Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (9): 984-994    DOI: 10.11867/j.issn.1001-8166.2016.09.0984
全球变化研究     
东亚夏季降水与全球海温异常的年代际变化关系
叶晓燕1, 陈崇成1, 罗明1, 2*, *
1.福州大学地理空间信息技术国家地方联合工程研究中心,空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350000;
2. 香港中文大学 环境、能源及可持续发展研究所,香港 999077
Interdecadal Relationship between the East Asian Summer Precipitation and Global Sea Surface Temperature Anomalies
Ye Xiaoyan1, Chen Chongcheng1, Luo Ming1, 2, *
1.National Engineering Research Center of Geospatial Information Technology, Fuzhou University,Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou 350000, China;
2.Institute of Environment,Energy and Sustainability, The Chinese University of Hong Kong,Hong Kong 999077,China
 全文: PDF(16923 KB)   HTML
摘要: 利用1901—2010年GPCC逐月降水、HadISST月平均海表温度、NOAA 20世纪再分析等资料,采用最大协方差分析(Maximum Covariance Analysis, MCA)、相关、回归等方法研究了东亚地区夏季降水与全球海表温度异常之间的年代际时空变化关系。MCA分析结果表明,东亚地区夏季降水与全球海温异常耦合关系在年代际尺度上主要表现为4个模态,分别受全球变暖、太平洋年代际涛动PDO、大西洋多年代际涛动AMO和北太平洋涡旋振荡NPGO影响,各自解释了27.7%,12.5%,8.9%和7.3%的方差。第一模态由于受全球变暖影响,东亚大部分地区水汽充足,因此东亚大部分地区降水均偏多。第二模态的降水异常表现为东亚中部地区降水偏多而南部和北部偏少的“南北旱中间涝”的三极型分布,其可能原因是太平洋年代际涛动使得东亚夏季风减弱,不利于水汽往北输送,引起水汽在东亚中部聚集,导致该地区降水偏多;同时西风带往南偏移,使得东亚中部地区对流增强,也引起该地区降水偏多。第三模态的降水异常则主要为“南涝北旱”的偶极分布型,可能原因是东亚大槽向东南方向偏移,东亚北部西风带减弱,使得东亚北部对流减弱、降水偏少,而东亚南部地区则对流增强、降水偏多。第四模态降水异常呈现出“南北涝中间旱”的三极型分布特征,其原因是东亚中部地区高层出现异常东风,对流活动减弱,导致东亚中部降水偏少,而南部和北部地区降水偏多。
关键词: 东亚夏季风最大协方差分析年代际变化降水海表温度异常    
Abstract: This study investigated the decadal relationship between the East Asian (EA) summer precipitation (EASP) and global sea surface temperature anomaly (SSTA) patterns. Maximum covariance analysis (MCA) was used to identify the coupling relationship between EASP and global SSTA. Four leading coupling modes were identified by MCA and they explained 27.7%,12.5%,8.9%,and 7.3% of the total variance, respectively. The spatial pattern of EASP of the first leading mode exhibited more-than-normal precipitation in most regions of EA. The second mode of EASP depicted a north-south “-+-” tripole pattern. The third one showed a “wet south and dry north” pattern, and the fourth mode exhibited a north-south “+-+” tripole pattern. The four coupling modes were suggested to be modulated by the global warming, Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Pacific Gyre Oscillation (NPGO), respectively.The atmospheric processes and mechanisms underlying such modulations were also investigated. In the first coupling mode, global warming was favorable for increasing water vapor and precipitation over most parts of EA. In the second mode, PDO weakened the EA summer monsoon circulation, and it decreased precipitation in northern and southern EA regions and increased precipitation in the central EA region. The third mode was affected by AMO, which displaced the EA trough southward and weakened the convective activity over the northern EA region, thus leading to deficient precipitation in northern EA region. In the fourth mode, the EA summer monsoon was strengthened by NPGO, thus increasing precipitation in the northern and southern regions and decreasing precipitation in the central region.
