地球科学进展 ›› 2006, Vol. 21 ›› Issue (4): 383 -393. doi: 10.11867/j.issn.1001-8166.2006.04.0383

综述与评述 上一篇    下一篇

热带珊瑚的高分辨率环境信息与全球变化研究进展
刘羿 1,彭子成 1,2,周静 1,贺剑峰 1,江玉平 1,刘桂建 1   
  1. 1.中国科学技术大学地球和空间科学学院,安徽 合肥 230026;2.中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,陕西 西安 710054
  • 收稿日期:2005-08-16 修回日期:2006-03-02 出版日期:2006-04-15
  • 通讯作者: 刘羿 E-mail:gee@mail.ustc.edu.cn
  • 基金资助:

    中国科学院知识创新工程重要方向项目“我国自然环境分异耦合过程与发展趋势”(编号:KZCX2-SW-118)和“我国环境敏感带全新世温暖期的高分辨率环境记录”(编号: KZCX3-SW-120);国家自然科学基金项目“由南海珊瑚δ18O探讨中世纪以来南海北部特征气候事件”(编号:40176031);中国科学院同位素年代学和地球化学重点实验室“海南岛东部滨珊瑚Sr/Ca、Mg/Ca代用指标研究近百年海表温度变率”(编号:GIGIso-05-7)资助.

Advances in High Resolution of the Environment Records in the Tropical Coral and Global Change

Liu Yi 1,Peng Zicheng 1,2,Zhou Jing 1,He Jianfeng 1,Jiang Yuping 1,Liu Guijian 1   

  1. 1.School of Earth and Space Science, University of Science and Technology of China, Hefei 230026,China;2.State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS,Xi'an 710075,China
  • Received:2005-08-16 Revised:2006-03-02 Online:2006-04-15 Published:2006-04-15

星罗棋布的热带珊瑚作为海洋环境的信息载体,具有分辨率高、时间跨度大、记录连续完整、体系封闭性好、蕴涵的信息丰富、可选择的代用指标多、测定简便和易于定年等特点。珊瑚有效地记录了全球环境变化的诸多信息,已成为研究过去(如末次间冰期以来)和近代(如数十至数百年以来)的气候—环境变率和可预测性(PAGES-CLIVAR)领域重要的环境载体。以全球变化为背景,对近年来珊瑚环境代用指标的研究成果进行评述。重点讨论了珊瑚氧同位素和微量元素比值等指标在海表温度(SST)变化、海气交换程度、季风强弱、厄尔尼诺—南方涛动(ENSO)发生的频率和强度,以及它们之间的相互作用等全球变化的核心问题上的研究进展,并展望了南海珊瑚在高分辨率全球变化研究中的地位与方向。

Ocean is a part of the Earth's system. However,people have lack of knowledge of the ocean activity related to the global change because the instrumental data are much limited in the ocean regions. The tropical corals would supply high resolution of the recorders for reconstructing the paleo-environment and revealing global changes from last maximum glacier period to past decades due to their wide distribution, easily dating, and a broad array of geochemical proxies in the skeletons. The variants of the geochemical proxies recording the environment information have been discussed. The Sr/Ca ratios of corals as a proxy have been paid much attention with claims of precision better than 0.5℃ in reconstructing the sea surface temperature (SST) sequences in the tropical oceans. In the equatorial Pacific, coral isotopic records track the variability of ENSO, monsoon, circulation, etc., which are related to the global changes. The combination of oxygen isotopic composition with Sr/Ca ratios in corals is a robust proxy for salinity. Moreover, the new approaches of coral research in the South China Sea and investigative projects related to globe change have also been commented. A complete database of the coral δ18O and Sr/Ca ratios in the South China Sea is needed to reveal the interactivity between the tropical seas and middle-high latitude lands, and to establish new models for predicting the near-future climatic variability. The MBER projects are a new direction for China's research on marine ecosystems included in the tropical corals in the South China Sea.

