地球科学进展 ›› 2016, Vol. 31 ›› Issue (9): 968 -983. doi: 10.11867/j.issn.1001-8166.2016.09.0968

上一篇    下一篇

洞穴石笋δ 13C在古气候重建研究中的现状与进展
黄伟 1, 2, 3( ), 刘殿兵 1, 王璐瑶 1, 张振球 1   
  1. 1. 虚拟地理环境教育部重点实验室,南京师范大学地理科学学院,江苏 南京 210023
    2. 江苏省地理环境演化国家重点实验室培育建设点,江苏 南京 210023
    3. 江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
  • 收稿日期:2016-06-18 修回日期:2016-08-10 出版日期:2016-09-20
  • 基金资助:
    国家自然科学基金项目“晚第四纪中国南方季风事件的高分辨率石笋记录与机制诊断”(编号: 41130210);江苏高校优势学科建设工程资助项目(编号:164320H116)资助

Research Status and Advance in Carbon Isotope (δ 13C) Variation from Stalagmite

Wei Huang 1, 2, 3( ), Dianbing Liu 1, Luyao Wang 1, Zhenqiu Zhang 1   

  1. 1.Key Laboratory of Virtual Geographic Environment,School of Geography Science, Nanjing Normal University, Ministry of Education, Nanjing 210023, China
    2.State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China
    3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
  • Received:2016-06-18 Revised:2016-08-10 Online:2016-09-20 Published:2016-09-20
  • About author:

    First author:Huang Wei (1989-), male, Ruijin County, Jiangxi Province, Ph.D student. Research areas include paleo-hydroclimate based on the cave and global teleconnection.E-mail:weihuang52@yeah.net

  • Supported by:
    Foundation item:Project supported by the National Natural Science Foundation of China “High-resolved stalagmite records of southern China and associated forcing mechanisms since the late Quaternary”(No.41130210) the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.164320H116)

由于受气候、复杂岩溶过程等影响,石笋碳同位素(δ13C)研究相对于其他代用指标甚少,甚至被忽略。从影响石笋δ13C的气候与非气候因子入手,结合全球数十个洞穴记录及现代观测试验,分析碳同位素信号在岩溶系统内部的传递方式和路径,探讨不同时间尺度下δ13C与气候变化之间的关系。指出石笋δ13C虽然在百年—年代际尺度上表现出的噪音强度明显上升,但从轨道至千年尺度上看,温度、湿度(降水)等气候要素在不同区域所充当的主控因子角色直接或间接地影响上覆土壤植被状况、土壤CO2产率等当地生态环境变化。未来研究应深入挖掘δ13C信号在岩溶系统中的传输共性及其气候、环境控制因子,注重石笋δ13C季节变化特征研究,充分发挥其在揭示当地环境或灾害性事件方面的独特优势,并运用多指标、多种方法手段理解岩溶过程、全球碳循环与气候变化之间的联系。

The application of carbon isotope (δ13C) collected from stalagmite to reconstruct the past climate and/or ecologic evolution, relative to other preserved indicators, is much limited due to its complex influencing factors including climate outside cave and complicated and site-specific karstic process. In terms of various climate and non-climate limiting factors on stalagmite δ13C, and combined with a large number of geological records and modern cave monitoring data of the latest researches, the pathway and behavior of the signal transmission of δ13C in the cave system were analyzed. The possible relationship between δ13C excursions and climate oscillations under different time scales was thus discussed. Although the degree of noise becomes increasing mixed with δ13C on centennial scales or shorter, the climatic elements, such as temperature and humidity (or precipitation), as predominant modulators exert directly or indirectly influence on vegetation overlying the soil and associated soil CO2 productivity on millennial-orbital scales. Future work should be focused on further deeply extracting the common δ13C signals from specific caves by exploring the controlling factors, both including climatic and non-climatic ones, attaching importance to the seasonal characteristics of stalagmite δ13C, and taking full advantage of its potential in the indication of local environmental events. The use of multi-proxy and multi-method will contribute to better understanding the interesting linkages among the δ13C characteristics, karstic process, global carbon cycle and associated climate change.

