Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (9): 968-983    DOI: 10.11867/j.issn.1001-8166.2016.09.0968
全球变化研究     
洞穴石笋δ13C在古气候重建研究中的现状与进展
黄伟1, 2, 3, 刘殿兵1, 王璐瑶1, 张振球1
1. 虚拟地理环境教育部重点实验室,南京师范大学地理科学学院,江苏 南京 210023;
2. 江苏省地理环境演化国家重点实验室培育建设点,江苏 南京 210023;
3. 江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
Research Status and Advance in Carbon Isotope (δ13C) Variation from Stalagmite
Huang Wei1, 2, 3, Liu Dianbing1, Wang Luyao1, Zhang Zhenqiu1
1.Key Laboratory of Virtual Geographic Environment,School of Geography Science, Nanjing Normal University, Ministry of Education, Nanjing 210023, China;
2.State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China;
3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
 全文: PDF(3916 KB)   HTML
摘要: 由于受气候、复杂岩溶过程等影响,石笋碳同位素(δ13C)研究相对于其他代用指标甚少,甚至被忽略。从影响石笋δ13C的气候与非气候因子入手,结合全球数十个洞穴记录及现代观测试验,分析碳同位素信号在岩溶系统内部的传递方式和路径,探讨不同时间尺度下δ13C与气候变化之间的关系。指出石笋δ13C虽然在百年—年代际尺度上表现出的噪音强度明显上升,但从轨道至千年尺度上看,温度、湿度(降水)等气候要素在不同区域所充当的主控因子角色直接或间接地影响上覆土壤植被状况、土壤CO2产率等当地生态环境变化。未来研究应深入挖掘δ13C信号在岩溶系统中的传输共性及其气候、环境控制因子,注重石笋δ13C季节变化特征研究,充分发挥其在揭示当地环境或灾害性事件方面的独特优势,并运用多指标、多种方法手段理解岩溶过程、全球碳循环与气候变化之间的联系。
关键词: 13C石笋古气候δ    
Abstract: The application of carbon isotope (δ13C) collected from stalagmite to reconstruct the past climate and/or ecologic evolution, relative to other preserved indicators, is much limited due to its complex influencing factors including climate outside cave and complicated and site-specific karstic process. In terms of various climate and non-climate limiting factors on stalagmite δ13C, and combined with a large number of geological records and modern cave monitoring data of the latest researches, the pathway and behavior of the signal transmission of δ13C in the cave system were analyzed. The possible relationship between δ13C excursions and climate oscillations under different time scales was thus discussed. Although the degree of noise becomes increasing mixed with δ13C on centennial scales or shorter, the climatic elements, such as temperature and humidity (or precipitation), as predominant modulators exert directly or indirectly influence on vegetation overlying the soil and associated soil CO2 productivity on millennial-orbital scales. Future work should be focused on further deeply extracting the common δ13C signals from specific caves by exploring the controlling factors, both including climatic and non-climatic ones, attaching importance to the seasonal characteristics of stalagmite δ13C, and taking full advantage of its potential in the indication of local environmental events. The use of multi-proxy and multi-method will contribute to better understanding the interesting linkages among the δ13C characteristics, karstic process, global carbon cycle and associated climate change.
Key words: Stalagmite    Paleoclimate.    δ    13C
收稿日期: 2016-06-18 出版日期: 2016-09-20
:  P467  
基金资助: 国家自然科学基金项目“晚第四纪中国南方季风事件的高分辨率石笋记录与机制诊断”(编号: 41130210); 江苏高校优势学科建设工程资助项目(编号:164320H116)资助
作者简介: 黄伟(1989-),男,江西瑞金人,博士研究生,主要从事洞穴古气候研究.E-mail:weihuang52@yeah.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘殿兵
王璐瑶
黄伟
张振球

引用本文:

黄伟, 刘殿兵, 王璐瑶, 张振球. 洞穴石笋δ13C在古气候重建研究中的现状与进展[J]. 地球科学进展, 2016, 31(9): 968-983.

Huang Wei, Liu Dianbing, Wang Luyao, Zhang Zhenqiu. Research Status and Advance in Carbon Isotope (δ13C) Variation from Stalagmite. Advances in Earth Science, 2016, 31(9): 968-983.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.09.0968        http://www.adearth.ac.cn/CN/Y2016/V31/I9/968

[1] Wang Y J, Cheng H, Edwards R L, et al . A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China[J]. Science , 2001, 294 (5 550): 2 345-2 348.
