地球科学进展 ›› 2006, Vol. 21 ›› Issue (4): 361 -371. doi: 10.11867/j.issn.1001-8166.2006.04.0361

综述与评述 上一篇    下一篇

岩浆运移动力学及其研究进展
徐兴旺,王杰,张宝林,秦克章,蔡新平   
  1. 中国科学院地质与地球物理研究所矿产资源研究重点实验室,北京 100029
  • 收稿日期:2005-09-06 修回日期:2006-02-09 出版日期:2006-04-15
  • 通讯作者: 徐兴旺 E-mail:xuxw@mail.igcns.ac.cn
  • 基金资助:

    国家自然科学基金项目“滇西斑岩岩浆停歇、再运移与成矿”(编号:40572131)与“滇西北衙地区岩溶洞穴中岩浆的流动变形与破碎”(编号:40272090);国家重点基础研究发展计划项目二级课题“冈底斯—藏东斑岩铜钼金成矿作用”(编号:2002GB412605);中国科学院知识创新工程重要方向项目“新疆钾盐、铜金成矿条件与隐伏矿床预测示范研究”(编号:KZCX3-SW-137)资助.

Transport Dynamics of Magma and Its Advances

Xu Xingwang, Wang Jie, Zhang Baolin, Qin Kezhang, Cai Xinping   

  1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, CAS, Beijing 100029, China
  • Received:2005-09-06 Revised:2006-02-09 Online:2006-04-15 Published:2006-04-15

岩浆运移动力学是岩浆动力学的重要分支领域,研究内容包括5个方面:运移方式、运移通道、运移途径、运移动力与运移过程的成矿作用。就这5方面的研究进展进行了系统回顾,对尚待进一步研究的科学问题进行了归纳与总结,指出浮力不是弹性岩石圈岩浆运移上升的驱动力,而上地幔岩浆运移方式、弹性岩石圈岩浆往上运移驱动力、岩浆自主破裂形成的动力学机制、中途停歇岩浆重起动再运移的驱动机制、岩浆再停歇和运移过程的结晶与分异及其与围岩相互作用和伴生的元素富集与成矿作用等问题是岩浆运移动力学是尚待进一步攻关与研究的关键性科学问题。

Transport dynamics of magma is an important branch of dynamics of magma, and its research contents contain five parts, including transport pattern, path, channel, driving force and mineralization during transport processes. Advances of all the five contents are systemically reviewed, and some potential important scientific questions are summarized, such as transport pattern of magma in the upper mantle, driving force for magma to ascent and formation mechanism of melt created fractures in elastic lithosphere, re-transport mechanism of magmas stagnated in chamber, and enrichment of elements and mineralization related to crystallization and differentiation of magma and interaction between magma and wall rocks during stagnation and transport processes of magma, in this contribution.

中图分类号: 

[1] Hutton D H W, Dempster T J, Brown P E, et al. A new mechanism of granite emplacement: Intrusion in active shear zones[J].Nature, 1990, 343: 452-455.

[2] Castro A. On granitoid emplacement and related structures: A review [J]. Geologische Rundschau, 1987, 76:101-124.

[3] Vigneresse J L. Control of granite emplacement by regional deformation [J]. Tectonophysics, 1995, 249:173-186.

[4] Paterson S R, Tobisch O T, Morand V J. The influence of large ductile shear zones on the emplacement and deformation of the Wyangala Batholith, SE Australia [J]. Journal of Structural of Geology, 1990, 12:639-650.

[5] Yoshinobu A S, Okaya D A, Paterson S R. Modeling the thermal evolution of fault-controlled magma emplacement models [J]. Journal of Structural Geology, 1998, 20:1 205-1 218.

[6] Tikoff B, Teyssier C. Crustal-scale, en echelon“P-shear”tensional bridges: A possible solution to the batholithic room problem [J]. Geology, 1992, 20:927-930.

[7] Zheng Y, Wang Y, Liu R, et al. Sliding- thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beijing, China [J]. Journal of Structural Geology, 1988, 10:135-144.

[8] Ma Changqian. Emplacement and magma dynamics of chemical zoning of Zhoukoudian intrusive, Beijing [J]. Acta Geologica Sinica, 1988, 62(4): 329-341. [马昌前. 北京周口店岩株侵位和成分分带的岩浆动力学机理[J]. 地质学报,1988, 62(4):329-341.]