Key words: East Asian summer monsoon    Maximum covariance analysis    Precipitation    Interdecadal variability.    Sea surface temperature
收稿日期: 2016-05-18 出版日期: 2016-09-20
:  P463.1  
基金资助: 国家自然科学基金青年科学基金项目“两类厄尔尼诺事件对东亚夏季风进退的影响研究”(编号:41401052)资助
通讯作者: 罗明(1986-),男,江西抚州人,博士后,主要从事气候数据分析与数据挖掘研究.E-mail:luo.ming@hotmail.com   
作者简介: 叶晓燕(1990-),女,福建古田人,硕士研究生,主要从事数据挖掘与地理知识工程研究.E-mail:xiaoyanye34@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈崇成
叶晓燕
罗明

引用本文:

叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.

Ye Xiaoyan, Chen Chongcheng, Luo Ming. Interdecadal Relationship between the East Asian Summer Precipitation and Global Sea Surface Temperature Anomalies. Advances in Earth Science, 2016, 31(9): 984-994.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.09.0984        http://www.adearth.ac.cn/CN/Y2016/V31/I9/984

[1] Huang R H, Chen J L, Wang L, et al . Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences , 2012, 29(5): 910-942.
[2] Huang Ronghui. Research progress on the characteristics, causes and prediction of climate disasters in China[J]. Bulletin of Chinese Academy of Sciences , 1999, 14(3): 188-192.
. 中国科学院院刊, 1999, 14(3): 188-192.]
[3] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al . Research on global climate change and scientific data[J]. Advances in Earth Science , 2014, 29(1): 15-22.
. 地球科学进展, 2014,29(1): 15-22.]
[4] Luo M, Leung Y, Zhou Y, et al . Scaling behaviors of global sea surface temperature[J]. Journal of Climate , 2015, 28:3 122-3 132.
[5] Luo M, Leung Y, Graf H F, et al . Interannual variability of the onset of the South China Sea summer monsoon[J]. International Journal of Climatology , 2016, 36(2):550-362.
[6] Gong D Y, Ho C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters , 2002, 29(10): 1-4.
[7] Hoerling M P, Hurrell J W, Xu T, et al . Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming[J]. Climate Dynamics , 2004, 23(3): 391-405.
[8] Chang C P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. Journal of Climate , 2000, 13(24): 4 310-4 325.
[9] Huang R H. Decadal variability of the summer monsoon rainfall in East Asia and its association with the SST anomalies in the tropical Pacific[J]. Clivar Exchange , 2001, 6(2): 7-8.
[10] Zhou Liantong, Huang Ronghui. Research on the characteristics of interdecadal variability of summer climate in China and its possible cause[J]. Climate and Environmental Research , 2003, 8(3): 274-290.
. 气候与环境研究, 2003, 8(3): 274-290.]
[11] Xue F. Interannual to interdecadal variation of East Asian summer monsoon and its association with the global atmospheric circulation and sea surface temperature[J]. Advances in Atmospheric Sciences , 2001, 18(4): 567-575.
[12] Yang J, Liu Q, Xie S P, et al . Impact of Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters , 2007, 34(2): 155-164.
[13] Yang Xiuqun, Xie Qian, Zhu Yimin, et al . Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns[J]. Chinese Journal of Geophysics , 2005, 48(4): 789-797.
. 地球物理学报, 2005, 48(4): 789-797.]
[14] Lu R Y, Dong B W, Ding H. Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon[J]. Geophysical Research Letters , 2006, 33(24): 194-199.
[15] Wang Y, Li S, Luo D. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research Atmospheres , 2009, 114(D2): 356-360.
[16] Huang Qiang, Chen Zishen. Regional study on the trends of extreme temperature and precipitation events in the Pearl River Basin[J]. Advances in Earth Science , 2014, 29(8): 956-967.
. 地球科学进展, 2014, 29(8): 956-967.]