[2] Wang Y J, Cheng H, Edwards R L, et al . The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science , 2005, 308(5 723): 854-857.
[3] Wang Y, Cheng H, Edwards R L, et al . Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature , 2008, 451(7 182): 1 090-1 093.
[4] Yuan D, Cheng H, Edwards R L, et al . Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science , 2004, 304(5 670): 575-578.
[5] Fleitmann D, Burns S J, Mudelsee M, et al . Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J]. Science , 2003, 300(5 626): 1 737-1 739.
[6] Fleitmann D, Burns S J, Mangini A, et al . Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra)[J]. Quaternary Science Reviews , 2007, 26(1): 170-188.
[7] Cheng H, Edwards R L, Broecker W S, et al . Ice age terminations[J]. Science ,2009,326(5 950):248-252.
[8] Duan F, Wang Y, Shen C C, et al . Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China[J]. Scientific Reports , 2014, 4:5 159.
[9] Duan F, Wu J, Wang Y, et al . A 3000-yr annually laminated stalagmite record of the Last Glacial Maximum from Hulu Cave, China[J]. Quaternary Research , 2015, 83(2): 360-369.
[10] Liu D, Wang Y, Cheng H, et al . Cyclic changes of Asian monsoon intensity during the early mid-Holocene from annually-laminated stalagmites, central China[J]. Quaternary Science Reviews , 2015,121: 1-10.
[11] Zhao K, Wang Y, Edwards R L, et al . A high-resolved record of the Asian Summer Monsoon from Dongge Cave, China for the past 1200 years[J]. Quaternary Science Reviews , 2015,122: 250-257,doi:10-1016/j.quascirev.2015.05.030.
[12] Cheng H, Sinha A, Wang X, et al . The global Paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics , 2012, 39(5): 1 045-1 062.
[13] Genty D, Massault M. Carbon transfer dynamics from bomb- 14 C and δ 13 C time series of a laminated stalagmite from SW France[J]. Geochimica et Cosmochimica Acta , 1999, 63(10): 1 537-1 548.
[14] Genty D, Baker A, Massault M, et al . Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 13 C variations in speleothems[J]. Geochimica et Cosmochim ica Acta ,2001,65(20):3 443-3 457.
[15] Genty D. Palaeoclimate research in Villars Cave (Dordogne SW-France)[J]. International Journal of Speleology , 2008, 37(3): 173-191.
[16] Mickler P J, Banner J L, Stern L, et al . Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects[J]. Geochimica et Cosmochimica Acta , 2004, 68(21): 4 381-4 393.
[17] Mickler P J, Stern L A, Banner J L. Large kinetic isotope effects in modern speleothems[J]. Geological Society of America Bulletin , 2006, 118(1/2):65-81.
[18] Spötl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J]. Geochimica et Cosmochimica Acta , 2005, 69(10):2 451-2 468.
[19] Mattey D, Lowry D, Duffet J, et al . A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters , 2008, 269(1/2): 80-95.
[20] Scholz D, Mühlinghaus C, Mangini A. Modelling δ 13 C and δ 18 O in the solution layer on stalagmite surfaces[J]. Geochimica et Cosmochimica Acta , 2009, 73(9): 2 592-2 602.
[21] Deininger M, Fohlmeister J, Scholz D, et al . Isotope disequilibrium effects: The influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems—A model approach[J]. Geochimica et Cosmochimica Acta , 2012, 96(11): 57-79.
[22] Luo W, Wang S. Transmission of δ 13 C signals and its paleoclimatic implications in Liangfeng Cave system of Guizhou Province, SW China[J]. Environmental Earth Science , 2009, 59(1): 655-661.
[23] Luo W, Wang S, Xie X, et al . Temporal and spatial variations in hydro-geochemistry of cave percolation water and their implications for four caves in Guizhou, China[J]. Chinese Journal of Geochemistry , 2013, 32(2): 119-129.
[24] Luo W, Wang S, Xie X, et al . Stable carbon isotope variations in cave percolation waters and their implications in four caves of Guizhou, China[J]. Acta Geologica Sinica , 2013, 87(5): 1 396-1 411.
[25] Dreybrodt W. Evolution of the isotopic composition of carbon and oxygen in a calcite precipitating H 2 O-CO 2 -CaCO 3 solution and the related isotopic composition of calcite in stalagmites[J]. Geochimica et Cosmochimica Acta , 2008, 72(19): 4 712-4 724.