[9] Li Dongxu, Zhang Da, Liu Wencan, et al. Tectonic system analysis of the Fenhuangshan intrusive and its emplacement [J]. Journal of Geomechanics, 1996, 12(2):55-65. [李东旭, 张达, 刘文灿,. 凤凰山花岗岩体构造系统分析及侵位机制[J]. 地质力学学报, 1996, 12(2):55-65.]

[10] Wan Tianfeng, Teyssier C, Zeng Hualin, et al. Emplacement mechanism of granitic magma in the Linrong area, Shandong [J]. Sciences in China(Serices D), 2000, 30(4): 337-344. [万天丰, Teyssier C,曾华霖,. 山东玲珑花岗质岩体侵位机制[J]. 中国科学:D, 2000, 30(4):337-344.]

[11] Wang T, Zheng Y, Li T, et al. Forceful emplacement of granitic plutons in an extensional tectonic setting: Syn-kinematic plutons in the Yagan-Onch Hayrhan metamorphic core complex [J]. Acta Geologica Sinica, 2002, 76 (1): 81-88.

[12] Xu Shunshan, Wu Ganguo, Deng Jun. Review of magma emplacement mechanism [J]. Geological Science and Technology Information, 1998, 17(4):8-14. [许顺山,吴淦国,邓军. 岩浆侵位机制研究综述[J]. 地质科技情报, 1998, 17(4):8-14.]

[13] Zhang Jinjiang. Indicators for syntectonic granites in large-scale strike-slip zone [J]. Geological Science and Technology Information, 1999, 18(4):23-26. [张进江. 大型走滑带内同构造花岗岩的判别标志[J]. 地质科技情报, 1999, 18(4):23-26.]

[14] Yang Kunguang, Liu Qiang. Advances in granitic structures and emplacement mechanisms [J]. Advances in Earth Science, 2002, 17(4):546-550. [杨坤光, 刘强.花岗岩构造与侵位机制研究进展[J]. 地球科学进展, 2002, 17(4):546-550.]

[15] Vigneresse J L, Cuney M, Barbey P. Deformation assisted crustal melt segregation and transfer [J]. Geological Associety of Canada- Mineralogical Association of Canada Abstract, 1991, 16: A128.

[16] Petford N. Dykes and diapirs ? [J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 1996, 87:105-114.

[17] Vanden B P, Schirnick C. 40Ar/39Ar laser probe ages of Bishop Tuff quartz phenocrysts substantiate long-lived silicic magma chamber at Long Valley, United States [J]. Geology, 1995, 23:759-762.

[18] Grout F F. Scale models of structures related to batholiths [J]. American Journal of Science, 1945, 243A: 260-284.

[19] Ramberg H. Gravity, Deformation and the Earth's Crust in Theory, Experiments and Geological Application [M]. London: Academic Press, 1981:10-452.

[20] Berner H, Ramberg H, Stephansson O. Diapirism in theory and experiment [J]. Tectonophysics, 1972, 15:197-218.

[21] Schmeling H, Cruden A R, Marquart G. Finite deformation in and around a fluid sphere moving through a viscous medium: Implications for diapiric ascent [J]. Tectonophysics, 1988, 149:17-34.

[22] Whitehead J A, Helfrich K R. Instability of flow with temperature-dependent viscosity: A model of magma dynamics [J]. Journal of Geophysical Research, 1991, 96: 4 145-4 155.

[23] Marsh B D. On the mechanics of igneous diapirism, stoping, and zone melting [J]. American Journal of Science, 1982, 282:808-855.

[24] Weinberg R F, Podladchikov Y. Diapiric ascent of magmas through power-law crust and mantle [J]. Journal of Geophysical Research, 1994, 99: 9 543-9 560.

[25] Miller R B, Paterson S R. In defense of magmatic diapirs [J]. Journal of Structural Geology,1999, 21:1 161-1 173.

[26] Dietl C, Koyi H A. Emplacement of nested diapers: Results of centrifuge modeling [J]. Journal of the Virtual Explorer,2002, 7:79-86.

[27] Spence D A, Sharp P W, Turcotte D L. Buoyancy-driven crack propagation: A mechanism for magma migration [J]. Journal of Fluid Mechanics, 1987, 174:135-153.

