地球科学进展 ›› 2020, Vol. 35 ›› Issue (12): 1232 -1242. doi: 10.11867/j.issn.1001-8166.2020.098

综述与评述 上一篇    下一篇

岩浆房持续的时间:矿物内元素扩散年代学研究进展及展望
陈祖兴 1, 3( ),曾志刚 1, 2, 3( ),王晓媛 1, 3,殷学博 1, 3,陈帅 1, 3,张玉祥 1, 3   
  1. 1.中国科学院海洋研究所 海洋地质与环境重点实验室,山东 青岛 266071
    2.中国科学院大学,北京 100049
    3.青岛海洋科学与技术试点国家实验室海洋矿产资源评价 与探测技术功能实验室,山东 青岛 266061
  • 收稿日期:2020-07-16 修回日期:2020-11-10 出版日期:2020-12-10
  • 通讯作者: 曾志刚 E-mail:chenzuxing@qdio.ac.cn;zgzeng@qdio.ac.cn
  • 基金资助:
    国家自然科学基金项目“西太平洋俯冲体系中岩浆活动及其对热液物质供给的制约”(91958213);中国科学院国际合作局对外合作重点项目“冲绳海槽热液活动成矿机理及其沉积效应”(133137KYSB20170003)

Duration of Magma Chamber: Progress and Prospect of Element Diffusion Chronometry of Minerals

Zuxing Chen 1, 3( ),Zhigang Zeng 1, 2, 3( ),Xiaoyuan Wang 1, 3,Xuebo Yin 1, 3,Shuai Chen 1, 3,Yuxiang Zhang 1, 3   

  1. 1.Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266061,China
  • Received:2020-07-16 Revised:2020-11-10 Online:2020-12-10 Published:2021-02-09
  • Contact: Zhigang Zeng E-mail:chenzuxing@qdio.ac.cn;zgzeng@qdio.ac.cn
  • About author:Chen Zuxing (1990-), male, Tongcheng City, Anhui Province, Assistant professor. Research areas include submarine petrology. E-mail: chenzuxing@qdio.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “Magmatism and its constraints on the hydrothermal material supply in the Western Pacific subduction system”(91958213);The International Partnership Program of Chinese Academy of Sciences “Metallogenic mechanism and sedimentary effect of hydrothermal activity in Okinawa Trough”(133137KYSB20170003)

岩浆房持续的时间尺度对认识岩浆房的稳定性、评估活动火山的活跃程度具有重要意义。扩散计时法将具有元素浓度梯度的矿物作为计时器,由于矿物中的元素扩散再平衡过程符合菲克第二定律,与时间有关,从而可以限定岩浆作用过程的时间尺度,进而指示岩浆房持续的时间。该方法目前已广泛应用于不同火山岩矿物,如橄榄石和辉石Fe-Mg元素扩散、斜长石Mg元素扩散、石英Ti元素扩散以及锆石Li元素扩散等,可以记录持续仅数小时至几百万年的岩浆过程。未来,随着原位分析测试技术的不断发展、与岩浆作用有关的扩散系数的可用性和精度的增加、扩散模型的完善将极大地推动矿物内元素扩散年代学的发展。

The duration of a magma chamber is of great significance for understanding the stability of the magma chamber and evaluating the active degree of active volcanoes. The element diffusion chronometry uses minerals with element concentration gradients as timers. Since the diffusion and reequilibrium process of elements in minerals conform to Fick's second law which is related to time, the time scale of the magmatic process can be defined to indicate the duration of a magma chamber. This method has been widely used in different minerals in volcanic rocks, such as Fe-Mg element diffusion in olivine and pyroxene, Mg element diffusion in plagioclase, Ti element diffusion in quartz and Li element diffusion in zircon, etc. These methods can record magma processes for only a few hours to millions of years. In the future, with the continuous development of in situ analysis and testing technology, the increase in the availability and accuracy of diffusion coefficients related to magmatism, and the improvement of the diffusion model, the development of element diffusion chronology in minerals will be greatly promoted.