[26] Dreybrodt W, Scholz D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: From soil water to speleothem calcite[J]. Geochimica et Cosmochimica Acta , 2011, 75(3): 734-752.
[27] Dreybrodt W, Deininger M. The impact of evaporation to the isotope composition of DIC in calcite precipitating water films in equilibrium and kinetic fractionation models[J]. Geochimica et Cosmochimica Acta , 2014, 125(1): 433-439.
[28] Dorale J A, Gonzalez L A. A high-resolution record of Holocene climate change in speleothem calcite from cold water cave[J]. Science , 1992, 258(5 088): 1 626-1 630.
[29] Dorale J A, Edwards R L, Ito E, et al . Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from crevice cave, Missouri, USA[J]. Science , 1998, 282(5 395): 1 871-1 874.
[30] Genty D, Blamart D, Ouahdi R, et al . Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J]. Nature , 2003, 421(6 925): 833-837.
[31] Frappier A, Sahagian D, González L A, et al . El Niño events recorded by stalagmite carbon isotopes[J]. Science , 2002, 298(5 593):565-565.
[32] Frappier A B. Masking of interannual climate proxy signals by residual tropical cyclone rainwater: Evidence and challenges for low-latitude speleothem paleoclimatology[J]. Geochemistry , Geophysics , Geosystems , 2013, 14(9):3 632-3 647.
[33] Cruz F W, Burns S J, Karmann I, et al . A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene[J]. Quaternary Science Reviews , 2006, 25(21/22): 2 749-2 761.
[34] Springer G S, Rowe H D, Hardt B, et al. East central North America climates during marine isotope stages 3-5[J]. Geophysical Research Letters , 2014, 41(9): 3 233-3 237.
[35] Woo K S, Ji H, Jo K-n, et al. Reconstruction of the Northeast Asian monsoon climate history for the past 400 years based on textural, carbon and oxygen isotope record of a stalagmite from Yongcheon lava tube cave, Jeju Island, Korea[J]. Quaternary International , 2015, 384:37-51,doi:10.1016/j.quaint.2014.10.014.
[36] Liu D, Wang Y, Cheng H, et al . Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmite δ 18 O and δ 13 C records, southern China[J]. Quaternary Research , 2016, 85(3):333-346.
[37] Huang W, Wang Y J, Cheng H, et al . Multi-scale Holocene Asian Monsoon variability deduced from a twin-stalagmite record in southwestern China[J]. Quaternary Research , 2016, 86(1): 34-44.
[38] Luo Weijun, Wang Shijie, Liu Xiuming. Research progresses and prospect of chimney effect about carbon cycle in the Karst cave system[J]. Advances in Earth Science , 2014, 29(12): 1 333-1 340.
. 地球科学进展,2014,29(12):1 333-1 340.
[39] Baker A, Wilson R, Fairchild I J, et al . High resolution δ 18 O and δ 13 C records from an annually laminated Scottish stalagmite and relationship with last millennium climate[J]. Global and Planetary Change , 2011, 79(3/4): 303-311.
[40] Baldini J U L, McDermott F, Baker A, et al . Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England[J]. Earth and Planetary Science Letters , 2005, 240(2): 486-494.
[41] Riechelmann D F C, Deininger M, Scholz D, et al . Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: Comparison of cave precipitates and model data[J]. Geochimica et Cosmochimica Acta , 2013, 103(2): 232-244.
[42] Fohlmeister J, Schröder-Ritzrau A, Scholz D, et al . Bunker Cave stalagmites: An archive for central European Holocene climate variability[J]. Climate of the Past , 2012, 8(3):1 751-1 764.
[43] Frisia S, Fairchild I J, Fohlmeister J, et al . Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta , 2011, 75(2): 380-400.
[44] Mandíc M, Mihevc A, Leis A, et al . Concentration and stable carbon isotopic composition of CO 2 in cave air of Postojnska jama, Slovenia[J]. International Journal of Speleology , 2013, 42(3):279-287.
[45] Belli R, Frisia S, Borsat A, et al . Regional climate variability and ecosystem responses to the last deglaciation in the northern hemisphere from stable isotope data and calcite fabrics in two northern Adriatic stalagmites[J]. Quaternary Science Reviews , 2013, 72(4):146-158.