[28] Spence D A, Turcotte D L. Buoyancy-driven magma fracture: A mechanism for ascent through the lithosphere and the emplacement of diamonds [J]. Journal of Geophysical Research, 1990, B95: 5 133-5 139.

[29] Takada A. Magma transport and reservoir formation by a system of propagating cracks [J]. Bulletin of Volcanology, 1989, 52:118-126.

[30] Takada A. Experimental study on propagation of liquid-filled crak in gelatin: Space and velocity in hydrostatic stress condition [J]. Journal of Geophysical Research,1990, B95: 8 471-8 481.

[31] Emerman S H, Marrett R. Why dykes? [J]. Geology, 1990, 18:231-233.

[32] Lister J R. Buoyancy-driven fluid fracture: Similarity solutions for the horizontal and vertical propagation of fluid-filled cracks [J]. Journal of Fluid Mechanics, 1990, 217: 213-239.

[33] Lister J R, Kerr R C. Fluid-mechanical models of crack propagation and their application to magma transport in dikes [J]. Journal of Geophysical Research, 1991, 96:10 049-10 077.

[34] Nakashima Y. Transport model of buoyant metamorphic fluid by hydrofracturing in leaky rock [J]. Journal of Metamorphic Geology, 1995, 13: 727-736.

[35] D'lemos R S, Brown M, Strachan R A. Granite magma generation, ascent and emplacement within a transpressional orogen [J]. Journal of the Geological Society of London,1992, 149: 487-490.

[36] Morand V J. Pluton emplacement in a strike-slip fault zone: the Doctors Flat Pluton, Victoria, Australia [J]. Journal of Structural Geology, 1992, 14:205-213.

[37] Petford N, Kerr R C, Lister J R. Dike transport of granitoid magmas [J]. Geology, 1993, 21: 845-848.

[38] Rubin A M. Propagation of magma-filled cracks [J]. Annual Reviews of Earth and Planetary Sciences, 1995, 23: 287-336.

[39] Neves S P, Vauchez A, Archanjo C J. Shear zone-controlled magma emplacement or magma-assisted nucleation of shear zones? Insights from northeast Brazil [J]. Tectonophysics, 1996, 262:349-364.

[40] Dehls J F, Cruden A R, Vigneresse J L. Fracture control of late Archean pluton emplacement in the northern Slave Province, Canada [J]. Journal of Structural Geology, 1998, 20:1 145-1 154.

[41] Weertman J. Theory of water-filled crevasses in glaciers applied to vertical magma transport beneath oceanic ridges [J]. Journal of Geophysical Research, 1971, 76:1 171-1 183.

[42] Aki K, Chouet B, Fehler M, et al. Seismic propertyes of a shallow magma reservoir in Kilauea Iki by active and passive experiments [J]. Journal of Geophysic Research, 1978, 83(B5):2 273-2 282.

[43] LeFort P. Manaslu leucogranite: A collision signature of the Himalaya and a model for its genesis and emplacement [J]. Journal of Geophysical Research, 1981, 86: 10 545-10 568.

[44] Clemens J D. Observations on the origins and ascent mechanisms of granitic magmas [J]. Journal of the Geological Society of London,1998, 155: 843-851.

[45] Clemens J D, Petford N, Mawer C K. Ascent mechanisms of granitic magmas: Causes and consequences[C]Holness M B, eds. Deformation-enhanced Fluid Transport in the Earth's Crust and Mantle. London: Chapman & Hall, 1997:144-171.

[46] Baker D R. Granitic melt viscosity and dike formation [J]. Journal of Structural Geology,1998, 20:1 395-1 404.

[47] Dingwell D B. Viscosity and anelasticity of melts and glasses[C]Ahrens T, eds. Mineral physics and crystallography A handbook of physical constants AGU Reference Shelf 2. American Geophysical Union, 1995:209-217.

[48] Petford N, Koenders M A. Self-organisation and fracture connectivity in rapidly heated continental crust [J]. Journal of Structural Geology,1998, 20(9/10): 1 425-1 434.

[49] Bagdassarov N, Dorfman A M. Granite magma rheology: Magma flow and melt migration [J]. Journal of the Geological Society of London,1998, 155: 863-872.

[50] Cruden A R. On the emplacement of tabular granites[J]. Journal of the Geological Society of London, 1998, 154:853-862.

[51] Petford N, Cruden A R, Mccaffrey K J W, et al. Granite magma formation, transport and emplacement in the Earth's crust [J]. Nature, 2000, 408: 669-673.