中图分类号: 

图1 部分洞穴石笋(或滴水)δ 13C记录分布图
1.Uamh an Tartair [ 39 ];2.Brown’s Folly Mine [ 40 ];3.Bunker Cave [ 41 , 42 ];4.Grotta di Ernesto [ 43 ];5.Postojnska jama [ 44 ];6.Grotta Savi [ 45 ];7.Villars Cave [ 15 , 30 , 46 , 47 ];8.Chauvet Cave [ 46 ];9.Antro del Corchia [ 48 , 49 ];10.Cold water Cave [ 28 ];11.La Garma Cave [ 50 ];12.西班牙北部洞穴群(Caves system in northern Spain) [ 51 ];13.Sofular Cave [ 52 ];14.暖和洞(Nuanhe Cave) [ 53 , 54 ];15.石花洞(Shihua Cave) [ 55 ];16.苦栗树洞(Kulishu Cave) [ 56 ];17.Devil’s Icebox Cave [ 57 ];18.Buckeye Creek Cave [ 34 , 58 ];19.Crevice Cave [ 29 ];20.Kapsia Cave [ 59 ];21.Gwaneum Cave [ 60 ];22.Daeya Cave [ 61 ];23.Obir cave system [ 18 ];24.New St. Michaels Cave [ 19 ];25.La Mine Cave [ 46 ];26.Raccoon Mountain Cave [ 62 ];27.DeSoto Caverns [ 63 ];28.Dayu Cave [ 64 ];29.Yongcheon Cave [ 35 ];30.葫芦洞(Hulu Cave) [ 1 , 65 ];31.黑龙洞(Heilong Cave) [ 66 ];32.Soreq Cave [ 67 , 68 ];33.Hollow Ridge Cave [ 69 ];34.莲花洞(Lianhua Cave) [ 70 ];35.芙蓉洞(Furong Cave) [ 71 ];36.神农洞(Shennong Cave) [ 72 ];37.织金洞(Zhijin Cave) [ 73 ];38.Fulong Cave [ 74 ];39.竹蹓坪洞(Zhuliuping Cave) [ 37 ];40.七星洞(Qixing Cave) [ 22 ~ 24 , 75 ];41.董哥洞(Dongge Cave) [ 36 , 76 ];42.响水洞(Xiangshui Cave) [ 77 ];43.蟠龙洞(PanlongCave) [ 78 , 79 ];44.Fengyu Cave [ 80 ];45.Actun Tunichil Muknal [ 31 , 32 ];46.Harrison’s Cave [ 16 , 17 ];47.Liang Luar [ 81 ];48.Cave C126 [ 82 ];49.Botuver’ Cave [ 33 ];50.Marcelo Arévalo Cave [ 83 , 84 ]
Fig.1 Distribution map showing locations for the published δ 13C records of cave
表1 不同地区洞穴石笋δ 13C记录及其气候意义
Table 1 The δ 13C records from widely-spatial regions and its climatic interpretations
洞名 经纬度/海拔 气候/土壤植被 时间跨度/变幅 环境/气候学意义 时间尺度 参考文献
葫芦洞 119° 10'E 亚热带季风气候 80~10 ka BP 植被类型变化 轨道尺度 [1,65]
(中国东部) 32° 30'N 乔木及灌木为主 δ13C: -12‰~-2‰ 温湿度
70 m δ18O: -9‰~-4‰
Buckeye Creek Cave 80°24'W 温带湿润气候 127.7~41.6 ka BP 生物量效应 轨道尺度 [34]
(美国东部) 37°58'N 乔木(森林) δ13C: -5.5‰~+1.5‰ 湿度/冰量
600 m δ18O: -6‰~-4.5‰
Botuverà Cave 49°9'W 亚热带季风性湿润气候 116~0 ka BP 土壤CO2产率 轨道尺度 [33]
(巴西南部) 27°13'S 热带大西洋雨林 δ13C: -7‰~-3‰ 温度为主
250 m δ18O: -5.5‰~-0.5‰
Soreq Cave 35°2'E 地中海气候 25 ka BP以来 植被类型变化 轨道—千年尺度 [67]
(以色列) 31°27'N 典型地中海C3型植被 δ13C: -13‰~-4‰ 温度为主
400 m δ18O: -6.5‰~-3‰
Crevice Cave 89°50'W 温带大陆性气候 75~25 ka BP 植被类型变化 轨道—千年尺度 [29]
(美国中东部) 37° 45'N 落叶阔叶林—高草草原 δ13C: -10‰~-2‰ 温度为主
δ18O: -5.5‰~-3.5‰
Sofular Cave 31°56'E 地中海气候 50 ka BP以来 植被类型比例变化 轨道—千年尺度 [52]
(土耳其西北部) 41° 25'N C3型植被为主 δ13C: -11.5‰~-6.5‰ 温湿度
δ18O: -13.5‰~-7.5‰
Liang Luar 120°26'E 热带季风气候 91~79 ka BP 土壤CO2产率 千年尺度 [81]
(印度尼西亚东部) 8°32'N C3型植被 δ13C: -12.5‰~-9‰ 温度
550 m δ18O: -7‰~-4‰
La Mine Cave 9°41'E 地中海气候 20~6 ka BP 生物量,植被密度 千年尺度 [46]
(突尼斯北部) 36°2'N C3型植被 δ13C: -10‰~-5.5‰ 温度
975 m δ18O: -7‰~-5‰