中图分类号: 

[1] Fallon S J, White J C, McCulloch M T. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea[J]. Geochimia et Cosmochimica Acta, 2002,66(1):45-62.

[2] Cobb K M, Charles C D, Cheng Hai, et al. U/Th-dating living and young fossil corals from the central tropical Pacific[J]. Earth and Planetary Science Letters,2003,210(1/2):91-103.

[3] Kilbourne K H,Quinn T M,Taylor F W. A fossil coral perspective on western tropical Pacific climate/350ka[J]. Paleoceanography, 2004,19 (1), doi:10.1029/2003PA000944.

[4] Weber J N. Incorporation of strontium into reef coral skeletal carbonate[J]. Geochimica et Cosmochimica Acta,1973,37:2 173-2 190.

[5] Fallon S J, McCulloch M T, Alibert C.Examining water temperature proxies in Porites corals from the Great Barrier Reef: A cross-shelf comparison[J]. Coral Reefs,2003,22(8):389-404

[6] Broecker W S, Peng T H. Tracers in the Sea[M]. New York:Lamont-Doherty Geological Observatory,Columbia University, 1982.

[7] Mitsuguchi T, Matsumoto E, Abe O, et al. Mg/Ca thermometry in coral skeletons[J]. Science, 1996, 274(5 289):961-963.

[8] Min G R, Edwards R L, Taylor F W, et al. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry[J]. Geochimica et Cosmochimica Acta,1995, 59(10):2 025-2 042.

[9] Amiel A J, Friedman G M, Miller D S. Distribution and nature of incorporation of trace elements in modern aragonitic corals[J]. Sedimentology,1973,20:47-64.

[10] Walls R A, Ragland P C, Crisp E L. Experimental and natural early diagenetic mobility of Sr and Mg in biogenic carbonates[J]. Geochimica et Cosmochimica Acta,1997,41:1 731-1 737.

[11] Kinsman D J J, Holland H D.The co-precipitation of cations with CaCO3. IV. The co-precipitation of Sr2+ with aragonite between 16 and 96[J]. Geochimica et Cosmochimica Acta,1969,33:1-17.

[12] Swart P K. The strontium, magnesium and sodium composition of recent scleractinian coral skeletons as standards for palaeoenvironmental analysis[J]. Palaeogeogr Palaeoclimatol Palaeoecol,1981,34:115-136.

[13] Swart P K, Hubbard J A E B.Uranium in scleractinian coral skeletons[J]. Coral Reefs,1982,1:13-19.

[14] Beck J W, Edwards R L, Ito E, et al. Sea-surface temperature from coral skeletal strontium/calcium ratios[J]. Science,1992, 257:644-647.

[15] Wei Gangjian, Sun Min, Li Xianhua, et al. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature[J]. Palaeo,2000,162(1/2):59-74.

[16] Schrag D P. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates[J]. Paleoceanography,1999,14(2):97-102.

[17] Tudhope A W, Chilcott C P, McCulloch M T, et al. Variability in the El Niño Southern Oscillation through a glacial-interglacial Cycle [J]. Science, 2001,291(5 508):1 511-1 517.

[18] Cobb K M, Charles C D, Cheng H, et al. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium [J]. Nature, 2003, 424(6 946): 271-276.

[19] McCulloch M T, Gagan M K, Mortimer G E, et al. A high-resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia, and the 1982-1983 El Niño [J]. Geochimica et Cosmochimica Acta,1994, 58:2 747-2 754.

[20] Ren L, Linsley B K, Wellington G M, et al. Deconvolving the 18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997[J]. Geochimica et Cosmochimica Acta,2003,67(9):1 609-1 621.

[21] Druffel E M. Pulses of rapid ventilation in the north Atlantic surface ocean during past century[J]. Science,1997,275(5 305):1 454-1 457.

