地球科学进展 ›› 2012, Vol. 27 ›› Issue (1): 42 -51. doi: 10.11867/j.issn.1001-8166.2012.01.0042

综述与评述 上一篇    下一篇

中国泥炭记录末次冰消期以来古气候研究进展
张俊辉 1,3,夏敦胜 1,2,张英 1,刘宇航 1   
  1. 1.兰州大学西部环境与气候变化研究院,甘肃兰州730000;
    2.中国科学院寒区旱区环境与工程研究所沙漠与沙漠化重点实验室,甘肃兰州730000;
    3.宝鸡文理学院灾害监测与机理模拟陕西省重点实验室,陕西宝鸡721016)[JZ)]
  • 收稿日期:2011-04-28 修回日期:2011-11-03 出版日期:2012-01-10
  • 通讯作者: 张俊辉(1979-),男,陕西咸阳人,讲师,主要从事环境磁学与全球变化研究. E-mail:bwlzjh@126.com
  • 基金资助:

    国家重点基础研究发展规划项目“末次冰盛期以来我国气候环境变化与干旱—半干旱区人类的影响与适应”(编号:2010CB950204);国家自然科学基金项目“中国西北地区大气降尘磁学特征时空变化研究”(编号:41071125)资助.

Advances in Palaeoclimatic Research Recorded by Peat in China since the Last Deglaciation

Zhang Junhui 1,3,Xia Dunsheng 1,2,Zhang Ying 1,Liu Yuhang 1   

  1. 1.Research School of Arid Environment & Climate Change, Lanzhou University,Lanzhou730000, China;
    2. Key Laboratory of Desert and Desertification,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou730000,China;
    3.Key Laboratory of Disaster Monitering & Mechanism Stimulating Baoji University of Arts and Sciences,Baoji721016, China
  • Received:2011-04-28 Revised:2011-11-03 Online:2012-01-10 Published:2012-01-10

泥炭记录的环境演变是过去全球变化(PAGES)研究的重要领域之一,分析了中国泥炭记录的古气候演化研究的区域范围,当前主要以东北哈尼、青藏高原的红原、神农架大九湖以及华南定南大湖四个位于东部季风区的研究工作最为集中。泥炭沉积高分辨率综合信息揭示了末次冰消期以来中国气候变化的时空特征:冷暖干湿变化既有一致性又表现出区域差异,末次冰消期东北地区、东部山地、华南地区都表现出冷偏湿的气候特点,而青藏高原却为冷偏干或凉偏干;Younger Dryas(YD)事件之后,全新世早期和中期青藏高原、东部山地、华南地区气候总体以温湿为主要特征,而东北地区有效降水减少,到全新世晚期,呈现出干旱的变化趋势。并对B~A事件,YD事件,8.2 ka 以及4.2 ka等重大气候突变事件研究工作进行了综述。最后指出今后应拓展与重建更多区域古气候环境变化序列的对比,加强泥炭沉积及环境指标的基础理论,重视和提高大气沉降泥炭档案以及气候变化背景下泥炭地碳循环机制等研究工作。