Gwaneum Cave 129°10'E 温带季风气候 89~72 ka BP 土壤CO2产率 千年尺度 [60]
(韩国东部) 37°23'N 乔木 δ13C: -9.7‰~-6‰ 温度及降水
350 m δ18O: -9‰~-7.6‰
苦栗树洞 115° 39'E 温带季风气候 14~10.5 ka BP 土壤CO2产率 千年尺度 [56]
(中国北部) 39° 41'N 次生落叶阔叶林及灌木 δ13C: -11‰~-7‰ 温度及季风降水
610 m δ18O: -10‰~-7‰
Cold water Cave 91°58'W 温带大陆性气候 8~1 ka BP 植被类型变化 千年尺度 [28]
(美国中东部) 43°28'N 威斯康星阶黄土 δ13C: -9‰~-5‰ 温度为主
320 m δ18O: -7‰~-4‰
Antro del Corchia 10°17'E 地中海气候 112~92 ka BP 土壤CO2产率 千年尺度 [48,49]
(意大利西北部) 44°2'N δ13C: -3‰~+0.8‰ 温度及降水
840 m δ18O: -5.3‰~-3.5‰
Chauvet Cave 4°16'E 地中海气候 15~11 ka BP 生物量,植被密度 千年尺度 [46]
(法国南部) 44°14'N 典型地中海C3型植被 δ13C: -8.5‰~-5‰ 温度
240 m δ18O: -6.5‰~-4.5‰
Villars Cave 0°50'E 温带海洋性气候 85~6 ka BP 生物量,植被密度 千年尺度 [30,46,47]
(法国南部) 45°30'N 乔木等C3型植被 δ13C: -11‰~-3‰ 温湿度
175 m δ18O: -5‰~-3‰
Grotta Savi 13°53'E 地中海气候 15.3~9.2 ka BP 土壤CO2产率 千年尺度 [45]
(意大利东北部) 45°37'N 草类及灌木 δ13C: -11.5‰~-8.8‰ 温度为主
450 m δ18O: -7.4‰~-5.5‰
Cave C126 113°54'E 亚热带草原气候 25~5 ka BP 植被密度 千年尺度 [82]
(澳大利亚西海岸) 22°6'S C4型植被 δ13C: -14‰~-3‰ 温度及降水
50 m δ18O: -9.5‰~-6‰
Mt. Arthur 172° 41'E 温带海洋性气候 31 ka BP以来 生物量,植被密度 千年尺度 [86]
(新西兰南岛) 41°15'S 乔木 δ13C: -8‰~+2‰ 温湿度
390 m δ18O: -6‰~-4‰
董哥/雾露洞 108°5'/ 105°5'E 亚热带季风气候 62 ka BP以来 土壤CO2产率 百年尺度 [36,44]
(中国西南部) 25°17'/26°3'N 森林/草类为主 δ13C: -10‰~+3‰ 温度及降水
680/1 440 m δ18O: -11.5‰~-6.5‰
织金洞 105° 55'E* 亚热带季风气候 900—2000 AD 植被密度 百年—年代际尺度 [73]
(中国西南部) 26°57'N* 乔木为主 δ13C: -11‰~6‰ 温度及降水
1 330 m δ18O: -10.5‰~-7.5‰
莲花洞 109° 32'E 亚热带季风气候 6.5~0 ka BP 植被密度,通风性 百年尺度 [70]
(中国中部) 29°29'N C3型植被 δ13C: -6‰~0‰ 季风环流(温湿度)
455 m δ18O: -7‰~-4.5‰
Yongcheon Cave 126°50'E* 温带季风气候 1767—2007 AD 土壤CO2产率 百年—年代际尺度 [35]
(韩国济州岛东北部) 32°40'N* C3型植被为主 δ13C: -11‰~+0.5‰ 温度
δ18O: -8.5‰~-5‰
Kapsia Cave 22° 21'E 地中海气候 950 BC—830 AD 生物活动 百年尺度 [59]
(希腊南部) 37°37'N 森林、灌木及草类交错 δ13C: -10‰~7.5‰ 降水
700 m δ18O: -6.5‰~-4.5‰
Devil’s Icebox Cave 92°18'W 温带大陆性气候 3.7~0.7 ka BP 植被密度/丰度 百年尺度 [57]
(美国中东部) 38°54'N 森林—草原交错 δ13C: -6‰~-1‰ 有效湿度
δ18O: -5.5‰~-4.5‰
洞穴群 4°30'~ 3°30'W* 高山气候 4 ka BP以来 洞穴空气pCO2,PCP 百年尺度 [51]
(西班牙北部) 42°15'~ 43°3'N 高山草地、灌丛 δ13C: -11‰~-5‰ 温度
870~1 620 m
Bunker Cave 7° 40'E 温带海洋性气候 10.8 ka BP以来 植被密度 百年尺度 [42]
(德国西部) 51°22'N C3型植被 δ13C: -12‰~-7‰ 温度及有效湿度
184 m δ18O: -7‰~-4.7‰
Brown’s Folly Mine 2°30'W 温带海洋性气候 1910—2000 AD 生物量效应 年代际尺度 [40]
(英国西南部) 51°28'N C3型植被 δ13C: -10‰~-8‰
δ18O: -10‰~-8.5‰
Actun Tunichil Muknal 89° W 热带雨林气候 1973—2000 AD 土壤呼吸速率 年际尺度 [31,32]
(伯利兹中部) 17°N 热带雨林 δ13C: -13‰~-2‰ 短尺度大气环流波动
δ18O: -7‰~-1‰
图2 洞穴石笋δ 13C信号来源及迁移示意图(根据参考文献[14,50]修改)
Fig.2 Schematic of the stalagmite δ 13C signal source and its transmission process (modified after references[14,50])
[1] Wang Y J, Cheng H, Edwards R L,et al.A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5 550): 2 345-2 348.