中图分类号: 

图1 通过扩散逐步改变晶体环带成分示意图[ 27 , 28 ]
(a)晶体与其寄主熔体平衡生长;(b)沿(a)中晶体上的粗红线所示轮廓的某元素浓度;(c)该晶体进入新的熔体中,处于非平衡状态;(d)成分环带随时间的演变
Fig.1 Schematic diagrams of the gradual modification of composition of the crystal zoning by diffusion[ 27 , 28 ]
(a) A crystal grows in equilibrium with host magma;(b) The concentration of some element along the profile shown by the thick red line across the crystal in (a); (c) This crystal is transferred to a new melt and in disequilibrium with it; (d) The evolution of the element compositional profile with time
图2 不同时刻扩散元素浓度分布曲线
Fig.2 The concentration distribution curves of diffused element at different time
图3 玄武岩(T=1 200 °C)和流纹岩(T=825 °C)中矿物内不同元素获取的扩散时间范围[ 2 ]
扩散距离为5~300 μm、氧逸度为石英—铁橄榄石—磁铁矿(Quartz-Fayalite-Magnetite, QFM)缓冲区以及压力为1 atm
Fig.3 The range of timescales that can be obtained from different elements and minerals in basalt (T=1 200 °C) and rhyolite (T=825 °C) [ 2 ]
Diffusion length scales (5~300 μm), pressure ( P) at 1 atm and oxygen fugacity fO 2, corresponding to the Quartz-Fayalite-Magnetite (QFM) buffer
图4 石英Ti扩散速率[ 24 , 38 ] (a)与不同方法约束的美国加利福尼亚州Bishop凝灰岩岩浆演化时间尺度[ 24 ]b
Fig.4 Ti diffusion rate for quartz[ 24 , 38 ](a) and time scales of magmatic evolution for the Bishop Tuff (California,USA),constrained by various modeling methods[ 24 ](b)
图5 锆石不同元素扩散速率[ 42 , 43 ]a)与新西兰塔拉威拉火山群中的流纹岩中锆石U-Th年龄、Li元素浓度梯度及扩散模拟[ 8 ]b
Fig.5 Element diffusion rate for zircon[ 42 , 43 ](a) and U-Th age,Li element concentration gradient and diffusion simulation of zircon in rhyolite in Tarawera volcanic group from New Zealand[ 8 ](b)
图6 希腊圣托里尼岛英安岩中斜方辉石典型晶体及Fe-Mg扩散时间尺度模型[ 23 ]
(a) 具有明显Fe-Mg成分环带特征的斜方辉石背散射图像;(b)利用Allan等 [ 21 ]和Dohmen等 [ 50 ]的斜方辉石Fe-Mg扩散系数得出的扩散时间尺度 [ 23 ]
Fig.6 Exemplary orthopyroxene crystal in the dacite from Santorini,Greece and results for Fe-Mg diffusion timescale modeling[ 23 ]
(a) Backscattered Electron (BSE) image of the orthopyroxene with obvious Fe-Mg compositions zoning; (b) Results of diffusion timescale model using the Fe-Mg diffusion coefficients from Allan et al. [ 21 ] and Dohmen et al. [ 50 ],respectively [ 23 ]
图7 冰岛Laki火山玄武岩中橄榄石典型晶体及Fe-Mg扩散时间尺度模型[ 18 ]
(a) 具有明显成分环带的橄榄石背散射图像;(b)电子探针测试剖面(pr)相对于橄榄石晶体轴的上半球投影;(c)扩散时间尺度模型结果
Fig.7 Exemplary olivine crystal in the basalt from Iceland Laki volcano and results for Fe-Mg diffusion timescale modeling[ 18 ]
(a) Backscattered Electron (BSE) image of the olivine with obvious compositions zoning; (b) Upper hemisphere projections of the orientation of the electron microprobe profiles (pr) relative to crystallographic axes of the olivine crystal; (c) Results of diffusion timescale model
图8 圣托里尼岛火山岩中斜长石典型晶体及Mg扩散时间尺度模型[ 23 ]
(a) 具有明显成分环带特征的斜长石背散射图像;(b~c)扩散时间尺度模型结果
Fig.8 Exemplary plagioclase crystal in the volcanic rock from Santorini Island and results for Mg diffusion timescale modeling[ 23 ]
(a) Backscattered Electron (BSE) image of the plagioclase with obvious compositions zoning; (b~c) Results of diffusion timescale model
1 Cooper K. Time scales and temperatures of crystal storage in magma reservoirs: Implications for magma reservoir dynamics [J]. Philosophical Transactions Mathematical Physical and Engineering Sciences, 2019, 377(2 139): 20180009.
2 Costa F,Shea T,Ubide T. Diffusion chronometry and the timescales of magmatic processes [J]. Nature Reviews Earth and Environment, 2020, 1: 201-214.
3 Mangan M. Crystal size distribution systematics and the determination of magma storage times: The 1959 eruption of Kilauea volcano,Hawaii [J]. Journal of Volcanology and Geothermal Research, 1990, 44(3): 295-302.