Studies of palaeoclimatic and paleoenvironmental evolution recorded by peat are one of the important research areas of past global change. As for these studies since the last deglaciation in China, the works have mainly concentrated on eastern monsoon regions, especially Hani region in Northeast, Zogie-hongyuan in the Qinghai-Tibetan Plateau, Dajiuhu in Shennongjia basin and the Dahu swamp in South China, totalizing four districts. The research results on the above four areas which are characterized by high-resolution integrated information on peat deposits reveal the spatiotemporal features of climate change during the research period, i.e. there were not only consistencies of changes on temperature and humidity, but regional differences in research areas. The climate in the northeast, the eastern and southern mountain areas was displayed on a cold wet weather, whereas that in the Qinghai-Tibet Plateau was cold and dry during the last deglaciation period. However, after the Younger Dryas(YD)event, warm and wet were the main climate features in the Qinghai-Tibet plateau, the eastern and southern mountain areas during the early and middle Holocene, while in the northeastern regions the effective precipitation decreased and the climate took on a dry trend in the late Holocene. Since the last deglaciation, another remarkable feature reflected by the peat records from the eastern monsoon region has been the frequent fluctuations on temperature and precipitation, and that from Hongyuan and Hanni regions reveals there were some dry-cold events in Qinghai-Tibet plateau and the Northeast Region parallelling the north Atlantic (IRD) ice events. The results showed that the change rhythm in the long time scale(from hundreds of years to thousands of years)and climate abruption appeared again and again, which is a wider range of phenomenon and reveals the instability of climate. There had occurred several important climatic abrupt events since the last deglaciation, such as B ~ A (Bølling ~ Allerød) warming period, YD event, “8.2 ka event” and “4.2 ka event”, the medieval warming period and the little ice age climate events. Obtaining the change intensity, process and time limit of these major events in the global major districts is crucial to further deduce the cause and incentive mechanism of the event occurrence. B ~ A event is a warm event, followed by the coldest YD event, which was recorded by the peat from Hani in Northeast,Dajiuhu in Shennognjia Basin and Dahu in South China. The most ancient peat sediments of Hongyuan region were discovered that these deposited from 13 ka BP that was close to the end time of B ~ A event. YD event had been clearly recorded by all the peat deposits of these four regions, but there were difference from its starting time and time range. The peat depositions of Dajiuhu and Hongyuan started later about 0.3 ka than that in Dahu and Hani, which might be relevant to their latitude and altitude. However, the further north the latitude was, the later the starting times of 8.2 ka event recorded by peat in China were, whereas the earliest starting time of 4.2 ka event appeared in Hani region, and the further north the latitude was, the earlier the end time came. Therefore, the two events in different regions showed that there were various time durations, which meant that they were controlled by diverse dynamic reasons or mechanisms.
Finally, we prospected the future of palaeoclimatic research on the peat records, and suggested that sequence comparision among  multiregional climate change should be expanded and reconstructed. Moreover, establishing a high-resolution peat archive recording  the palaeoclimatic and paleoenvironmental change for the northwest arid and semi-arid areas is significant  for  studying  evolution mechanisms, further response processes and mechanisms of peat to climate change in the region influenced by the west wind. To strengthen the theoretical research and make an  analysis of  the cause, evolutionary process and its mechanism in different peatland are very important. Only by understanding the characteristics  of peat deposition and development mechanism in the palaeoclimatic research recorded by peat, can the obtained environmental and climatic information be more and more reliable and persuasive. With deep understanding about the physical meaning of all climatic proxies and reconstruction of the reasonable and accurate relationship between proxies and environmental factors, the application of climate factors in the peatland is expected to make breakthroughs, which will promote the research of peatland in palaeoclimate. Improving and paying attention to the atmospheric settlement peat records, in accordance with chemical elements and the research methods of environmental magnetism, has  good prospect for the atmospheric environment tracer research. In particular, using the environmental magnetism means to elucidate magnetic properties of peat sediment, mechanisms of magnetic viability and whether the change of magnetic properties is responds  to the changing environment and climate should be carried on. The study of basic theory and carbon cycle mechanism of peat deposit is meaningful to research peatlands and global change. If we can carry out the peat ecological system mechanism study of the carbon cycle, to reduce the increase in greenhouse gas emissions rate and maintain ecological balance have an important meaning, what′s more, to slow current global climate change effectively has the substantial practical significance. 