[2] Wang Y J, Cheng H, Edwards R L, et al.The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5 723): 854-857.
[3] Wang Y, Cheng H, Edwards R L,et al.Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7 182): 1 090-1 093.
[4] Yuan D, Cheng H, Edwards R L, et al.Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304(5 670): 575-578.
[5] Fleitmann D, Burns S J, Mudelsee M,et al.Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science, 2003, 300(5 626): 1 737-1 739.
[6] Fleitmann D, Burns S J, Mangini A, et al.Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews, 2007, 26(1): 170-188.
[7] Cheng H, Edwards R L, Broecker W S,et al.Ice age terminations[J]. Science,2009,326(5 950):248-252.
[8] Duan F, Wang Y, Shen C C, et al.Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China[J]. Scientific Reports, 2014, 4:5 159.
[9] Duan F, Wu J, Wang Y, et al.A 3000-yr annually laminated stalagmite record of the Last Glacial Maximum from Hulu Cave, China[J]. Quaternary Research, 2015, 83(2): 360-369.
[10] Liu D, Wang Y, Cheng H,et al.Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China[J]. Quaternary Science Reviews, 2015,121: 1-10.
[11] Zhao K, Wang Y, Edwards R L,et al.A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years[J]. Quaternary Science Reviews, 2015,122: 250-257,doi:10-1016/j.quascirev.2015.05.030.
[12] Cheng H, Sinha A, Wang X, et al.The global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1 045-1 062.
[13] Genty D, Massault M.Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW France[J]. Geochimica et Cosmochimica Acta, 1999, 63(10): 1 537-1 548.
[14] Genty D, Baker A, Massault M, et al.Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13C variations in speleothems[J]. Geochimica et Cosmochimica Acta,2001,65(20):3 443-3 457.
[15] Genty D.Palaeoclimate research in Villars Cave (Dordogne SW-France)[J]. International Journal of Speleology, 2008, 37(3): 173-191.
[16] Mickler P J, Banner J L, Stern L, et al.Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects[J]. Geochimica et Cosmochimica Acta, 2004, 68(21): 4 381-4 393.
[17] Mickler P J, Stern L A, Banner J L.Large kinetic isotope effects in modern speleothems[J]. Geological Society of America Bulletin, 2006, 118(1/2):65-81.
[18] Spötl C, Fairchild I J, Tooth A F.Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta, 2005, 69(10):2 451-2 468.
[19] Mattey D, Lowry D, Duffet J, et al.A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 80-95.
[20] Scholz D, Mühlinghaus C, Mangini A.Modelling δ13C and δ18O in the solution layer on stalagmite surfaces[J]. Geochimica et Cosmochimica Acta, 2009, 73(9): 2 592-2 602.
[21] Deininger M, Fohlmeister J, Scholz D, et al.Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems—A model approach[J]. Geochimica et Cosmochimica Acta, 2012, 96(11): 57-79.
[22] Luo W, Wang S.Transmission of δ13C signals and its paleoclimatic implications in Liangfeng Cave system of Guizhou Province, SW China[J]. Environmental Earth Science, 2009, 59(1): 655-661.
[23] Luo W, Wang S, Xie X, et al.Temporal and spatial variations in hydro-geochemistry of cave percolation water and their implications for four caves in Guizhou, China[J]. Chinese Journal of Geochemistry, 2013, 32(2): 119-129.
[24] Luo W, Wang S, Xie X, et al.Stable carbon isotope variations in cave percolation waters and their implications in four caves of Guizhou, China[J]. Acta Geologica Sinica, 2013, 87(5): 1 396-1 411.
[25] Dreybrodt W.Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H2O-CO2-CaCO3 solution and the related isotopic composition of calcite in stalagmites[J]. Geochimica et Cosmochimica Acta, 2008, 72(19): 4 712-4 724.
[26] Dreybrodt W, Scholz D.Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 734-752.
[27] Dreybrodt W, Deininger M.The impact of evaporation to the isotope composition of DIC in calcite precipitating water films in equilibrium and kinetic fractionation models[J]. Geochimica et Cosmochimica Acta, 2014, 125(1): 433-439.
[28] Dorale J A, Gonzalez L A.A high-resolution record of Holocene climate change in speleothem calcite from cold water cave[J]. Science, 1992, 258(5 088): 1 626-1 630.
