发生水化作用的范围,从而对地球水的来源进行了讨论。 

The hydroites of meteorites mostly are in matrix of carbonaceous chondrites. Their major phases are phyllosilicates, and hydroxides, carbonates and sulfates are minor phases. Based on the relation of hydroites and anhydrous minerals, the relation of hydroites and organic matter, the reactions of water vapour and anhydrous minerals in nebular,and isotopic composations of chondrites, we concluded that aqueous alteration occurred during nebular condensation. Through comparative study on oxygen isotopic composition and water content of chondrite groups, and the fact that water or water ice exists in terrestriial planets,such as Earth, Mar, Mercury and Moon, we infer that the space range of nebular aqueous alteration involve terrestrial planet region and astroid region of nebular disk. Therefore the source of water in Earth must be with nebular aqueous alteration.

中图分类号: 

[1]  Dai W S. The evolution of solar system(The first volume)[M]. Shanghai: Shanghai Science and Technology Press,1979. 370~407.[戴文赛.太阳系演化学(上册)[M].上海:上海科学技术出版社, 1979.370~407.]
[2]  Buseck P R, Hua X. Matrices of carbonaceous chondrite meteorites[J]. Annu Rev Earth Planet Sci, 1993, 21:255~305.
[3]  Weisberg M K, Zolensky M E, Prinz M. Fayalitic olivine in matrix of the Krymka LL3.1 chondrite: Vapor-solid growth in the solar nebula[J].Meteoritics &Planetary Science, 1997,32:791~801.
[4]  Huang Wan Kang, Xie Yingwen, Pan Jingming. Transparent minerals in the Jilin meteorits [J]. Geochimica, 1978,(1): 25~34.[黄婉康,谢应雯,潘晶铭.吉林陨石的透明矿物[J].地球化学,1978,(1):25~34.]
[5]  Wasson J T. Meteorites:Their record of early solar-system history[M].New York: Freeman W H and Company, 1985.116~117.
[6]  Weisberg M K, Prinz M, Clayton R N. The CR chondrite clan[A]. In: Edited by Hirasawa T ed. Proceedings of the NIPR Symposium on Antarctic Meteorites[C].Tokyo:National Institute of Polar Research, 1995.11~32.
[7]  Greshake A.The primitive matrix components of the unique carbonaceous chondrite Acfer 094:A TEM study[J]. GCA,1997,61(2):437~452.
[8]  Tomeoka K, McSween H Y Jr, Buseck P R., Mineralogical alteration of CM carbonaceous chondrites:a review[A]. In:Hoshiai T ed. Proceedings of the NIPR Symposium on Antarctic Meteorites[C].Tokyo:National Institute of Polar Research, 1989, (2):221~234.
[ 9]  Ichikawa O, Ikeda Y. Petrology of Yamato-8449 chondrite(CR) [A]. In: Hirasawa T, ed. Proceedings of the NIPR Symposium on Antarctic Meteorites [C]. Tokyo:National Institute of Polar Research, 1995.63~78.
[10]  Zolensky M E, Ivanov A V, Yang V,et al. The Kaidun me teorite: mineralogy of an unusual CM1 lithology[J]. Meteoritics &Planetary Science, 1996, 31:484~493.
[11]   Ouyang Ziyuan. Cosmochemistry [M]. Beijing: Science Press,1988.44~52.[欧阳自远.天体化学[M].北京:科学出版社,1988. 44~52.]
[12]  Lecluse C, Robert F. Hydrogen isotope exchang reaction rates: Origin of water in the inner solar system[J]. GCA,1994,58(13):2 927~2 939.
[13]  Deloule E, Robert F.Interstellar water in meteorites? [J].GCA, 1995, 59(22): 4 695~4 706.
[14]  Yung Y, Friedl R R, Pinto J P,et al. Kinetic isotopic fractionation and the origin of HDO and CH 3D in the solar system[J]. Icarus, 1988,74:121~132.
[15]  Hou Wei,Ouyang Ziyuan, Xie Hongsen,et al.Petrological model for condensation process of solar nebular:(1) condensation genesis of chondrites[J]. Acta Petrologica Sinica,1996, 12(1): 115~126.[侯渭,欧阳自远,谢鸿森,等.太阳星云凝聚过程的岩石学模型:(1)球粒陨石的凝聚形成[J].岩石学报,1996,12(1):115~126.]
[16]  Clayton R N. Oxygen isotopes in meteorites[J]. Annu Rev Earth Planet Sci, 1993, 21:115~149.
[17]  Leshin L A , Rubin A E, Mckeegan K D. The oxygen isotopic composition of olivine and pyroxene from CI chondrites[J].GCA, 1997,61(4):835~845.
[18]  Clayton R N, Mayrda T K. The oxygen isotope record in Murchison and other carbonaceous chondrites[J]. Earth and Planetary Science Letters, 1984,67:151~161.
[19]  Weisberg M K, Prinz M, Clayton,et al. The CR(Renazzo-type) carbonaceous chondrite group and its implications[J].GCA, 1993,57:1 567~1 586.
[20]  Tomeoka K, Kojima H, Yanai K.Yamato-82162:A new kind of CI carbonaceous chondrite found in Antarctica[J]. Proceedings of the NIPR on Antarctic Meteorites, 1989,2:36~54.

[1] 熊国庆,江新胜,蔡习尧,伍皓. 藏南白垩系泥、页岩微量、稀土元素特征及氧化—还原环境分析[J]. 地球科学进展, 2010, 25(7): 730-745.
[2] 侯渭,欧阳自远. 对南极类C1陨石成因和星云水化作用范围的几点看法[J]. 地球科学进展, 1995, 10(4): 373-377.
阅读次数
全文


摘要