中图分类号: 

[1]Tao Faxiang, Hong Yetang, Li Handing. Contributing to global change and recording the information of global change from the peatland[J]. Bulletin of Mineralogy, Petrology and Geochemistry,1995, 15(2): 92-94.[陶发祥,洪业汤,李汉鼎. 泥炭地对全球变化的贡献及对全球变化信息的自然记录[J]. 矿物岩石地球化学通报,1995,15(2):92-94.]
[2]Yu Xuefeng, Zhou Weijian. Advances of palaeoclimatic researches of holocene peat bogs [J]. Marine Geology & Quaternary Geology, 2004, 24(4): 121-126.[于学峰,周卫建. 全新世泥炭古气候记录研究进展[J]. 海洋地质与第四纪地质,2004,24(4):121-126.]
[3]Zhou Weijian, Lu Xuefeng, Wu Zhenkun, et al. Peat record reflecting Holocene climatic change in the Zoige Plateau and AMS radiocarbon dating[J]. Chinese Science Bulletin, 2001, 46(12): 1 040-1 044.[周卫建,卢雪峰,武振坤,等. 若尔盖高原全新世气候变化的泥炭记录与加速器放射性碳测年[J]. 科学通报,2001,46(12):1 040-1 044.]
[4]Zhou W J, Yu X F, Timothy Jull A J, et al. High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18,000 years [J]. Quaternary Research, 2004, 62 (1): 39-48.
[5]Ma Chunmei, Zhu Cheng, Zheng Chaogui, et al. High-resolution humification records of climate changes since late-glacial from the peat in Eastern China[J]. Science in China(Series D),2008, 38(9): 1 078-1 091.[马春梅,朱诚,郑朝贵,等.中国东部山地泥炭高分辨率腐殖化度记录的晚冰期以来气候变化[J]. 中国科学:D辑,2008,38(9):1 078-1 091.]
[6]Hong Y T, Wang Z G, Jiang H B, et al. A 6000-year record of changes in drought and precipitation in northeastern China based on a δ13C time series from peat cellulose[J]. Earth and Planetary Science Letters, 2001, 185(1/2): 111-119.
[7]Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J].Earth and Planetary Science Letters, 2003, 211(3/4): 371-380.
[8]Yamamoto S, Kawamura K, Seki O, et al. Environmental influences over the last 16 ka on compound-specific δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China[J]. Chemical Geology, 2010,277(3/4):216-268.
[9]Yamamoto S, Kawamura K, Seki O, et al. Paleoenvironmental significance of compound-specific δ13C variations in n-alkanes in the Hongyuan peat sequence from southwest China over the last 13 ka[J]. Organic Geochemistry, 2010, 41(5): 491-497.
[10]Seki O, Philip A M, Kimitaka K, et al. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16kyr [J]. Organic Geochemistry,2009, 40(6): 671-677.
[11]Hong Yetang, Jiang Hongbo, Li Handing. Records of δ18O in Jinchuan since 5ka BP[J]. Science in China(Series D),1997, 27: 525-530.[洪业汤,姜洪波,李汉鼎. 近5ka以来的金川泥炭δ18O记录[J]. 中国科学:D辑,1997,27: 525-530.]
[12]Xu Hai, Hong Yetang, Lin Qinghua,et al. Temperature variation in the past 6000 years inferred from δ18O peat cellulose from Hongyuan,China[J]. Chinese Science Bulletin, 2002, 47 (15): 1 181-1 186.[徐海,洪业汤,林庆华,等. 红原泥炭纤维素氧同位素指示的距今6ka温度变化[J]. 科学通报,2002,47(15):1 181-1 186.]
[13]Hong Bing, Liu Congqiang, Lin Qinghua,et al. Temperature change recorded by δ18O in Hani peat since 14000 a BP[J]. Science in China(Series D), 2009, 39(5): 626-637.[洪冰,刘丛强,林庆华,等. 哈尼泥炭δ18O记录的过去14000年温度变化 [J]. 中国科学:D辑,2009,39(5):626-637.]
[14]Xie Shucheng, Evershed R P. The climatic and biological change information from the peat molecular fossil records[J]. Chinese Science Bulliten, 2001, 46(10): 863-866.[谢树成,Evershed R P.泥炭分子化石记录气候变迁和生物演替的信息[J]. 科学通报,2001,46(10):863-866.]