[52] Marsh B D. Mechanics and energenics of magma formation and ascension[C]Boyd F R, eds. Studies in Geophysics: Explosive Volcanism, Inception, Evolution and Hazards. Washington: National Academic Press, 1984:67-83.

[53] Mahon K I, Harrison T M, Drew D A. Ascent of a granitoid diapir in a temperature varying medium [J]. Journal of Geophysical Research,1988, 93:1 174-1 188.

[54] Clemens J D, Mawer C K. Granitic magma transport by fracture propagation [J]. Tectonophysics,1992, 204:339-360.

[55] Hutton D H W. Granite emplacement mechanisms and tectonic controls: Inferences from deformation studies [J]. Royal Society of Edinburgh Transactions: Earth Sciences, 1988, 79:245-255.

[56] Vigneresse J L, Clemens J D. Granitic magma ascent and emplacement: Neither diapirism nor neutral buoyancy?[C]Vendeville B C, et al, eds. Salt, Shale and Igneous Diapirs. Journal of the Geological Society of London, 2000,174: 1-19.

[57] Fedotov S A. Asent of basic magmas in the crust and the mechanism of basaltic fissure eruption [J]. International Geology Reviews, 1978, 20:33-48.

[58] Wilson L, Head J W. Ascent and eruption of basaltic magma on the Earth and Moon [J]. Journal of Geophysical Research,1981, B86:2 971-3 001.

[59] Anderson E M. The Dynamics of Faulting and Dyke Formation With Application to Britain[M]. London: Oliver and Boyd, 1951:1-50.

[60] Weertman J, Chang S P. Fluid flow through a large vertical crack in the Earth's crust [J]. Journal of Geophysical Research,1977, B82:929-932.

[61] Weertman J. The stopping of rising, liquid-filled crack in the Earth's crust by a freely slipping horizontal joint [J]. Journal of Geophysical Research,1980, B85:967-976.

[62] Deng Jun, Wang Qingfei, Huang Dinghua, et al. The evolutionary frame of tectonic fluid metalogenic system in Tongling ore deposit concerntrated district [J]. Earth Science Frontier, 2004, 11(1):121-129. [邓军,王庆飞,黄定华,.铜陵矿集区构造流体成矿系统演化格局[J]. 地学前缘, 2004,11(1):121-129.]

[63] Brown M, Solar G S. Shear zones and melts: Positive feedback in orogenic belts [J]. Journal of Structural Geology, 1998, 20:211-227.

[64] Kuehn D, Dahm T. Simulation of magma ascent in the Mantle beneath mid-ocean ridges [J]. Geophysical Research Abstracts, 2003, 5: 03789.

[65] Singh S C, Sinha M C, Harding A J, et al. Preliminary results from mid-ocean ridge three-dimensional seismic reflection survey[J]. EOS Transactions,1999, 80:181-185.

[66] Auger E, Gasparini P, Virieux J, et al. Seismic evidence of an extended magmatic sill under Mt. Vesuvius [J]. Science,2001, 249:1 510-1 512.

[67] Wu Cailai, Li Zhaonai, Shang Ruxiang. Dynamics of Cenozoic volcanism and its environmental effect in the Changbaishan mountain area, northeast China [J]. Regional Geology of China, 1998, 17(3):291-299. [吴才来, 李兆鼐, 尚如相. 长白山地区新生代火山岩浆作用动力学及环境效应[J]. 中国区域地质, 1998, 17(3):291-299.]

[68] Wu Cailai, Zhou Xunruo, Huang Xuchen, et al. Enclave petrology of intermediate-acid intrusive rocks in Tongling district, Anhui [J]. Acta Geoscientia Sinica, 1997, 18(2):182-191. [吴才来, 周询若, 黄许陈, . 铜陵地区中酸性侵入岩的包体岩石学研究[J]. 地球学报, 1997, 18(2):182-191.]

[69] Wu Cailai, Chen Songyong, Shi Rendeng, et al. Origin and features of the Mesozoic intermediate-acid intrusive in the Tongling area, Anhui, China [J]. Acta Geoscientia Sinica, 2003, 24(1):41-48. [吴才来, 陈松永, 史仁灯, . 铜陵中生代中酸性侵入岩特征及成因[J]. 地球学报, 2003, 24(1):41-48.]