[17] Kuang Xueyuan, Liu Jian, Lin Huijuan, et al . Comparison of East Asian summer monsoon in three climate typical periods during last millennium based on ECHO-G simulation[J]. Advances in Earth Science , 2010, 25(10): 1 082-1 090.
. 地球科学进展, 2010, 25(10): 1 082-1 090.]
[18] Kimoto M. Simulated change of the east Asian circulation under global warming scenario[J]. Geophysical Research Letters , 2005, 32(16): 247-275.
[19] Rudolf B, Beck C, Grieser J, et al . Global Precipitation Analysis Products of the GPCC[M].Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach,2005: 1-8.
[20] Sun Weiyi, Liu Jjian, Wang Zhiyuan, et al . Modeling study on the characteristics and causes of East Asian summer monsoon precipitation on centennial time scale over the past 2000 years[J]. Advances in Earth Science , 2015, 30(7): 780-790.
. 地球科学进展, 2015, 30(7): 780-790. ]
[21] Kennedy J J, Rayner N A, Smith R O, et al . Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties[J]. Journal of Geophysical Research , 2011, 116(D14): 811-840.
[22] Compo G P, Whitaker J S, Sardeshmukh P D, et al . The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society , 2011, 137(654): 1-28.
[23] Wang Huijun, Fan Ke. Recent changes in the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences ,2013, 37(2): 313-318.
. 大气科学, 2013, 37(2): 313-318.]
[24] Shao Xie, Liao Yaoming, Liu Yanju, et al . Global major weather and climate events in 2015 and the possible cause[J]. Meteorological Monthly , 2016, 42(4): 489-495.
. 气象, 2016, 42(4): 489-495.]
[25] Bretherton C S, Smith C, Wallace J M. An intercomparison of methods for finding coupled patterns in climate data[J]. Journal of Climate , 1992, 5(6): 541-560.
[26] Mantua N J, Hare S R. The Pacific decadal oscillation[J]. Journal of Oceanography , 2002, 58(1): 35-44.
[27] Trenberth K E, Shea D J. Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters , 2006, 33(12): 285-293.
[28] Lorenzo E D, Schneider N, Cobb K M, et al . North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters , 2008, 35(8): 1-6.
[29] Zhang W, Luo M. A possible linkage of the Western North Pacific summer monsoon with the North Pacific Gyre Oscillation[J]. Atmospheric Science Letters , 2016, 17(8):437-445.
[30] Zeng G, Sun Z, Wang W C, et al . Interdecadal variability of East Asian summer monsoon and associated atmospheric circulation[J]. Advances in Atmospheric Sciences , 2007, 24(5): 915-926.
[31] Li Shuanglin, Wang Yanming, Gao Yongqi. A review of the research on the Atlantic Multidecadal Oscillation (AMO) and its climate influence[J]. Transactions of Atmospheric Sciences , 2009, 32(3):458-465.
. 大气科学学报, 2009, 32(3):458-465.]
[32] Wang Y, Li S, Luo D. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research : Atmospheres , 2009, 114(D02112):1-15.
[33] Ye X Y, Zhang W, Luo M. The North Pacific Gyre Oscillation and East Asian Summer precipitation[J]. Atmospheric Science Letters ,2016,doi:10.1002/asl.688.
[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[3] 陈晓龙, 吴波, 周天军. FGOALS-s2海洋同化系统中东亚夏季风和前冬厄尔尼诺—南方涛动关系的年代际变化[J]. 地球科学进展, 2017, 32(4): 362-372.
[4] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[5] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[6] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[7] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[8] 李建平, 赵 森, 李艳杰, 汪 雷, 孙 诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[9] 林霄沛, 许丽晓, 李建平, 罗德海, 刘海龙. 全球变暖“停滞”现象辨识与机理研究[J]. 地球科学进展, 2016, 31(10): 995-1000.
[10] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[11] 孙炜毅, 刘健, 王志远. 过去2000年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790.
[12] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[13] 胡凯, 方小敏, 赵志军. 宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
[14] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[15] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.