[29] Dorale J A, Edwards R L, Ito E, et al.Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from crevice cave, Missouri, USA[J]. Science, 1998, 282(5 395): 1 871-1 874.
[30] Genty D, Blamart D, Ouahdi R, et al.Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature, 2003, 421(6 925): 833-837.
[31] Frappier A, Sahagian D, González L A, et al.El Niño events recorded by stalagmite carbon isotopes[J]. Science, 2002, 298(5 593):565-565.
[32] Frappier A B.Masking of interannual climate proxy signals by residual tropical cyclone rainwater: Evidence and challenges for low-latitude speleothem paleoclimatology[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(9):3 632-3 647.
[33] Cruz F W, Burns S J, Karmann I, et al.A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene[J]. Quaternary Science Reviews, 2006, 25(21/22): 2 749-2 761.
[34] Springer G S, Rowe H D, Hardt B, et al.East central North America climates during marine isotope stages 3-5[J]. Geophysical Research Letters, 2014, 41(9): 3 233-3 237.
[35] Woo K S, Ji H, Jo K-n, et al.Reconstruction of the Northeast Asian monsoon climate history for the past 400 years based on textural, carbon and oxygen isotope record of a stalagmite from Yongcheon lava tube cave, Jeju Island, Korea[J]. Quaternary International, 2015, 384:37-51,doi:10.1016/j.quaint.2014.10.014.
[36] Liu D, Wang Y, Cheng H, et al.Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ18O and δ13C records, southern China[J]. Quaternary Research, 2016, 85(3):333-346.
[37] Huang W, Wang Y J, Cheng H, et al.Multi-scale Holocene Asian Monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research, 2016, 86(1): 34-44.
[38] Luo Weijun, Wang Shijie, Liu Xiuming.Research progresses and prospect of chimney effect about carbon cycle in the Karst cave system[J]. Advances in Earth Science, 2014, 29(12): 1 333-1 340.
[罗维均,王世杰,刘秀明. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展,2014,29(12):1 333-1 340.
[39] Baker A, Wilson R, Fairchild I J,et al.High resolution δ18O and δ13C records from an annually laminated Scottish stalagmite and relationship with last millennium climate[J]. Global and Planetary Change, 2011, 79(3/4): 303-311.
[40] Baldini J U L, McDermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England[J]. Earth and Planetary Science Letters, 2005, 240(2): 486-494.
[41] Riechelmann D F C, Deininger M, Scholz D,et al. Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data[J]. Geochimica et Cosmochimica Acta, 2013, 103(2): 232-244.
[42] Fohlmeister J, Schröder-Ritzrau A, Scholz D, et al.Bunker Cave stalagmites: An archive for central European Holocene climate variability[J]. Climate of the Past, 2012, 8(3):1 751-1 764.
[43] Frisia S, Fairchild I J, Fohlmeister J,et al.Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
[44] Mandíc M, Mihevc A, Leis A, et al.Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia[J]. International Journal of Speleology, 2013, 42(3):279-287.
[45] Belli R, Frisia S, Borsat A, et al.Regional climate variability and ecosystem responses to the last deglaciation in the northern hemisphere from stable isotope data and calcite fabrics in two northern Adriatic stalagmites[J]. Quaternary Science Reviews, 2013, 72(4):146-158.
[46] Genty D, Blamart D, Ghaleb B,et al.Timing and dynamics of the last deglaciation from European and North African δ13C stalagmite profiles—Comparison with Chinese and South Hemisphere stalagmites[J]. Quaternary Science Reviews, 2006, 25(17/18): 2 118-2 142.
[47] Genty D, Combourieu-Nebout N, Peyron O,et al.Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records[J]. Quaternary Science Reviews, 2010, 29(19/20): 2 799-2 820.
[48] Drysdale R N, Zanchetta G, Hellstrom J C,et al.Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka[J]. Geophysical Research Letters, 2005, 32(24): 1-4.
[49] Drysdale R N, Zanchetta G, Hellstrom J C, et al.Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial[J]. Geology, 2007, 35(1): 77-80.
[50] Rudzka D, McDermott F, Baldini L M, et al. The coupled δ13C -radiocarbon systematics of three Late Glacial/early Holocene speleothems: Insights into soil and cave processes at climatic transitions[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4 321-4 339.
[51] Martín-Chivelet J, Muñoz-García M B, Edwards R L, et al. Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ13C of speleothems[J]. Global and Planetary Change, 2011, 77(1): 1-12.
[52] Fleitmann D, Cheng H, Badertsche S,et al.Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey[J]. Geophysical Research Letters, 2009, 36(19): L19707,doi:10.1029/2009GL040050.
[53] Wu J Y, Wang Y J, Cheng H, et al.Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”[J]. Climate of the Past, 2012, 8(3): 1 497-1 507.