[70] Xu Xingwang, Cai Xinping, Song Baochang, et al. Petrologic, chronological and geochemistry characteristics and formation mechanism of alkaline porphyries in the Beiya gold district, western Yunnan [J]. Acta Petrologica Sinica, 2006 (In Reviewing). [徐兴旺,蔡新平,宋保昌,. 滇西北衙金矿区碱性斑岩岩石学、年代学和地球化学特征[J]. 岩石学报, 2006(待刊).]

[71] Halliday A N, Mahood G A, Holden P, et al. Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system; the isotopic record in precaldera lavas of Glass Mountain [J]. Earth Planet Science Letter, 1989, 94:274-290.

[72] Reid M R, Coath C D, Harrison T M, et al. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera; 230Th-238Uion microprobe dating of young zircons [J]. Earth Planet Science Letter,1997, 150:27-39.

[73] Brown S J A, Fletcher I R. SHRIMP U-Pb dating of pre-eruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for 250 ka magma residence times [J]. Geology, 1999, 27:1 035-1 038.

[74] Reid M R, Coath C D. In situ U-Pb ages of zircons from the Bishop Tuff: No evidence for long crystal residence times [J]. Geology, 2000, 28:443-446.

[75] Hawkesworth C J, Blake S, Evans P, et al. Time scales of crystal fractionation in magma Chambers -Integrating physical, isotopic and geochemical perspectives [J]. Journal of Petrology, 2000, 41(7):991-1 006.

[76] Bindeman I N, Valley J M, Wooden J L, et al. Post-caldera volcanism: In situ measurement of U-Pb age and oxygen isotope ratio in Pleistocene zircons from Yellowstone caldera [J]. Earth Planet Science Letter,2001, 189:197-206.

[77] Vazquez J A, Reid M R. Time scales of magma storage and differentiation of voluminous high-silica rhyolites at Yellow-stone caldera, Wyoming [J]. Contributions to Mineralogy and Petrology, 2002, 144:274-285.

[78] Schmitt A K, Lindsay J M, deSilva S, et al. U-Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: Implications for the formation of stratified magma chambers [J]. Journal of Volcanology and Geothermal Research, 2002, 120:43-53.

[79] Schmitt A K, Grove M, Harrison T M, et al. The Geysers-Cobb Mountain Magma System, California (Part 1): U-Pb zircon ages of volcanic rocks, conditions of zircon crystallization and magma residence times [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3 423-3 442.

[80] Black S, Gilbert J S, Kobayashi T. Crystal Residence Times of magma during Vulcanian and Plinian Eruptions at Sakurajima Volcano, Japan [Z]. Eleventh Annual V. M. Goldschmidt Conference (2001), Abstract,2001:3 585.

[81] Decker R W, Christiansen R L. Explosive eruptions of Kilauea Volcano, Hawaii[C]National Research Council, Editor. Explosive Volcanism: Inception,Evolution,and Hazards. Washington DC: National Academy Press, 1984:122-132.

[82] Mastin L G. What conditions produce phreatomagmatic summit eruptions at Kilauea? A numerical model provides some clues [abstr]. EOS, 1994, 75(44):728.

[83] Mastin L G. Magma/Water Mixing in Static and Dynamically Rising Magma Columns—A Case Study from Kilauea Volcano, Hawaii [Z]. Joint US(NSF) / Japanese (JSCS) Conference on Intense Multiphase Interactions, Santa Barbara, California, June 9-13, 1995, Proceedings, 344-346.

[84] Ramsay J G. Emplacement kinematics of a granite diapir: the Chindamara batholith, Zimbabwe [J]. Journal of Structural Geology, 1989, 11:191-209.

[85] Eichelberger J C. Silicic volcanism: Ascent of viscous magmas from crustal reservoirs [J]. Annual Review of Earth Planetary Sciences, 1995, 23:41-63.

[86] Ryan M P. Neutral buoyancy and the mechanical evolution of magmatic systems[C]Mysen B O, ed. Magmatic Processes: Physicochemical Principles. The Geochemical Society, University Park, 1987:259-287.

[87] Rampino M R, Stothers R B. Flood basalt volcanism during the past 250 million years [J]. Science,1988, 241: 663-668.

