地球科学进展 ›› 2016, Vol. 31 ›› Issue (9): 984 -994. doi: 10.11867/j.issn.1001-8166.2016.09.0984

上一篇    

东亚夏季降水与全球海温异常的年代际变化关系
叶晓燕 1( ), 陈崇成 1, 罗明 1, 2,,A; *( )   
  1. 1.福州大学地理空间信息技术国家地方联合工程研究中心,空间数据挖掘与信息共享教育部重点实验室, 福建 福州 350000
    2. 香港中文大学 环境、能源及可持续发展研究所,香港 999077
  • 收稿日期:2016-05-18 修回日期:2016-07-20 出版日期:2016-09-20
  • 通讯作者: 罗明 E-mail:xiaoyanye34@126.com;luo.ming@hotmail.com
  • 基金资助:
    国家自然科学基金青年科学基金项目“两类厄尔尼诺事件对东亚夏季风进退的影响研究”(编号:41401052)资助

Interdecadal Relationship between the East Asian Summer Precipitation and Global Sea Surface Temperature Anomalies

Xiaoyan Ye 1( ), Chongcheng Chen 1, Ming Luo 1, 2, *( )   

  1. 1.National Engineering Research Center of Geospatial Information Technology, Fuzhou University,Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou 350000, China
    2.Institute of Environment,Energy and Sustainability, The Chinese University of Hong Kong,Hong Kong 999077,China
  • Received:2016-05-18 Revised:2016-07-20 Online:2016-09-20 Published:2016-09-20
  • Contact: Ming Luo E-mail:xiaoyanye34@126.com;luo.ming@hotmail.com
  • About author:

    First author: Ye Xiaoyan(1990-), female, Gutian County, Fujian Province, Master student. Research areas include data mining and geographical knowledge engineering.E-mail:xiaoyanye34@126.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Influences of two El Niño types on the evolution of the East Asian summer monsoon” (No.41401052)

利用1901—2010年GPCC逐月降水、HadISST月平均海表温度、NOAA 20世纪再分析等资料,采用最大协方差分析(Maximum Covariance Analysis, MCA)、相关、回归等方法研究了东亚地区夏季降水与全球海表温度异常之间的年代际时空变化关系。MCA分析结果表明,东亚地区夏季降水与全球海温异常耦合关系在年代际尺度上主要表现为4个模态,分别受全球变暖、太平洋年代际涛动PDO、大西洋多年代际涛动AMO和北太平洋涡旋振荡NPGO影响,各自解释了27.7%,12.5%,8.9%和7.3%的方差。第一模态由于受全球变暖影响,东亚大部分地区水汽充足,因此东亚大部分地区降水均偏多。第二模态的降水异常表现为东亚中部地区降水偏多而南部和北部偏少的“南北旱中间涝”的三极型分布,其可能原因是太平洋年代际涛动使得东亚夏季风减弱,不利于水汽往北输送,引起水汽在东亚中部聚集,导致该地区降水偏多;同时西风带往南偏移,使得东亚中部地区对流增强,也引起该地区降水偏多。第三模态的降水异常则主要为“南涝北旱”的偶极分布型,可能原因是东亚大槽向东南方向偏移,东亚北部西风带减弱,使得东亚北部对流减弱、降水偏少,而东亚南部地区则对流增强、降水偏多。第四模态降水异常呈现出“南北涝中间旱”的三极型分布特征,其原因是东亚中部地区高层出现异常东风,对流活动减弱,导致东亚中部降水偏少,而南部和北部地区降水偏多。

This study investigated the decadal relationship between the East Asian (EA) summer precipitation (EASP) and global sea surface temperature anomaly (SSTA) patterns. Maximum covariance analysis (MCA) was used to identify the coupling relationship between EASP and global SSTA. Four leading coupling modes were identified by MCA and they explained 27.7%,12.5%,8.9%,and 7.3% of the total variance, respectively. The spatial pattern of EASP of the first leading mode exhibited more-than-normal precipitation in most regions of EA. The second mode of EASP depicted a north-south “-+-” tripole pattern. The third one showed a “wet south and dry north” pattern, and the fourth mode exhibited a north-south “+-+” tripole pattern. The four coupling modes were suggested to be modulated by the global warming, Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Pacific Gyre Oscillation (NPGO), respectively.The atmospheric processes and mechanisms underlying such modulations were also investigated. In the first coupling mode, global warming was favorable for increasing water vapor and precipitation over most parts of EA. In the second mode, PDO weakened the EA summer monsoon circulation, and it decreased precipitation in northern and southern EA regions and increased precipitation in the central EA region. The third mode was affected by AMO, which displaced the EA trough southward and weakened the convective activity over the northern EA region, thus leading to deficient precipitation in northern EA region. In the fourth mode, the EA summer monsoon was strengthened by NPGO, thus increasing precipitation in the northern and southern regions and decreasing precipitation in the central region.