[54] Zhang Weihong, Wu Jiangying.Ecological response of δ13C to Holocene climate changes from stalagmite record in Nuanhe Cave, Liaoning[J]. Marine Geology & Quaternary Geology, 2012, 32(3): 147-154.
[张伟宏,吴江滢. 辽宁暖和洞石笋δ13C对全新世气候变化的生态响应[J]. 海洋地质与第四纪地质,2012,32(3):147-154.]
[55] Li Hongchun, Gu Delong, Lowell D S,et al.Interannual-resolution δ13C record of stalagmites as proxy for the changes in precipitation and atmosphere CO2[J]. Carsologica Sinica, 1997, 16(4): 285-295.
[李红春,顾德隆,Lowell D Stott,等. 北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J]. 中国岩溶,1997,16(4):285-295.]
[56] Duan W, Tan M, Ma Z,et al.The palaeoenvironmental significance of δ13C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile[J]. Boreas, 2014, 43(1): 243-250.
[57] Denniston R F, DuPree M, Dorale J A,et al. Episodes of late Holocene aridity recorded by stalagmites from Devil's Icebox Cave, central Missouri, USA[J]. Quaternary Research, 2007, 68(1): 45-52.
[58] Springer G S, Rowe H D, Hardt B, et al.Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America[J]. Geophysical Research Letters, 2008, 35(17): 52-58.
[59] Finné M, Bar-Matthews M, Holmgren K, et al.Speleothem evidence for late Holocene climate variability and floods in Southern Greece[J]. Quaternary Research, 2014, 81(2): 213-227.
[60] Jo K N, Woo K S, Cheng H,et al.Textural and carbon isotopic evidence of monsoonal changes recorded in a composite-type speleothem from Korea since MIS 5a[J]. Quaternary Research, 2010, 74(1): 100-112.
[61] Jo K N, Woo K S, Lim H S, et al.Holocene and Eemian climatic optima in the Korean Peninsula based on textural and carbon isotopic records from the stalagmite of the Daeya Cave, South Korea,Quaternary Science Reviews, 2011, 30(9): 1 218-1 231.
[62] Li Z H, Driese S G, Cheng H, et al.A multiple cave deposit assessment of suitability of speleothem isotopes for reconstructing palaeo-vegetation and palaeo-temperature[J]. Sedimentology, 2014, 61(3): 749-766.
[63] Lambert W J, Aharon P.Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments[J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 753-768.
[64] Tan L, Zhang H, Qin S, et al.Climatic and anthropogenic impacts on δ13C variations in a stalagmite from central China[J]. Terrestrial Atmosphere and Oceanic Science, 2013, 24(3): 333-343.
[65] Kong Xinggong, Wang Yongjin, Wu Jiangying, et al.Complicated responses of stalagmite δ13C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science in China (Series D), 2005, 48(12): 2 174-2 181.
[孔兴功, 汪永进, 吴江滢,等. 南京葫芦洞石笋δ13C对冰期气候的复杂响应与诊断[J]. 中国科学:D辑, 2005, 35(11):1 047-1 052.]
[66] Cui Y F, Wang Y J, Cheng H,et al.Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China[J]. Climate of the Past, 2012, 8(5): 1 541-1 550.
[67] Bar-Matthews M, Ayalon A, Kaufman A.Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel[J]. Quaternary Research, 1997, 47(2): 155-168.
[68] Bar-Matthews M, Ayalon A, Kaufman A.Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothem, Soreq Cave, Israel[J]. Chemical Geology, 2000, 169(1): 145-156.
[69] Tremaine D M, Froelich P N, Wang Y.Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta, 2011, 75(75): 4 929-4 950.
[70] Cosford J, Qing H R, Mattey D, et al.Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1): 235-244.
[71] Li Tingyong, Li Hongchun, Xiang Xiaojing,et al.(δ13C)in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Science in China (Series D),2012,42(4):526-535.
[李廷勇,李红春,向晓晶,等. 碳同位素(δ13C)在重庆岩溶地区植被—土壤—基岩—洞穴系统运移特征研究[J]. 中国科学:D辑,2012,42(4):526-535.]
[72] Zhang H, Cai Y, Tan L, et al.Large variations of δ13C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation[J]. Boreas, 2015, 44(3): 511-525.
[73] Kuo T, Liu Z, Li H,et al.Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1 111-1 120.
[74] Zhu X, Zhang M, Cheng H,et al.Centennial-scale monsoon climate fluctuations from a stalagmite record during the mid-Holocene Epoch in Fulu cave of Huaping, Yunnan, China[J]. Environmental Earth Sciences, 2015, 74(2): 929-935.
[75] Luo Weijun, Wang Shijie, Liu Xiuming.Biomass effect on carbon isotope ratios of modern calcite deposition and its mechanism: A case study of 4 caves in Guizhou Province, China[J].Geochimica, 2007, 36(4):344-350.