[88] Gao Dezhang. Density and magnetic of rocks in the East Sea shelf basin [J]. Shanghai Geology, 1995, 54:38-45. [高德章.东海陆架盆地岩石密度与磁性[J].上海地质,1995, 54:38-45.]

[89] Foster R J. Physical Geology[M]. Columbus: Charles E. Merrill Publishing Company, 1983:61-63.

[90] Xu X W, Cai X P, Zhong J Y, et al. Formation of deformed peperites from alkaline magmas intruded into wet sediments in the Beiya area, western Yunnan, China [J]. Journal of Structural Geology, 2006 (In Reviewing ).

[91] Carmichael R S. Handbook of Physical Propertyes of Rocks, Volume III [M]. Florida: CRC PRESS, 1984:12-38.

[92] Gao Shan, Jin Zhenmin, Jin Shuyan, et al. Seismic properties and densities of eclogites from Dabie ultrahigh-pressure metamorphic belt: Implications for deep crustal composition and nature of the Moho [J]. Chinese Science Bulletin, 1997, 42(8):862-866.[高山,金振民,金淑燕,. 大别超高压榴辉岩高温高压下地震波速和密度的初步实验研究——对造山带地壳深部组成和莫霍面性质的启示[J]. 科学通报, 1997, 42(8):862-865.]

[93] Ito K, Kennedy G C. An experimental study of the basalt-garnet granulite-eclogite transition[C]Heacock J G, eds. The Structure and Physical Properties of the Earth's Crust. Washington: American Geophysical Union, 1971:303-314.

[94] Murase T, McBirney A R. Properties of some comm.on igneous rocks and their melts at high temperatures [J].Geological Society of America Bulletin,1973, 84:3 563-3 592.

[95] Macdonald G A. Physical propertyes of erupting Hawaiian magmas [J]. Geological Society of America Bulletin, 1963,74:1 071-1 078.

[96] Lange R A, Camichael I S E. Density of Na2O-K2O-CaO-MgO-Fe2O3-Al2O3-TiO2-SiO2 liquids:New measurements and derived partial molar properities [J]. Geochimica et Cosmochimica Acta,1987, 51:2 931-2 946.

[97] Daly R A. Volcanism and petrogenesis as illustrated in the Hawaiian islands [J]. Geological Society of America Bulletin,1944, 55:1 363-1 400.

[98] Burnham C W, Davis N F. The role of H2O in silicate melts: I. P V T relations in the system NaAlSi3O8H2O to 10 kilobars and 1000[J]. American Journal of Science,1971, 270:54-79.

[99] Ochs III F A, Lange R A. The partial molar volume, thermal expansivity, and compressibility of H2O in NaAlSi3O8 liquid: New mearurements and an internally consistent model [J]. Contribution of Mineral and Petrology, 1997, 129:155-165.

[100] Kushiro I. Viscosity and structural change of albite(NaAlSi3O8) melt at high pressure [J]. Earth and Planetary Science Letters,1978, 41: 87-90.

[101] Fujii T, Kushiro I. Density, viscosity and compressibility of basaltic liquid at high pressures[J]. Carnegie Institution of Washington Yearbook,1977, 76:419-424.

[102] Rutter E H. Brodie K H. Rheology of the lower crust[C]Fountain D M, et al, eds. Continental Lower Crust- Developments in Geotectonics 23. Amsterdam: Elsevier,1992:201-268.

[103] Hirth G. Labotratory constraints on the rheology of the upper mantle[J]. Reviews in Mineralogy and Geochemistry,2002, 51:97-120.

[104] Chen W P, Molnar P. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical propertyes of the lithosphere [J]. Journal of Geophysic Reseach,1983, 88:4 183-4 214.

[105] Dawson J B. Kimberlites and Their Xenoliths [M]. Berlin: Springer-Verlag, 1980:111-189.

[106] Ross C S, Foster M D, Mgers A T. Origin of dunites and of olivine-rich inclusions in basalti crocks [J]. American Mineralogy,1954, 39:693-738.

[107] Sparks R S J, Pinkerton H, Macdonald R. The transport of xenoliths in magmas [J]. Earth and Planetary Science Letters,1977, 35:234-238.

[108] E Molan, Zhao Dasheng. Cenozoic Basalt and Deep Source Xenoliths in Eastern China [M]. Beijing: Science Press, 1987:21-23. [鄂莫岚, 赵大升. 中国东部新生代玄武岩及深源岩石包体[M]. 北京:科学出版社, 1987:21-23.]