[46] Genty D, Blamart D, Ghaleb B, et al . Timing and dynamics of the last deglaciation from European and North African δ 13 C stalagmite profiles—Comparison with Chinese and South Hemisphere stalagmites[J]. Quaternary Science Reviews , 2006, 25(17/18): 2 118-2 142.
[47] Genty D, Combourieu-Nebout N, Peyron O, et al . Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records[J]. Quaternary Science Reviews , 2010, 29(19/20): 2 799-2 820.
[48] Drysdale R N, Zanchetta G, Hellstrom J C, et al . Stalagmite evidence for the onset of the Last Interglacial in southern Europe at 129 ± 1 ka[J]. Geophysical Research Letters , 2005, 32(24): 1-4.
[49] Drysdale R N, Zanchetta G, Hellstrom J C, et al . Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial[J]. Geology , 2007, 35 (1): 77-80.
[50] Rudzka D, McDermott F, Baldini L M, et al . The coupled δ 13 C -radiocarbon systematics of three Late Glacial/early Holocene speleothems: Insights into soil and cave processes at climatic transitions[J]. Geochimica et Cosmochimica Acta , 2011, 75(15): 4 321-4 339.
[51] Martín-Chivelet J, Muñoz-García M B, Edwards R L, et al . Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ 13 C of speleothems[J]. Global and Planetary Change , 2011, 77(1): 1-12.
[52] Fleitmann D, Cheng H, Badertsche S, et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey[J]. Geophysical Research Letters , 2009, 36(19): L19707,doi:10.1029/2009GL040050.
[53] Wu J Y, Wang Y J, Cheng H, et al . Stable isotope and trace element investigation of two contemporaneous annually-laminated stalagmites from northeastern China surrounding the “8.2 ka event”[J]. Climate of the Past , 2012, 8(3): 1 497-1 507.
[54] Zhang Weihong, Wu Jiangying. Ecological response of δ 13 C to Holocene climate changes from stalagmite record in Nuanhe Cave, Liaoning[J]. Marine Geology & Quaternary Geology , 2012, 32(3): 147-154.
. 海洋地质与第四纪地质,2012,32(3):147-154.]
[55] Li Hongchun, Gu Delong, Lowell D S, et al . Interannual-resolution δ 13 C record of stalagmites as proxy for the changes in precipitation and atmosphere CO 2 [J]. Carsologica Sinica , 1997, 16(4): 285-295.
. 中国岩溶,1997,16(4):285-295.]
[56] Duan W, Tan M, Ma Z, et al . The palaeoenvironmental significance of δ 13 C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile[J]. Boreas , 2014, 43 (1): 243-250.
[57] Denniston R F, DuPree M, Dorale J A, et al . Episodes of late Holocene aridity recorded by stalagmites from Devil's Icebox Cave, central Missouri, USA[J]. Quaternary Research , 2007, 68(1): 45-52.
[58] Springer G S, Rowe H D, Hardt B, et al . Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America[J]. Geophysical Research Letters , 2008, 35(17): 52-58.
[59] Finné M, Bar-Matthews M, Holmgren K, et al . Speleothem evidence for late Holocene climate variability and floods in Southern Greece[J]. Quaternary Research , 2014, 81(2): 213-227.
[60] Jo K N, Woo K S, Cheng H, et al . Textural and carbon isotopic evidence of monsoonal changes recorded in a composite-type speleothem from Korea since MIS 5a[J]. Quaternary Research , 2010, 74(1): 100-112.
[61] Jo K N, Woo K S, Lim H S, et al . Holocene and Eemian climatic optima in the Korean Peninsula based on textural and carbon isotopic records from the stalagmite of the Daeya Cave, South Korea, Quaternary Science Reviews , 2011, 30(9): 1 218-1 231.
[62] Li Z H, Driese S G, Cheng H, et al . A multiple cave deposit assessment of suitability of speleothem isotopes for reconstructing palaeo-vegetation and palaeo-temperature[J]. Sedimentology , 2014, 61(3): 749-766.
[63] Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ 13 C in cave waters from DeSoto Caverns: Implications for speleothem δ 13 C assessments[J]. Geochimica et Cosmochimica Acta , 2011, 75(3): 753-768.
[64] Tan L, Zhang H, Qin S, et al . Climatic and anthropogenic impacts on δ 13 C variations in a stalagmite from central China[J]. Terrestrial Atmosphere and Oceanic Science , 2013, 24 (3): 333-343.