[22] Guilderson T P, Schrag D P. Abrupt shift in subsurface temperatures in the tropical pacific associated with changes in El Niño[J]. Science,1998,281(5 374):240-243.

[23] H nisch B,Hemming N G,Grottoli A G,et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects[J]. Geochimica et Cosmochimica Acta,2004, 68(18):3 675-3 685.

[24] Liu Weiguo, Peng Zicheng, Xiao Yingkai, et al. Boron isotopic composition of corals from South China Sea and their environmental significance[J]. Geochimica,1999,28(6):534-541. [刘卫国,彭子成,肖应凯,.南海珊瑚礁硼同位素组成及其环境意义[J].地球化学,1999,28(6):534-541.]

[25] Wyndham T, McMulloch M, Fallon S, et al. High-resolution coral records of rare Earth elements in coastal seawater:Biogeochemical cycling and a new environmental proxy[J]. Geochimica et Cosmochimica Acta,2004,68(9):2 067-2 080.

[26] Akagi T, Hashimoto Y, F-F Fu, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices:Species and site dependencies[J].Geochimica et Cosmochimica Acta,2004,68(10):2 265-2 273.

[27] David C P. Heavy metal concentrations in growth bands of corals: A record of mine tailings input through time (Marinduque Island, Philippines)[J]. Marine Pollution Bulletin,2003, 46 (2) :187-196.

[28] Peng Zicheng, He Xuexian, Zhang Zhaofeng, et al. Correlation of coral fluorescence with nearshore rainfall and runoff in Hainan Island, South China Sea[J]. Progress in Natural Science, 2002,12(1):41-44.

[29] Nie Baofu, Chen Tegu, Liang Meitao, et al. The Relationship Between Reef Coral and Environmental Changes of Nansha Islands and Adjacent Regions[M].Beijing:Science Press,1997:53.[聂宝符,陈特固,梁美桃,.南沙群岛及其邻近礁区造礁珊瑚与环境变化的关系[M].北京:科学出版社,1997:53.]

[30] Yu Kefu, Zhao Jianxin, Liu Tungsheng, et al. High-frequency winter cooling and reef coral mortality during the Holocene climatic optimum[J]. Earth and Planetary Science Letters,2004,224(1/2):143-155.

[31] Bagnato S, Linsley B K, Howe S S. Evaluating the use of the massive coral Diploastrea heliopora for paleoclimate reconstruction[J]. Paleoceanography,2004,19(1), doi:PA1032.10.1029/2003PA000935.

[32] Sarnthein M, Kennett J P, Allen J R M, et al. Decadal-to-millennial-scale climate variability-chronology and mechanisms: Summary and recommendations[J].Quaternary Science Reviews,2002,21:1 121-1 128.

[33] Linsley B K, Wellington G M, Schrag D P. Decadal sea surface temperature variability in the subtropical south pacific from 1726 to 1997 A.D[J].Science, 2000, 290(5 494):1 145-1 148.

[34] Felis T, Lohmann G, Kuhnert H, et al. Increased seasonality in Middle East temperatures during the last interglacial period[J]. Nature,2004,429(6 988):164-168.

[35] Schrag D P, Linsley B. Corals, chemistry, and climate [J]. Science,2002, 296(5 566):277-278.

[36] de Villiers S D, Nelson B K, Chivas A R. Biological controls on coral Sr/Ca and δ18O recnstructions of sea surface temperature[J]. Science,1995,269:1 247-1 249.

[37] Mitsuguchi T, Matsumoto E, Uchida T. Mg/Ca and Sr/Ca ratios of Porites coral skeleton: Evaluation of the effect of skeletal growth rate[J].Coral Reefs,2003,22(8):381-388.

[38] Weber J N. Incorporation of strontium into reef coral skeletal carbonate[J]. Geochimica et Cosmochimica Acta, 1973, 37:2 173-2 190.