[109] Rock N M S. Lamprophyres [M]. Glasgow: Blackie, 1990:103-112.

[110] Cai Xinping. Deep source xenoliths in the Cenozoic alkali rich porphyry in the west boundary of Yangze plate and its significances [J]. Scientia Geologica Sinica,1992,27:183-189. [蔡新平. 扬子地台西缘新生代富碱斑岩中的深源包体及其意义[J].地质科学, 1992, 27(2):183-189].

[111] Yan Jun, Chen Jiangfeng, Xie Zhi, et al. Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern [J]. Chinese Science Bulletin, 2003, 48:2 139-2 144.

[112] Lu Fengxiang, Deng Jinfu, E Molan. Discussion on original question of alkaline basalt magma in the Huangyishan area, Kuandian, Liaoning province[J]. Earth Science—Journal of China University of Geosciences,1980, 1(1):133-196. [路凤香,邓晋福,鄂莫岚.辽宁宽甸黄椅山碱性玄武岩岩浆起源问题的讨论[J].地球科学——中国地质大学学报,1980, 1(1):133-196.] 

[113] Cong Bolin, Zhang Ruyuan. Petrogenesis of basalt rocks and associated ultramafic xenoliths in the Hanruba area [J]. Sciences in China(Series B),1982,12:1 109-1 122. [从柏林, 张儒瑗. 汉诺坝玄武岩及其超镁铁质岩包体的成因岩石学研究[J]. 中国科学:B, 1982, 12:1 109-1 122.]

[114] Spera F J. Aspects of magma transport[C]Hargraves R B, ed. Physics of Magmatic Processes. Princeton University Press, 1980:265-324.

[115] Liao Qun'an, Qiu Jiaxiang. Relation of shape, size of amntle-drived enclaves with rheologyical propertyes of their host magmas: Illustrated by four enclave occurring areas of southeastern coast of China [J]. Earth Science—Journal of China University of Geosciences,1996, 21(3): 300-304. [廖群安,邱家骧. 幔源包体的形态、大小与寄主岩浆流变性质的关系——以东南沿海4个包体产地为例[J]. 地球科学——中国地质大学学报, 1996, 21(3): 300-304.]

[116] Lü Boxi, Qian Xianggui. Petrologic features of deep-source xenoliths from Cenozoic alkaline volcanic rocks and porphyry in western Yunnan [J]. Yunnan Geology, 1999, 18(2):127-143. [吕伯西,钱祥贵. 滇西新生代碱性火山岩、富碱斑岩深源包体岩石学研究[J]. 云南地质, 1999, 18(2): 127-143.]

[117] Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, et al. The deep source xenoliths and its relationships to petrogenesis and mineralization of alkali-rich porphyry in the Liuhe area, Yunnan [J]. Sciences In China (Series D),1999, 29(5):413-420. [刘显凡,战新志,高振敏,.云南六合深源包体与富碱斑岩成岩成矿的关系[J].中国科学:D,1999, 29(5):413-420.]

[118] Liu Xianfan, Liu Jiaduo, Yang Zhengxi, et al. Mineralogical characteristics of deep source ultramafic xenoliths in alkali rich porphyry [J]. Acta Mineralogica Sinica, 2002, 22:289-295. [刘显凡,刘家铎,阳正熙,.富碱斑岩中超镁铁深源包体岩石的矿物学特征[J].矿物学报,2002,22(3):289-294.]

[119] Wang Jian, Li Jianping, Wang Jianghai, et al. Geological implications for the mafic enclaves of deep derivation from Cenozoic shoshonitic rocks in Jianchuan-Dali area, western Yunnan [J]. Acta Mineralogica Sinica, 2002, 22(2):113-125. [王建,李建平,王江海,. 滇西剑川大理地区新生代钾玄岩系中深源包体的地质意义[J]. 矿物学报, 2002, 22(2): 113-125.]

[120] Zhao Xin, Mo Xuanxue, Yu Xuehui, et al. Mineralogical characteristics and petrogenesis of deep derived xenoliths in Cenozoic syenite porphyry in the Liuhe area, western Yunnan [J]. Earth Science Frontier, 2003, 10(3):93-104. [赵欣, 莫宣学, 喻学惠,. 滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义[J]. 地学前缘, 2003,10(3): 93-104.]