[65] Kong Xinggong, Wang Yongjin, Wu Jiangying, et al . Complicated responses of stalagmite δ 13 C to climate change during the last glaciation from Hulu Cave, Nanjing, China[J]. Science in China ( Series D ), 2005, 48(12): 2 174-2 181.
. 中国科学:D辑, 2005, 35(11):1 047-1 052.]
[66] Cui Y F, Wang Y J, Cheng H, et al . Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China[J]. Climate of the Past , 2012, 8(5): 1 541-1 550.
[67] Bar-Matthews M, Ayalon A, Kaufman A. Late Quaternary paleoclimate in the eastern Mediterranean region from stable isotope analysis of speleothems at Soreq Cave, Israel[J]. Quaternary Research , 1997, 47(2): 155-168.
[68] Bar-Matthews M, Ayalon A, Kaufman A. Timing and hydrological conditions of Sapropel events in the Eastern Mediterranean, as evident from speleothem, Soreq Cave, Israel[J]. Chemical Geology , 2000, 169(1): 145-156.
[69] Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ: Modern calibration of δ 18 O and δ 13 C paleoclimate proxies in a continuously-monitored natural cave system[J]. Geochimica et Cosmochimica Acta , 2011, 75(75): 4 929-4 950.
[70] Cosford J, Qing H R, Mattey D, et al . Climatic and local effects on stalagmite δ 13 C values at Lianhua Cave, China[J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 2009, 280(1): 235-244.
[71] Li Tingyong, Li Hongchun, Xiang Xiaojing, et al . Transportation characteristics of δ 13 C in the plants-soil-bedrock-cave system in Chongqing karst area[J]. Science in China ( Series D ), 2012, 55(4): 685-694.
. 中国科学:D辑,2012,42(4):526-535.]
[72] Zhang H, Cai Y, Tan L, et al . Large variations of δ 13 C values in stalagmites from southeastern China during historical times: Implications for anthropogenic deforestation[J]. Boreas , 2015, 44(3): 511-525.
[73] Kuo T, Liu Z, Li H, et al . Climate and environmental changes during the past millennium in central western Guizhou, China as recorded by Stalagmite ZJD-21[J]. Journal of Asian Earth Sciences , 2011, 40(6): 1 111-1 120.
[74] Zhu X, Zhang M, Cheng H, et al . Centennial-scale monsoon climate fluctuations from a stalagmite record during the mid-Holocene Epoch in Fulu cave of Huaping, Yunnan, China[J]. Environmental Earth Sciences , 2015, 74(2): 929-935.
[75] Luo Weijun, Wang Shijie, Liu Xiuming. Biomass effect on carbon isotope ratios of modern calcite deposition and its mechanism: A case study of 4 caves in Guizhou Province, China[J]. Geochimica , 2007, 36(4):344-350.
. 地球化学,2007,36(4):344-350.]
[76] Zhang Meiliang, Cheng Hai, Lin Yushi, et al . High resolution paleoclimate environment records from a stalagmite of Dongge Cave since 15000 a in Libo, Guizhou Province, China[J]. Geochimica , 2004, 33 (1): 65-74.
. 地球化学,2004,33(1):65-74.]
[77] Zhang M, Yuan D, Lin Y, et al . A 6000-year high-resolution climatic record from a stalagmite in Xiangshui Cave, Guilin, China[J]. The Holocene , 2004, 14(5): 697-702.
[78] Wu X, Zhu X, Pan M, et al . Dissolved inorganic carbon isotope compositions of drip water in Panlong cave, southwest China[J]. Environmental Earth Science , 2015, 74(2): 1 029-1 037.
[79] Li Bin, Yuan Daoxian, Lin Yushi, et al . Oxygen and carbon isotopic characteristics of rainwater, drip water and present speleothems in a cave in Guilin area, and their environmental meanings[J]. Science in China ( Series D ), 2000,43(3):276-285.
.中国科学:D辑,2000,30(1): 81-87.]
[80] Zhu X, Zhang M, Lin Y, et al . Carbon isotopic records from stalagmites and the signification of paleo-ecological environment in the area of Guangxi-Guizhou, China[J]. Environmental Geology , 2006, 51(2): 267-273.
[81] Griffiths M L, Drysdale R N, Gagan M K, et al . Australasian monsoon response to Dansgaard-Oeschger event 21 and teleconnections to higher latitudes[J]. Earth and Planetary Science Letters , 2013,369/370:294-304.