[15]Zheng Yanhong, Zhou Weijian, Xie Shucheng, et al. A comparative study of n-alkane biomarker and pollen records: An example from southern China [J]. Chinese Science Bulletin, 2009, 54(12): 1 749-1 755.[郑艳红,周卫健,谢树成,等. 正构烷烃分子化石与孢粉记录的指示意义对比:以华南地区为例[J]. 科学通报,2009,54(12):1 749-1 755.]
[16]Zhou W J, Zheng Y H, Meyers P A, et al. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China[J]. Earth and Planetary Science Letters,2010,294(1/2):37-46.
[17]Yu X F, Zhou W J, Liu X, et al. Peat records of human impacts on the atmosphere in Northwest China during the Late Neolithic and Bronze ages[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(1/2):17-22.
[18]Zhou W J, Yu S Y, Burr G S, et al. Postglacial changes in the Asian summer monsoon system: A pollen record from the eastern margin of the Tibetan Plateau[J]. Boreas, 2010, 39: 528-539.
[19]Zhao Y, Yu Z C, Zhao W W. Holocene vegetation and climate histories in the eastern Tibetan Plateau: Controls by insolation driven temperature or monsoon-derived precipitation changes?[J].Quaternary Science Reviews, 2011, 2(6):1-12.
[20]Zhao Y, Adam Holzer, Yu Z C. Late Holocene natural and human-induced environmental change reconstructed from peat records in eastern central China[J]. Radiocarbon, 2007, 49(2):1-10.
[21]Zhang Xinrong, Hu Ke, Hu Yifan, et al. Holocene environmental and climatic changes from the information of peat bog sediment in Northeastern China[J]. Geological Survey and Research, 2007, 30(1):39-45.[张新荣,胡克,胡一帆,等. 东北地区以泥炭为信息载体的全新世气候变迁研究进展[J]. 地质调查与研究,2007,30(1):39-45.]
[22]Ma Chunmei, Zhu Cheng, Zheng Chaogui, et al. High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shenglongjia Mountains, Central China [J]. Chinese Science Bulletin, 2008, 53(1): 26-37.[马春梅,朱诚,郑朝贵,等. 晚冰期以来神农架大九湖泥炭高分辨率气候变化的地球化学记录研究[J]. 科学通报,2008,53(1):26-37.]
[23]Zhou W J, Yu X F, Timothy Jull A J, et al. High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18,000 years[J]. Quaternary Research, 2004, 62(1): 39-48.
[24]Zhou W J, Xie S C, Meyers  P A,et al. Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry, 2005, 36(1):1 272-1 284.
[25]Zhong W, Xue J B, Cao J X, et al. Bulk organic carbon isotopic record of lacustrine sediments in Dahu Swamp, eastern Nanling mountains in South China: Implication for catchment environmental and climatic changes in the last 16,000 years[J]. Journal of Asian Earth Sciences, 2010, 38: 162-169.
[26]Yang Guifang, Huang Junhua, Xie Shucheng, et al. Organic Carbon isotopic characteristics and their paleoenvironmental implications: A case study of the Tianmushan peat bog[J]. Acta Geoscientica Sinica,2008, 29(6):778-782.[杨桂芳,黄俊华,谢树成,等. 天目山泥炭有机碳同位素特征及其古环境意义[J]. 地球学报,2008,29(6):778-782.]
[27]Yin Qian,Zhu Cheng,Ma Chunmei,et al. Holocene climate change recorded in peat humification in Tianmu Mountain region[J]. Marine Geology & Quaternary Geology, 2006, 26(6): 117-122.[尹茜,朱诚,马春梅,等. 天目山千亩田泥炭腐殖化度记录的中全新世气候变化 [J]. 海洋地质与第四纪地质,2006,26(6):117-122.]