中图分类号: 

图1 东亚夏季降水异常与全球海表温度异常最大协方差分析(MCA)结果图
左列:标准化降水异常(蓝)、海温异常(红)时间系数与相关指数序列(绿)(百分数表示每个模态解释的方差贡献率,右上角 数字表示降水与海温时间系数的相关系数);中列:降水异常的空间分布;右列:海温异常的空间分布
Fig.1 Results of Maximum Covariance Analysis (MCA) on five-year Butterworth low-pass filtered summer precipitation anomaly in East Asia (105°~145°E,20°~45°N) and filtered global Sea Surface Temperature Anomaly (SSTA)
Left column: The normalized temporal coefficients of precipitation anomaly (blue),SSTA (red) and related indices (green), with percentage denoting the explained variance of each mode and number denoting the correlation coefficient between the precipitation and SSTA temporal coefficients;Middle column: Spatial pattern for precipitation anomaly; Right column: Spatial mode for SSTA
图2 各模态海温时间系数与夏季300 mb以下整层水汽(单位:kg/(m 2·s))的回归系数分布图
虚线内表示通过0.05的显著性检验
Fig.2 Regression of summer moisture transportation vertically integrated from surface to 300 mb (unit:kg/(m 2·s)) on the normalized MCA temporal coefficients of SSTA
Dashed contour denotes significant at the 0.05 level
图3 各模态海温时间系数与500 mb空气垂直速度(单位:Pa/s)的回归系数分布图
Fig.3 Regression of 500 mb vertical velocity (unit: Pa/s) on the normalized MCA temporal coefficients of SSTA
图4 各模态海温时间系数与850 mb风场(单位:m/s)的回归系数分布图
Fig.4 Regression of 850 mb winds (unit: m/s) on the normalized MCA temporal coefficients of SSTA
图5 各模态海温时间系数与海平面气压(单位:Pa)的回归系数分布图
Fig.5 Regression of sea level pressure (SLP, unit: Pa) on the normalized MCA temporal coefficients of SSTA
图6 各模态海温时间系数与250 mb位势高度(单位:m)的回归系数分布图
Fig.6 Regression of 250 mb geopotential height(unit: m) on the normalized MCA temporal coefficients of SSTA
图7 各模态海温时间系数与250 mb风场(单位:m/s)的回归系数分布图
Fig.7 Regression of 250 mb winds (unit: m/s) on the normalized MCA temporal coefficients of SSTA
[1] Huang R H, Chen J L, Wang L, et al.Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 2012, 29(5): 910-942.
[2] Huang Ronghui.Research progress on the characteristics, causes and prediction of climate disasters in China[J]. Bulletin of Chinese Academy of Sciences, 1999, 14(3): 188-192.
[黄荣辉. 我国气候灾害的特征、成因和预测研究进展[J]. 中国科学院院刊, 1999, 14(3): 188-192.]
[3] Wu Guoxiong, Lin Hai, Zou Xiaolei, et al.Research on global climate change and scientific data[J]. Advances in Earth Science, 2014, 29(1): 15-22.
[吴国雄,林海,邹晓蕾,等. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014,29(1): 15-22.]
[4] Luo M, Leung Y, Zhou Y, et al.Scaling behaviors of global sea surface temperature[J]. Journal of Climate, 2015, 28:3 122-3 132.
[5] Luo M, Leung Y, Graf H F, et al.Interannual variability of the onset of the South China Sea summer monsoon[J]. International Journal of Climatology, 2016, 36(2):550-362.
[6] Gong D Y, Ho C H.Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters, 2002, 29(10): 1-4.
[7] Hoerling M P, Hurrell J W, Xu T, et al.Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming[J]. Climate Dynamics, 2004, 23(3): 391-405.
[8] Chang C P, Zhang Y, Li T.Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge[J]. Journal of Climate, 2000, 13(24): 4 310-4 325.
[9] Huang R H.Decadal variability of the summer monsoon rainfall in East Asia and its association with the SST anomalies in the tropical Pacific[J]. Clivar Exchange, 2001, 6(2): 7-8.
[10] Zhou Liantong, Huang Ronghui.Research on the characteristics of interdecadal variability of summer climate in China and its possible cause[J]. Climate and Environmental Research, 2003, 8(3): 274-290.
[周连童, 黄荣辉. 关于我国夏季气候年代际变化特征及其可能成因的研究[J]. 气候与环境研究, 2003, 8(3): 274-290.]
[11] Xue F.Interannual to interdecadal variation of East Asian summer monsoon and its association with the global atmospheric circulation and sea surface temperature[J]. Advances in Atmospheric Sciences, 2001, 18(4): 567-575.
[12] Yang J, Liu Q, Xie S P, et al.Impact of Indian Ocean SST basin mode on the Asian summer monsoon[J]. Geophysical Research Letters, 2007, 34(2): 155-164.
[13] Yang Xiuqun, Xie Qian, Zhu Yimin, et al.Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patterns[J]. Chinese Journal of Geophysics, 2005, 48(4): 789-797.
[杨修群, 谢倩, 朱益民,等. 华北降水年代际变化特征及相关的海气异常型[J]. 地球物理学报, 2005, 48(4): 789-797.]