[82] Denniston R F, Asmerom Y, Lachniet M, et al . A last glacial Maximum through middle Holocene stalagmite record of coastal Western Australia climate[J]. Quaternary Science Reviews , 2013, 77(7): 101-112.
[83] Mühlinghaus C, Scholz D, Mangini A. Temperature and precipitation records from stalagmites grown under disequilibrium conditions: A first approach[J]. PAGES News , 2008, 16(3): 19-20.
[84] Schimpf D, Kilian R, Kronz A, et al . The significance of chemical, isotopic, and detrital components in three coeval stalagmites from the superhumid southernmost Andes (53°S) as high-resolution palaeo-climate proxies[J]. Quaternary Science Reviews ,2011,30(3/4): 443-459.
[85] Schubert B A, Jahren A H. The effect of atmospheric CO 2 concentration on carbon isotope fractionation in C3 land plants[J]. Geochimica et Cosmochimica Acta , 2012, 96(11): 29-43.
[86] Hellstrom J, McCulloch M, Stone J. A detailed 31,000-year record of climate and vegetation change from the isotope geochemistry of two New Zealand speleothems[J]. Quaternary Research , 1998, 50(2): 167-178.
[87] Jo K N, Woo K S, Yi S, et al . Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years[J]. Nature , 2014, 508(7 496): 378-382.
[88] McDermott F. Palaeo-climate reconstruction from stable isotope variations in speleothems: A review[J]. Quaternary Science Reviews , 2004, 23(7): 901-918.
[89] Cerling T. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters , 1984, 71(2): 229-240.
[90] Schwarcz H. Geochronology and isotopic geochemistry of carbonates in the weathering zone[M]∥Kolodny Y,ed. Handbook of Environmental Isotope Geochemistry, vol.2, The Terrestrial Environment, B: Edited by P. Fritz and J. Ch. Fontes.Holland: Elsevier, 1986:271-300.
[91] Genty D, Vokal B, Obelic B, et al . Bomb 14 C time history recorded in two modern stalagmites-Importance for soil organic matter dynamics and bomb 14 C distribution over continents[J]. Earth and Planetary Science Letters , 1998, 160(3/4): 795-809.
[92] Griffiths M L, Fohlmeister J, Drysdale R N, et al . Hydrological control of the dead carbon fraction in a Holocene tropical speleothem[J]. Quaternary Geochronology , 2012, 14 (4): 81-93.
[93] Liu Xianzhao, Zhang Yong, Su Qing, et al . Research progress in responses of modern terrestrial plant carbon isotope composition to climate change[J]. Advances in Earth Science , 2014, 29(12): 1 341-1 354.
. 地球科学进展,2014,29(12):1 341-1 354.]
[94] Hendy C H. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J]. Geochimica et Cosmochimica Acta , 1971, 35 (8): 801-824.
[95] Fairchild I J, Smith C L, Baker A, et al . Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews , 2006, 75(1): 105-153.
[96] Van Rampelbergh M, Verheyden S, Allan M, et al . Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ 18 O and δ 13 C signals in the calcite[J]. Climate of the Past , 2014, 10(5): 1 871-1 885.
[97] Zhou Yunchao, Wang Shijie, Xie Xingneng, et al . Significance and dynamics of drip water responding to rainfall in four caves of Guizhou, China[J]. Chinese Science Bulletin , 2005, 50(2): 154-161.
. 科学通报,2004,49(21):2 220-2 227.]
[98] Wang Shijie, Luo Weijun, Liu Xiuming, et al . Effects of hydrogeochemistry on δ 13 C DIC values of drip water in Qixing Cave, Guizhou, China and their implications[J]. Earth Science Frontiers , 2009, 16 (6): 66-76.
. 地学前缘,2009,16(6):66-76.
[99] Dulinski M, Rozanski K. Formation of 13 C/ 12 C isotope ratios in speleothems: A semi-dynamic model[J]. Radiocarbon , 1990, 32 (1): 7-16.
[100] Banner J L, Guilfoyle A, James E W, et al . Seasonal variations in modern speleothem calcite growth in central Texas, USA[J]. Journal of Sedimentary Research , 2007, 77 (8): 615-622.
[101] Oster J L, Montanez I P, Guilderson T P, et al . Modeling speleothem δ 13 C variability in a central Sierra Nevada cave using 14 C and 87 Sr/ 86 Sr[J]. Geochimica et Cosmochimica Acta , 2010,74(18):5 228-5 242.