[28]Yang Guifang, Xie Shucheng, Huang Junhua, et al. Microbial characteristics and vegetation changes as recorded in lipid biomarker of Tianmushan peat bog [J]. Earth Science Frontiers, 2008, 15(4):170-177.[杨桂芳,谢树成,黄俊华,等. 天目山泥炭类脂物记录的微生物特征和植被演替 [J]. 地学前缘,2008,15(4):170-177.]
[29]Zhong Wei, Xue Jibin, Zhen Zhiguo, et al. The climatic changes during late-pleistocene indicated by peat deposit in the northern Leizhou peninsula[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 97-104.[钟巍,薛积彬,甄治国,等. 雷州半岛北部晚更新世晚期气候环境变化的泥炭沉积记录[J]. 海洋地质与第四纪地质,2007,27(6):97-104.]
[30]Huang Run, Zhu Cheng, Wang Shengtang. Magnetic susceptibility and Rb/Sr ratio of peat Stratum in Tiantangzhai and its significance of Paleoclimate[J]. Scientia Geographica Sinica, 2007, 27 (3): 385-389.[黄润,朱诚,王升堂. 天堂寨泥炭地层的磁化率、Rb/Sr值及其反映的古气候意义[J]. 地理科学,2007,27(3):385-389.]
[31]Zheng Chaogui, Zhu Cheng, Gao Huazhong, et al. Paleoclimatic change recorded by δ13C of peat stratum on North-bank of Changjiang River in Nanjing since Last Stage of Late Pleistocene Epoch[J]. Scientia Geographica Sinica, 2006, 26(3): 328-334.[郑朝贵,朱诚,高华中,等. 南京江北地区晚更新世末期以来泥炭层δ13C记录的古气候变化[J]. 地理科学,2006,26(3):328-334.]
[32]Zheng Y H, Zhou W J, Philip A M,et al. Lipid biomarkers in the zoige hongyuan peat deposit: Indicators of holocene climate changes in west China[J]. Organic Geochemistry, 2007, 38: 1 927-1 940.
[33]Zheng Yanhong, Zhou Weijian, Xie Shucheng, et al. Organism records of Holocene peat n-AIKanes in the Northeastern Qinghai-Xizang Plateau[J]. Acta Sedimentologica Sinica, 2009, 27 (1): 142-146.[郑艳红,周卫健,谢树成,等. 青藏高原东北部全新世泥炭正构烷烃的生物记录[J]. 沉积学报,2009,27(1):142-146.]
[34]An Z S, Stephen C P, Kutzbach J E,et al. Asynchronous Holocene optimimum of the East Asian monsoon[J]. Quaternary Sciences Reviews, 2000, 19: 743-762.
[35]Yu Xuefeng, Zhou Weijian, Liu Zhao,et al. Different patterns of changes in the Asian summer and winter monsoons on the eastern Tibetan Plateau during the Holocene[J]. The Holocene, 2011, 21(7): 1 031-1 036.
[36]Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Niño[J]. Earth and Planetary Science Letters, 2005, 231(3/4): 337-346.
[37]Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14 000 years[J]. Quaternary Sciences Reviews, 2009, 28 (9/10): 840-849.
[38]Hong Yetang, Jiang Hongbo, Hong Bing, et al. Climate change and solar radiation during 5000a BP [J]. Science in China(Series D), 1998, 28 (6): 491-497.[洪业汤,姜洪波,洪冰,等. 近5000a的气候波动与太阳变化 [J]. 中国科学:D辑,1998,28(6):491-497.]
[39]Hong Yetang, Liu Dongsheng, Jiang Hongbo, et al. Evidence for solar forcing of climate variation from δ18O of peat cellulose [J]. Science in China(Series D), 1999, 29 (6): 527-531.[洪业汤,刘东生,姜洪波,等.太阳辐射驱动气候变化的泥炭氧同位素证据 [J]. 中国科学:D辑,1999,29(6):527-531.][40]Kutzbach J E. Monsoon climate of the early Holocene: Climate experiment with the Earth′s orbital parameters for 9000 years[J]. Science, 1981, 214: 59-61.
[41]Clemens S C,Prell W L. The timing of orbital-scale India monsoon changes[J]. Quaternary Sciences Reviews, 2007, 21: 275-278.
[42]Wang Pinxian. Global monsoon in a geological perspective [J]. Chinese Science Bulletin, 2009, 54(7): 1 113-1 136.[汪品先. 全球季风的地质演变[J]. 科学通报,2009,54(5):535-556.]