[121] Zeng Rongsheng. Seismicity and focal mechanism in Tibetan Plateau and its implications to lithospheric flow [J]. Acta Seismologica sinica,1993, 6(2):261-287.

[122] Krynauw J R, Hunter D R, Wilson A H. Emplacement of sills into wet sediments at Grunehogna, western Dronning Maud Land, Antarctica [J]. Journal of the Geological Society of London,1988, 145:1 019 -1 032.

[123] Baer G, Reches Z. Mechanics of emplacement and tectonic implications of the Ramon dike systems, Israel [J]. Journal of Geophysical Research, 1991, 96:11 895-11 910.

[124] Goto Y, McPhie J. A Miocene basanite peperitic dyke at Stanley, northwestern Tasmania, Australia [J]. Journal of Volcanology and Geothermal Research,1996, 74:111-120.

[125] Coira B, Pérez B. Peperitic textures of Ordovician dacitic synsedimentary intrusions in Argentina's Puna Highland: Clues to emplacement conditions [J]. Journal of Volcanology and Geothermal Research,2002, 114:165-180.

[126] Pei Rongfu, Wu Liangshi, Xiong Qunyao. Metallogenic Preferentiality and Metallotect Convergence of Unique Ore Deposits in China [M]. Beijing: Geological Publishing House, 1998:79-174.[裴荣富,吴良士,熊群尧.中国特大型矿床成矿偏在性与异常成矿构造聚敛场[M].北京:地质出版社, 1998:79-174.]

[127] Tang Zhongli, Li Wenyuan. Geological Characteristics and Mineralization Model of Jinchuan Cu-Ni-PGE deposit [M]. Beijing: Geological Publshing House, 1995.[汤中立,李文渊.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京:地质出版社,1995.]

[128] Xing Fengming, Xu Xiang. Cumulus-Quenched inclusions in the Jiguanshan pluton of Tongling, Anhui province[J]. Acta Petrologica et Mineralogica,1995,14(1): 19-25. [邢凤鸣, 徐祥. 铜陵鸡冠山岩体中的堆晶淬冷包体[J]. 岩石矿物学杂志, 1995, 14(1):19-25.]

[129] Xu X W, Cai X P, Xiao Q B, et al. Porphyry Cu-Au and Continental Exhalatory Polymetallic Fe-Cu-Au Deposits in the Beiya Area, Western Yunnan Province, China[J]. Ore Geology Reviews, 2006 (In press).

[1] 王丹,姜亦飞,王先桥,王素芬,何恩业,张蕴斐. 我国马尾藻金潮生态动力学研究进展[J]. 地球科学进展, 2021, 36(7): 753-762.
[2] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[3] 邓文文, 王荣, 刘正文, 郑文秀, 张晨雪. 模型揭示的浅水湖泊稳态转换影响因素分析[J]. 地球科学进展, 2021, 36(1): 83-94.
[4] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[5] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[6] 陈祖兴,曾志刚,王晓媛,殷学博,陈帅,张玉祥. 岩浆房持续的时间:矿物内元素扩散年代学研究进展及展望[J]. 地球科学进展, 2020, 35(12): 1232-1242.
[7] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[8] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[9] 李岩瑛,蔡英,张春燕,曾婷,杨吉萍. 西北东部季风过渡区夹卷率与夏季风的动力学关系[J]. 地球科学进展, 2019, 34(12): 1316-1327.
[10] 张绍云,董玉祥. 海岸沙地风蚀坑形态—动力学研究进展[J]. 地球科学进展, 2019, 34(10): 1028-1037.
[11] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[12] 赵文智, 周宏, 刘鹄. 干旱区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展, 2017, 32(9): 908-918.
[13] 焦鑫, 柳益群, 杨晚, 周鼎武. 水下火山喷发沉积特征研究进展[J]. 地球科学进展, 2017, 32(9): 926-936.
[14] 牛耀龄, 龚红梅, 王晓红, 肖媛媛, 郭鹏远, 邵凤丽, 孙普, 陈硕, 段梦, 孔娟娟, 王国栋, 薛琦琪, 高雅洁, 洪迪. 用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题[J]. 地球科学进展, 2017, 32(2): 111-127.
[15] 周怀阳. 洋壳的基本问题与人类的莫霍钻梦想[J]. 地球科学进展, 2017, 32(12): 1245-1252.
阅读次数
全文


摘要