4 Claiborne L,Miller C,Flanagan D,et al. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens [J]. Geology, 2010, 38(11): 1 011-1 014.
5 Zou Haibo,Vazquez J,Fan Qicheng. Timescales of magmatic processes in post-collisional potassic lavas,northwestern Tibet [J]. Lithos, 2020, 358/359: 105418.
6 Klemetti E,Deering C,Cooper K,et al. Magmatic perturbations in the Okataina Volcanic Complex,New Zealand at thousand-year timescales recorded in single zircon crystals [J]. Earth and Planetary Science Letters, 2011, 305(1): 185-194.
7 Frey H M,Manon M R,Brehm S K,et al. Episodic crystallization in young explosive eruptions in Dominica,Lesser Antilles,revealed by U-Th dating of zircons [J]. Geology,2018,46 (10): 887-890.
8 Rubin A,Cooper K,Till C,et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals [J]. Science, 2017, 356(6 343): 1 154.
9 Schmitt A. Uranium series accessory crystal dating of magmatic processes [J]. Annual Review of Earth and Planetary Sciences,2011, 39(39): 321-349.
10 Stelten M,Cooper K. Constraints on the nature of the subvolcanic reservoir at South Sister volcano,Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon [J]. Earth and Planetary Science Letters,2012,s313/314(2): 1-11.
11 Druitt T,Costa F,Deloule E,et al. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano [J]. Nature,2012,482(7 383): 77.
12 Ruprecht P,Plank T. Feeding andesitic eruptions with a high-speed connection from the mantle [J]. Nature,2013,500(7 460): 68-72.
13 Petrone C,Bugatti G,Braschi E,et al. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics[J]. Nature Communications, 2016, 7: 12946.
14 Chakraborty S. Diffusion in solid silicates: A tool to track timescales of processes comes of age [J]. Annual Review of Earth and Planetary Sciences,2008,36(1): 153-190.
15 Kohn M,Penniston-Dorland S. Diffusion: Obstacles and opportunities in petrochronology [J]. Reviews in Mineralogy and Geochemistry, 2017, 83(1): 103-152.
16 Costa F,Dohmen R,Chakraborty S. Time scales of magmatic processes from modeling the zoning patterns of crystals [J]. Reviews in Mineralogy and Geochemistry, 2008, 69(1): 545-594.
17 Costa F,Chakraborty S,Dohmen R. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase[J]. Geochimica et Cosmochimica Acta, 2003, 67(12): 2 189-2 200.
18 Hartley M,Morgan D,Maclennan J,et al. Tracking timescales of short-term precursors to large basaltic fissure eruptions through Fe-Mg diffusion in olivine [J]. Earth and Planetary Science Letters, 2016, 439: 58-70.
19 Saunders K,Blundy J,Dohmen R,et al. Linking petrology and seismology at an active volcano [J]. Science, 2012, 336(6 084): 1 023-1 027.
20 Brenna M,Cronin S,Smith I E M, et al. Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar,Auckland Volcanic Field,New Zealand [J]. Earth and Planetary Science Letters,2018,499: 13-22.
21 Allan S,Morgan D,Wilson C,et al. From mush to eruption in centuries: Assembly of the super-sized Oruanui magma body [J]. Contributions to Mineralogy and Petrology,2013,166(1): 143-164.
22 Morgan D,Blake S,Rogers N,et al. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944 [J]. Earth and Planetary Science Letters, 2004, 222(3/4): 933-946.
23 Fabbro G,Druitt T,Costa F. Storage and eruption of silicic magma across the transition from dominantly effusive to caldera-forming states at an Arc Volcano (Santorini,Greece) [J]. Journal of Petrology, 2017, 58(12): 2 429-2 464.
24 Jollands M,Elias Bloch,Othmar Müntener. New Ti-in-quartz diffusivities reconcile natural Ti zoning with time scales and temperatures of upper crustal magma reservoirs [J]. Geology,2020, 48: 654-657.