[39] Smith S V, Buddemeier R W, Redalje R C, et al. Strontium-calcium thermometry in coral skeletons[J]. Science, 1979,204:404-407.

[40] Marshall J F, McMulloch M T. An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature[J]. Geochimica et Cosmochimica Acta, 2002, 66(18):3 263-3 280.

[41] Cohen A L, Owens K E, Layne G D, et al. The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral[J].Science,2002,296(5 566):331-333.

[42] de Villiers S D. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans [J]. Earth and Planetary Science Letters, 1999,171(4):623-634.

[43] Grottoli A G. Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: A tank experiment[J]. Geochimica et Cosmochimica Acta,2002,66(11):1 955-1 967.

[44] Hendy E J, Gagan M K, Alibert C, et al. Abrupt decrease in tropical sea surface salinity at end of Little Ice Age[J]. Science,2002,295(5 559):1 511-1 514.

[45] Watanabe T, Winter A, Oba T. Seasonal changes in sea surface temperature and salinity during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals[J]. Marine Geology,2001,173(1/4):21-35.

[46] Gagan M K, Ayliffe L K, Hopley D, et al. Temperature and surface-ocean water balance of the mid-Holocene tropical western pacific [J]. Science,1998, 279(5 343):1 014-1 018.

[47] Stoll H M, Schrag D P. Effects of Quaternary sea level cycles on strontium in seawater[J]. Geochim et Cosmochim Acta,1998,62(7):1 107-1 118.

[48] McCulloch M T, Tudhope A W, Esat T M, et al. Coral record of equatorial sea-surface temperatures during the Penultimate Deglaciation at Huon Peninsula[J]. Science, 1999,283(5 399):202-222.

[49] Clement A C, Seager R, Cane M A. Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit[J].Paleoceanography,2000,15(6): 731-737.

[50] Rittenour T M,Brigham-Grette J,Mann M E. El Niño-Like climate teleconnections in New England during the Late Pleistocene[J].Science,2000,288(5 468):1 039-1 042.

[51] Zebiak E, Cane M A. A model El Niño /Southern Oscillation[J]. Monthly Weather Review, 1987, 115:2 262-2 278.

[52] Cane M A. The evolution of El Niño, past and future[J]. Earth and Planetary Science Letters, 2005, 230(3/4):227-240.

[53] Torrence C, Webster P. Interdecadal changes in the ENSO-monsoon system[J]. Journal Climate,1999,12(8):2 679-2 690.

[54] Charles C D, Hunter D E, Fairbanks R G. Interaction between the ENSO and the Asian monsoon in a coral record of tropical climate [J]. Science, 1997,277(5 328):925-928.

[55] Cole J E, Dunbar R B, McClanahan T R, et al. Tropical pacific forcing of decadal SST variability in the western Indian ocean over the past two centuries[J]. Science, 2000,287(5 453): 617-619.

[56] Charles C D, Cobb K, Moore M D, et al. Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century[J]. Marine Geology,2003,201(1/3):207-222.

[57] Evans M N, Fairbanks R G, Rubenstone J L. The thermal oceanographic signal of El Niño reconstructed from a Kiritimati Island coral[J]. Journal of Geophysical Research, 1999,104(C6):13 409-13 421.

[58] Urban F E, Cole J E, Overpeck J T. Influence of mean climate change on climate variability from a 155-year tropical Pacific coral record[J]. Nature, 2000,407(6 781): 989-993.

[59] Pfeiffer M, Dullo W-C, Eisenhauer A. Variability of the Intertropical Convergence Zone recorded in coral isotopic records from the central Indian Ocean (Chagos Archipelago)[J]. Quaternary Research 2004,61(3):245-255.

[60] Kumar K K, Rajagopalan B, Cane M A. On the weakening relationship between the Indian Monsoon and ENSO[J]. Science,1999,284(5 423):2 156-2 159.