[罗维均,王世杰,刘秀明. 洞穴现代沉积物δ13C值的生物量效应及机理探讨:以贵州4个洞穴为例[J]. 地球化学,2007,36(4):344-350.]
[76] Zhang Meiliang, Cheng Hai, Lin Yushi, et al.High resolution paleoclimate environment records from a stalagmite of Dongge Cave since 15000 a in Libo, Guizhou Province, China[J]. Geochimica, 2004, 33(1): 65-74.
[张美良,程海,林玉石,等. 贵州荔波1.5万年以来石笋高分辨率古气候环境记录[J]. 地球化学,2004,33(1):65-74.]
[77] Zhang M, Yuan D, Lin Y,et al.A 6000-year high-resolution climatic record from a stalagmite in Xiangshui Cave, Guilin, China[J]. The Holocene, 2004, 14(5): 697-702.
[78] Wu X, Zhu X, Pan M,et al.Dissolved inorganic carbon isotope compositions of drip water in Panlong cave, southwest China[J]. Environmental Earth Science, 2015, 74(2): 1 029-1 037.
[79] Li Bin, Yuan Daoxian, Lin Yushi,et al.Oxygen and carbon isotopic characteristics of rainwater, drip water and present speleothems in a cave in Guilin area, and their environmental meanings[J]. Science in China (Series D), 2000,43(3):276-285.
[李彬,袁道先,林玉石,等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J].中国科学:D辑,2000,30(1): 81-87.]
[80] Zhu X, Zhang M, Lin Y, et al.Carbon isotopic records from stalagmites and the signification of paleo-ecological environment in the area of Guangxi-Guizhou, China[J]. Environmental Geology, 2006, 51(2): 267-273.
[81] Griffiths M L, Drysdale R N, Gagan M K, et al. Australasian monsoon response to Dansgaard-Oeschger event 21 and teleconnections to higher latitudes[J]. Earth and Planetary Science Letters, 2013,369/370:294-304.
[82] Denniston R F, Asmerom Y, Lachniet M, et al.A last glacial Maximum through middle Holocene stalagmite record of coastal Western Australia climate[J]. Quaternary Science Reviews, 2013, 77(7): 101-112.
[83] Mühlinghaus C, Scholz D, Mangini A.Temperature and precipitation records from stalagmites grown under disequilibrium conditions: A first approach[J].PAGES News, 2008, 16(3): 19-20.
[84] Schimpf D, Kilian R, Kronz A, et al.The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53°S) as high-resolution palaeo-climate proxies[J].Quaternary Science Reviews,2011,30(3/4): 443-459.
[85] Schubert B A, Jahren A H.The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants[J]. Geochimica et Cosmochimica Acta, 2012, 96(11): 29-43.
[86] Hellstrom J, McCulloch M, Stone J. A detailed 31,000-year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems[J]. Quaternary Research, 1998, 50(2): 167-178.
[87] Jo K N, Woo K S, Yi S,et al.Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years[J]. Nature, 2014, 508(7 496): 378-382.
[88] McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review[J].Quaternary Science Reviews, 2004, 23(7): 901-918.
[89] Cerling T.The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
[90] Schwarcz H.Geochronology and isotopic geochemistry of carbonates in the weathering zone[M]∥Kolodny Y,ed. Handbook of Environmental Isotope Geochemistry, vol.2, The Terrestrial Environment, B: Edited by P. Fritz and J. Ch. Fontes.Holland: Elsevier, 1986:271-300.
[91] Genty D, Vokal B, Obelic B, et al.Bomb 14C time history recorded in two modern stalagmites-Importance for soil organic matter dynamics and bomb 14C distribution over continents[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 795-809.
[92] Griffiths M L, Fohlmeister J, Drysdale R N,et al.Hydrological control of the dead carbon fraction in a Holocene tropical speleothem[J]. Quaternary Geochronology, 2012, 14(4): 81-93.
[93] Liu Xianzhao, Zhang Yong, Su Qing,et al.Research progress in responses of modern terrestrial plant carbon isotope composition to climate change[J]. Advances in Earth Science, 2014, 29(12): 1 341-1 354.
[刘贤赵,张勇,宿庆,等. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展,2014,29(12):1 341-1 354.]
[94] Hendy C H.The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J].Geochimica et Cosmochimica Acta, 1971, 35(8): 801-824.
[95] Fairchild I J, Smith C L, Baker A,et al.Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews, 2006, 75(1): 105-153.
[96] Van Rampelbergh M, Verheyden S, Allan M, et al.Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite[J]. Climate of the Past, 2014, 10(5): 1 871-1 885.
[97] Zhou Yunchao, Wang Shijie, Xie Xingneng,et al.Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China[J]. Chinese Science Bulletin, 2005, 50(2): 154-161.
[周运超,王世杰,谢兴能,等. 贵州4个洞穴滴水对大气降雨响应的动力学及其意义[J]. 科学通报,2004,49(21):2 220-2 227.]