25 Wark D,Hildreth W,Spear F S,et al. Pre-eruption recharge of the Bishop magma system [J]. Geology, 2007, 35(3): 235.
26 de León A C,Schmitt A K. Reconciling Li and O diffusion in zircon with protracted magmatic crystal residence [J]. Contributions to Mineralogy and Petrology,2019,174(4). DOI:10.1007/s00410-019-1564-8.
doi: 10.1007/s00410-019-1564-8    
27 Fabbro G. The Timescales of Magmatic Processes Prior to a Caldera-Forming Eruption [D]. Clermont-Ferrand: Université Blaise Pascal, 2014.
28 Mueller T,Watson E,Harrison T. Applications of diffusion data to high-temperature Earth systems [J]. Reviews in Mineralogy and Geochemistry,2010, 72(1): 997-1 038.
29 Putirka K D. Thermometers and barometers for volcanic systems [J]. Reviews in Mineralogy and Geochemistry,2008,69(1): 61-120.
30 Chen Zuxing,Zeng Zhigang,Wang Xiaoyuan,et al. Element and Sr isotope zoning in plagioclase in the dacites from the southwestern Okinawa Trough: Insights into magma mixing processes and time scales [J]. Lithos, 2020, 376/377: 105776.
31 Brady J,Cherniak D. Diffusion in minerals: An overview of published experimental diffusion data [J]. Reviews in Mineralogy and Geochemistry,2010,72(1): 899-920.
32 Moussallam Y,Rose-Koga E,Koga K,et al. Fast ascent rate during the 2017-2018 Plinian eruption of Ambae (Aoba) volcano: A petrological investigation [J]. Contributions to Mineralogy and Petrology,2019,174(11): 90.
33 Gualda G,Pamukcu A,Ghiorso M,et al. Timescales of quartz crystallization and the longevity of the Bishop giant magma body[J]. PLoS One, 2012, 7(5): e37492.
34 Chamberlain K J, Morgan D J. Timescales of mixing and mobilisation in the Bishop Tuff magma body: Perspectives from diffusion chronometry[J]. Contributions to Mineralogy and Petrology,2014,168: 1 034.
35 Trail D,Cherniak D,Watson E,et al. Li zoning in zircon as a potential geospeedometer and peak temperature indicator[J]. Contributions to Mineralogy and Petrology,2016,171(3): 25.
36 Costa F,Chakraborty S. Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine [J]. Earth and Planetary Science Letters,2004,227(3/4): 517-530.
37 Prior D J,Boyle A P,Brenker F,et al. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks [J]. American Mineralogist,1999,84: 1 741-1 759.
38 Cherniak D,Watson E,Wark D. Ti diffusion in quartz [J]. Chemical Geology, 2007, 236(1/2): 65-74.
39 Wark D,Watson E. TitaniQ: A titanium-in-quartz geothermometer [J]. Contributions to Mineralogy and Petrology,2006,152(6): 743-754.
40 Huang Ruifang,Audétat A. The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration [J]. Geochimica et Cosmochimica Acta, 2012, 84: 75-89.
41 Wiebe R,Wark D,Hawkins D. Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite,coastal Maine [J]. Contributions to Mineralogy and Petrology, 2007, 154(4): 439-453.
42 Cherniak D J, Watson B E. Diffusion in zircon [J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 113-143.
43 Cherniak D,Watson E. Li diffusion in zircon [J]. Contributions to Mineralogy and Petrology,2010,160(3): 383-390.
44 Tang M,Rudnick R L,McDonough W F,et al. Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries [J]. Earth and Planetary Science Letters,2017,474: 110-119.
45 Wilson C J N,Morgan D J,Charlier B L A,et al. Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals" [J]. Science,2017,358(6 370): eaap8429.
46 Cherniak D,Dimanov A. Diffusion in pyroxene,mica and amphibole [J]. Reviews in Mineralogy and Geochemistry,2010,72(1): 641-690.