[14] Lu R Y, Dong B W, Ding H.Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon[J]. Geophysical Research Letters, 2006, 33(24): 194-199.
[15] Wang Y, Li S, Luo D.Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2): 356-360.
[16] Huang Qiang, Chen Zishen.Regional study on the trends of extreme temperature and precipitation events in the Pearl River Basin[J]. Advances in Earth Science, 2014, 29(8): 956-967.
[黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.]
[17] Kuang Xueyuan, Liu Jian, Lin Huijuan, et al.Comparison of East Asian summer monsoon in three climate typical periods during last millennium based on ECHO-G simulation[J]. Advances in Earth Science, 2010, 25(10): 1 082-1 090.
[况雪源, 刘健, 林惠娟, 等. 近千年来三个气候特征时期东亚夏季风的模拟对比[J]. 地球科学进展, 2010, 25(10): 1 082-1 090.]
[18] Kimoto M.Simulated change of the east Asian circulation under global warming scenario[J]. Geophysical Research Letters, 2005, 32(16): 247-275.
[19] Rudolf B, Beck C, Grieser J, et al.Global Precipitation Analysis Products of the GPCC[M].Global Precipitation Climatology Centre (GPCC), Deutscher Wetterdienst, Offenbach,2005: 1-8.
[20] Sun Weiyi, Liu Jjian, Wang Zhiyuan, et al.Modeling study on the characteristics and causes of East Asian summer monsoon precipitation on centennial time scale over the past 2000 years[J]. Advances in Earth Science, 2015, 30(7): 780-790.
[孙炜毅, 刘健, 王志远. 过去2000 年东亚夏季风降水百年际变化特征及成因的模拟研究[J]. 地球科学进展, 2015, 30(7): 780-790. ]
[21] Kennedy J J, Rayner N A, Smith R O, et al.Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties[J]. Journal of Geophysical Research, 2011, 116(D14): 811-840.
[22] Compo G P, Whitaker J S, Sardeshmukh P D, et al.The twentieth century reanalysis project[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(654): 1-28.
[23] Wang Huijun, Fan Ke.Recent changes in the East Asian monsoon[J]. Chinese Journal of Atmospheric Sciences,2013, 37(2): 313-318.
[王会军, 范可. 东亚季风近几十年来的主要变化特征[J]. 大气科学, 2013, 37(2): 313-318.]
[24] Shao Xie, Liao Yaoming, Liu Yanju, et al.Global major weather and climate events in 2015 and the possible cause[J]. Meteorological Monthly, 2016, 42(4): 489-495.
[邵勰, 廖要明, 柳艳菊, 等. 2015年全球重大天气气候事件及其成因[J]. 气象, 2016, 42(4): 489-495.]
[25] Bretherton C S, Smith C, Wallace J M.An intercomparison of methods for finding coupled patterns in climate data[J]. Journal of Climate, 1992, 5(6): 541-560.
[26] Mantua N J, Hare S R.The Pacific decadal oscillation[J]. Journal of Oceanography, 2002, 58(1): 35-44.
[27] Trenberth K E, Shea D J.Atlantic hurricanes and natural variability in 2005[J]. Geophysical Research Letters, 2006, 33(12): 285-293.
[28] Lorenzo E D, Schneider N, Cobb K M, et al.North Pacific Gyre Oscillation links ocean climate and ecosystem change[J]. Geophysical Research Letters, 2008, 35(8): 1-6.
[29] Zhang W, Luo M.A possible linkage of the Western North Pacific summer monsoon with the North Pacific Gyre Oscillation[J]. Atmospheric Science Letters, 2016, 17(8):437-445.
[30] Zeng G, Sun Z, Wang W C, et al.Interdecadal variability of East Asian summer monsoon and associated atmospheric circulation[J]. Advances in Atmospheric Sciences, 2007, 24(5): 915-926.
[31] Li Shuanglin, Wang Yanming, Gao Yongqi.A review of the research on the Atlantic Multidecadal Oscillation (AMO) and its climate influence[J]. Transactions of Atmospheric Sciences, 2009, 32(3):458-465.
[李双林, 王彦明, 郜永祺. 北大西洋年代际振荡(AMO)气候影响的研究评述[J]. 大气科学学报, 2009, 32(3):458-465.]
[32] Wang Y, Li S, Luo D.Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D02112):1-15.
[33] Ye X Y, Zhang W, Luo M.The North Pacific Gyre Oscillation and East Asian Summer precipitation[J].Atmospheric Science Letters,2016,doi:10.1002/asl.688.
[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[4] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[5] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[6] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[11] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[12] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[13] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[14] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[15] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
阅读次数
全文


摘要