[43]Clemens S C, Wang P, Prell W L. Monsoons and global linkages on Milankovitch and sub-Milankovitch times scales[J]. Marine Geology, 2003, 201: 1-3.
[44]Yang Yan, Yuan Daoxian, Cheng Hai, et al. Precise dating of abrupt shifts in the Asian Monsoonduring the last deglaciation based on stalagmite data from Yamen Cave, Guizhou province, China[J]. Science in China(Series D), 2010,40 (2):199-210.[杨琰,袁道先,程海,等. 末次冰消期亚洲季风突变事件的精确定年:以贵州衙门洞石笋为例 [J]. 中国科学:D辑,2010,40(2):199-210.]
[45]Broecker W. Does the trigger for abrupt climate changereside in the ocean or in the atmosphere?[J]. Science, 2003, 300: 1 519-1 522.
[46]Alley R B, Agùstsdóttir A M. The 8ka. event: Cause and consequence of a major Holocene abrupt climate change[J]. Quaternary Science Review, 2005, 24: 1 123-1 149.
[47]Rohling E J, Plike H. Centennial-scale climate cooling with a sudden cold event around 8200 years ago[J]. Nature, 2005, 434: 975-979.
[48]An C B, Tang L Y, Loukas Barton, et al. Climate change and cultural response around 4 000 cal yr B.P. in the western part of Chinese Loess Plateau[J]. Quaternary Research, 2005, 63 (5): 347-352.
[49]Steig E. Mid-Holocene climate change[J]. Science,1999, 286 (5 444): 1 485-1 487.
[50]Oldfield F, Tolonen K, Thompson R, et al. History of particulate atmospheric pollution from magnetic measurements in dated Finnish peat profiles[J]. Ambio,1981,10(4):185-188.
[51]Shotyk W, Norton S, Farmer J, et al. Summary of the workshop on peat bog archives of atmospheric metal deposition[J]. Water, Air & Soil Pollution, 1997, 100 (3): 213-219.
[52]Martínez Cortízas A. Peat bog archives of atmospheric metal deposition[J]. The Science of the Total Environment, 2002, 292: 1-5.
[53]Oldfield F, Thompson R, Barber K, et al. Changing atmospheric fallout of magnetic particles recorded in recent ombrotrophic peat sections[J]. Science, 1978, 199 (4 329): 679.
[54]Wang Guoping, Jia Lin, Liu Jingshuang, et al. Advances in peat bog archives of atmospheric deposition with overseas researches[J]. Wetland Science,2006,4(1):69-74.[王国平,贾琳,刘景双,等. 国外大气沉降泥炭沼泽档案研究进展[J]. 湿地科学,2006,4(1):69-74.]
[55]Joosten H, Clarke D. Wise Use of Mires and Peatlands[M]. Finland: International Mire Conservation Group and International Peat Society,2002.
[56]Hu Qiwu, Wu Qin, Liu Ying, et al. A review of carbon cycle in wetlands[J].Ecology and Environmental Sciences, 2009, 18(6): 2 381-2 386. [胡启武,吴琴,刘影,等. 湿地碳循环研究综述[J]. 生态环境学报,2009,18(6):2 381-2 386.]

[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[5] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[6] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[7] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[8] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[9] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[10] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[11] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[12] 黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ 13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.
[13] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[14] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[15] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
阅读次数
全文


摘要