[61] Wang B, An S-I. Why the properties of El Niño changed during the late 1970s[J]. Geophysical Research Letters, 2001,28(19):3 709- 3 712.

[62] Guilderson T P, Schrag D P. Abrupt shift in subsurface temperatures in the tropical pacific associated with changes in El Niño[J]. Science, 1998,281(5 374):240-243.

[63] Peng Zicheng, Chen Tegu, Nie Baofu,et al. Coral δ18O records as an indictor of winter monsoon intensity in the South China Sea[J]. Quaternary Research,2003,59(3):285-292.

[64] Watanabe T, Winter A, Oba T. Seasonal changes in sea surface temperature and salinety during the Little Ice Age in the Caribbean Sea deduced from Mg/Ca and 18O/16O ratios in corals[J]. Marine Geology,2001,173(1/4):21-35.

[65] Bec N L, Juillet-Leclerc A, Corre`ge T, et al. A coral δ18O record of ENSO driven seas surface salinity variability in Fiji (south-western tropical Pacific)[J]. Geophysical Research Letter, 2000,27(23):3 897-3 900.

[66] Wang Pinxian. Earth system science in China Quo Vadis?[J]. Advances in Earth Science,2003,18(6):837-851.[汪品先.我国的地球系统科学研究向何处去[J].地球科学进展,2003,18(6):837-851.]

[67] Sun Yali, Sun Min, Wei Gangjian, et al. Strontium contents of a Porites coral from Xisha Island, South China Sea: A proxy for sea-surface temperature of the 20th century[J]. Paleoceanography,2004,19(2), doi:PA2004.10.1029/2003PA000959.

[68] Ge Quansheng, Zheng Jingyun, Man Zhimin, et al. Key points on temperature change of the past 2000 years in China[J]. Progress in Natural Science, 2004,14(4):449-450.[葛全胜,郑景云,满志敏,.过去2000年中国温度变化研究的几个问题[J]. 自然科学进展,2004,14(4):449-450.]

[69] Wang Pinxian. The role of west pacific marginal seas in glacial aridification of China:A preliminary study[J]. Quaternary Sciences,1995,(1):32-42.[汪品先.西太平洋边缘海对我国冰期干旱化影响的初步探讨[J]. 第四纪研究,1995,(1):32-42.]

[70] Dennis C. Coral reveals ancient origins of human genes[J]. Nature,2003,426(6 968):744-746.

[71] Karlson R H, Cornell H V, Hughes T P, et al. Coral communities are regionally enriched along an oceanic biodiversity gradient[J].Nature, 2004, 429(6 994):867-870 .

[72] Liu Yi, Peng Zicheng, Chen Tegu, et al. A new way of investigating red tides—Reconstructing paleo-environment from reef corals[J]. Ziran Zazhi,2004,26(3):141-144.[刘羿,彭子成,陈特固,.一种研究赤潮的新途径——珊瑚古环境法的探讨[J].自然杂志,2004,26(3):141-144.]

[73] Gong Yiming, Li Baohua, Si Yuanlan, et al. Late Devonian red tide and mass extinction[J]. Chinese Science Bulletin,2002,47(7):554-560.[龚一鸣,李保华, 司远兰,.晚泥盆赤潮与生物集群绝灭[J].科学通报,2002,47(7):554-560.]

[74] Su Jilan, Tang Qisheng. A new direction for China’s research on marine ecosystems [J]. Advances in Earth Science, 2005,20(2):139-143.[苏纪兰,唐启升.我国海洋生态系统基础研究的发展国际趋势和国内需要[J].地球科学进展,2005,20(2):139-143.]

[1] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[2] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[3] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[4] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[5] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[6] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[7] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[8] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[9] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[10] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[11] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[12] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[13] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
[14] 张俊辉,夏敦胜,张英,刘宇航. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1): 42-51.
[15] 曾庆存,林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1): 1-6.
阅读次数
全文


摘要