[102] Hori M, Ishikawa T, Nagaishi K, et al . Prior calcite precipitation and source mixing process influence Sr/Ca, Ba/Ca and 87 Sr/ 86 Sr of a stalagmite developed in southwestern Japan during 18.0~4.5 ka[J]. Chemical Geology , 2013, 347: 190-198,doi:10.1016/j.chemgeo.2013.03.005.
[103] Liu D, Wang Y, Cheng H, et al . High-resolution stalagmite δ 13 C record of soil processes from southwestern China during the early MIS 3[J]. Chinese Science Bulletin , 2013, 58 (7): 796-802.
[104] Baker A, Ito E, Smart P L, et al . Elevated and variable values of δ 13 C in speleothems in a British cave system[J]. Chemical Geology , 1997, 136(3): 263-270.
[105] Hansen M, Dreybrodt W, Scholz D. Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for (rapid) degassing of CO 2 during speleothem growth[J]. Geochimica et Cosmochimica Acta , 2013, 107: 242-251,doi:10.1016/j.gca.2013.01.006.
[106] Lea D W, Pak D K, Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations[J]. Science , 2000, 289 (5 485): 1 719-1 724.
[107] Wang Yongjin, Wu Jiangying, Xu Hankui, et al . Palaeoclimatic and environmental significance as indicated by the stable isotopic composition of cave stalagmite in Tangshan, Nanjing[J]. Acta Geologica Sinica , 2000, 74(4):333-338.
. 地质学报,2000,74(4):333-338.]
[108] Kotlia B S, Singh A K, Joshi L M, et al . Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies[J]. Quaternary International , 2015, 371: 244-253,doi:10.1016/j.qucint.2014.10.006.
[109] Zhang Meiliang, Zhu Xiaoyan, Lin Yushi, et al . Study on δ 13 C isotope records from stalagmites[J]. Guangxi Sciences , 2006, 13 (1): 48-51,57.
. 广西科学,2006,13(1):48-51,57.]
[110] Wong C I, Breecker D O. Advancements in the use of speleothems as climate archives[J]. Quaternary Science Reviews , 2015, 127: 1-18.
[111] Sinha A, Cannariato K G, Stott L D, et al . A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India[J]. Geophysical Research Letters , 2007, 34 (16): 1-5.
[112] Branch N P, Marini N A F. Mid-Late Holocene environmental change and human activities in the northern Apennines, Italy[J]. Quaternary International , 2014, 353 (1): 34-51.
[113] Zhuang Y J, Kidder T R. Archaeology of the Anthropocene in the Yellow River region, China, 8000-2000 cal. BP[J]. The Holocene , 2014, 24 (11): 1 602-1 623.
[1] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[2] 李强. 基于文献计量学分析2016年度岩溶学研究热点[J]. 地球科学进展, 2017, 32(5): 535-545.
[3] 王瑞, 余克服, 王英辉, 边立曾. 珊瑚礁的成岩作用[J]. 地球科学进展, 2017, 32(3): 221-233.
[4] 胡玉, 陈建徽, 王海鹏, 吕飞亚, 魏国英. 基于摇蚊的古环境和古气候国内外研究进展与展望[J]. 地球科学进展, 2016, 31(8): 870-884.
[5] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[6] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[7] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[8] 马天鸣, 谢周清, 李院生. 极地冰芯电学性质及导电测量技术研究进展[J]. 地球科学进展, 2016, 31(2): 161-170.
[9] 梁文癸, 闻新宇. 古AO/NAO的研究进展[J]. 地球科学进展, 2016, 31(11): 1137-1150.
[10] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[11] 刘佳,张廷军. 利用钻孔温度梯度重建过去气候变化进展[J]. 地球科学进展, 2013, 28(4): 429-446.
[12] 张俊辉,夏敦胜,张英,刘宇航. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1): 42-51.
[13] 曾艳,陈敬安,朱正杰,李键. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8): 805-810.
[14] 戴静,孙柏年,解三平,吴靖宇,李娜. 云南腾冲上新统Carpinus miofangiana的发现及古气候意义[J]. 地球科学进展, 2009, 24(9): 1024-1032.
[15] 王红丽,顾亚进,刘健,况雪源,提汝媛 . BP神经网络在古气候序列重建中的应用[J]. 地球科学进展, 2009, 24(11): 1275-1279.