[98] Wang Shijie, Luo Weijun, Liu Xiuming, et al.Effects of hydrogeochemistry on δ13C DIC values of drip water in Qixing Cave, Guizhou, China and their implications[J]. Earth Science Frontiers, 2009, 16(6): 66-76.
[王世杰,罗维均,刘秀明,等. 贵州七星洞系统中水文地球化学特征对滴水δ13CDIC 的影响及其意义[J]. 地学前缘,2009,16(6):66-76.
[99] Dulinski M, Rozanski K.Formation of 13C/12C isotope ratios in speleothems: A semi-dynamic model[J]. Radiocarbon, 1990, 32(1): 7-16.
[100] Banner J L, Guilfoyle A, James E W, et al.Seasonal variations in modern speleothem calcite growth in central Texas, USA[J]. Journal of Sedimentary Research, 2007, 77(8): 615-622.
[101] Oster J L, Montanez I P, Guilderson T P, et al.Modeling speleothem δ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr[J]. Geochimica et Cosmochimica Acta, 2010,74(18):5 228-5 242.
[102] Hori M, Ishikawa T, Nagaishi K, et al.Prior calcite precipitation and source mixing process influence Sr/Ca, Ba/Ca and 87Sr/86Sr of a stalagmite developed in southwestern Japan during 18.0~4.5 ka[J]. Chemical Geology, 2013, 347: 190-198,doi:10.1016/j.chemgeo.2013.03.005.
[103] Liu D, Wang Y, Cheng H, et al.High-resolution stalagmite δ13C record of soil processes from southwestern China during the early MIS 3[J]. Chinese Science Bulletin, 2013, 58(7): 796-802.
[104] Baker A, Ito E, Smart P L, et al.Elevated and variable values of δ13C in speleothems in a British cave system[J]. Chemical Geology, 1997, 136(3): 263-270.
[105] Hansen M, Dreybrodt W, Scholz D.Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for (rapid) degassing of CO2 during speleothem growth[J]. Geochimica et Cosmochimica Acta, 2013, 107: 242-251,doi:10.1016/j.gca.2013.01.006.
[106] Lea D W, Pak D K, Spero H J.Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J].Science, 2000, 289(5 485): 1 719-1 724.
[107] Wang Yongjin, Wu Jiangying, Xu Hankui, et al.Palaeoclimatic and environmental significance as indicated by the stable isotopic composition of cave stalagmite in Tangshan, Nanjing[J]. Acta Geologica Sinica, 2000, 74(4):333-338.
[汪永进,吴江滢,许汉奎,等. 南京汤山洞穴石笋稳定同位素指示的气候与环境意义[J]. 地质学报,2000,74(4):333-338.]
[108] Kotlia B S, Singh A K, Joshi L M, et al.Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies[J]. Quaternary International, 2015, 371: 244-253,doi:10.1016/j.qucint.2014.10.006.
[109] Zhang Meiliang, Zhu Xiaoyan, Lin Yushi,et al.Study on δ13C isotope records from stalagmites[J]. Guangxi Sciences, 2006, 13(1): 48-51,57.
[张美良,朱晓燕,林玉石,等. 洞穴石笋的δ13C记录研究[J]. 广西科学,2006,13(1):48-51,57.]
[110] Wong C I, Breecker D O.Advancements in the use of speleothems as climate archives[J].Quaternary Science Reviews, 2015, 127: 1-18.
[111] Sinha A, Cannariato K G, Stott L D,et al.A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India[J]. Geophysical Research Letters, 2007, 34(16): 1-5.
[112] Branch N P, Marini N A F. Mid-Late Holocene environmental change and human activities in the northern Apennines, Italy[J]. Quaternary International, 2014, 353(1): 34-51.
[113] Zhuang Y J, Kidder T R.Archaeology of the Anthropocene in the Yellow River region, China, 8000-2000 cal. BP[J].The Holocene, 2014, 24(11): 1 602-1 623.
[1] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[2] 武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展[J]. 地球科学进展, 2020, 35(4): 363-377.
[3] 陈立雷,李凤,刘健. 海洋沉积物中 GDGTs和长链二醇的古气候—环境指示意义研究进展[J]. 地球科学进展, 2019, 34(8): 855-867.
[4] 王鑫,张金辉,贾佳,王蜜,王强,陈建徽,王飞,李再军,陈发虎. 中亚干旱区第四系黄土和干旱环境研究进展[J]. 地球科学进展, 2019, 34(1): 34-47.
[5] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[6] 王兆夺, 黄春长, 周亚利, 庞奖励, 查小春. 关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义[J]. 地球科学进展, 2018, 33(3): 293-304.
[7] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[8] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[9] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[10] 吕璇, 刘志飞. 大洋红层的分布、组成及其科学研究意义综述[J]. 地球科学进展, 2017, 32(12): 1307-1318.
[11] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[12] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[13] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[14] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[15] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
阅读次数
全文


摘要