47 Tomiya A, Takhashi E. Evolution of the magma chamber beneath Usu Volcano since 1663: A natural laboratory for observing changing phenocryst compositions and textures [J]. Journal of Petrology,2005,46(12): 2 395-2 426.
48 Ganguly J,Tazzoli V. Fe2+-Mg interdiffusion in orthopyroxene: Retrieval from the data on intracrystalline exchange reaction [J]. American Mineralogist,1994,79(9): 930-937.
49 Klügel A. Prolonged reactions between harzburgite xenoliths and silica-undersaturated melt: Implications for dissolution and Fe-Mg interdiffusion rates of orthopyroxene [J]. Contributions to Mineralogy and Petrology,2001,141(1): 1-14.
50 Dohmen R,Ter heege J,Becker H,et al. Fe-Mg interdiffusion in orthopyroxene [J]. American Mineralogist,2016,101(10): 2 210-2 221.
51 Dohmen R,Becker H,Chakraborty S. Fe-Mg diffusion in olivine I: Experimental determination between 700 and 1,200°C as a function of composition,crystal orientation and oxygen fugacity[J]. Physics and Chemistry of Minerals, 2007, 34(6): 389-407.
52 Chakraborty S. Diffusion coefficients in olivine,wadsleyite and ringwoodite [J]. Reviews in Mineralogy and Geochemistry,2010,72(1): 603-639.
53 Coogan L,Hain A,Stahl S,et al. Experimental determination of the diffusion coefficient for calcium in olivine between 900 °C and 1 500 °C [J]. Geochimica et Cosmochimica Acta,2005,69(14): 3 683-3 694.
54 Lynn K,Shea T,Garcia M O,et al. Lithium diffusion in olivine records magmatic priming of explosive basaltic eruptions [J]. Earth and Planetary Science Letters, 2018, 500: 127-135.
55 Cherniak D,Liang Y. Titanium diffusion in olivine [J]. Geochimica et Cosmochimica Acta,2014, 147: 43-57.
56 Sundermeyer C,Di Muro A,Gordeychik B,et al. Timescales of magmatic processes during the eruptive cycle 2014-2015 at Piton de la Fournaise,La Réunion,obtained from Mg-Fe diffusion modelling in olivine [J]. Contributions to Mineralogy and Petrology,2020,175: 1.
57 Renjith M. Micro-textures in plagioclase from 1994-1995 eruption,Barren Island Volcano: Evidence of dynamic magma plumbing system in the Andaman subduction zone [J]. Geoscience Frontiers,2014,5(1): 113-126.
58 Berlo K,Blundy J,Turner S,et al. Textural and chemical variation in plagioclase phenocrysts from the 1980 eruptions of Mount St. Helens,USA [J]. Contributions to Mineralogy and Petrology,2007,154(3): 291-308.
59 Crabtree S,Lange R. Complex phenocryst textures and zoning patterns in andesites and dacites: Evidence of degassing-induced rapid crystallization[J]. Journal of Petrology, 2011, 52(1): 3-38.
60 Lai Zhiqing,Zhao Guangtao,Han Zongzhu,et al. Back-arc magma processes in the Okinawa Trough: New insights from textural and compositional variations of plagioclase in basalts [J]. Geological Journal, 2016, 51: 346-356.
61 Grove T,Baker M,Kinzler R. Coupled caal-nasi diffusion in plagioclase feldspar: Experiments and applications to cooling rate speedometry[J]. Geochimica et Cosmochimica Acta,1984, 48(10): 2 113-2 121.
62 Tepley F,Davidson J,Tilling R,et al. Magma mixing,recharge and eruption histories recorded in plagioclase phenocrysts from El Chichón Volcano,Mexico [J]. Journal of Petrology,2000,41(9): 1 397-1 411.
63 Tepley F,Davidson J,Clynne M. Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags,Lassen Volcanic Center,California [J]. Journal of Petrology,1999,40(5): 787-806.
64 Ginibre C,Worner G,Kronz A. Crystal zoning as an archive for magma evolution [J]. Elements, 2007, 3(4): 261-266.
65 Bezard R,Turner S,Davidson J,et al. Origin and evolution of silicic magmas in Oceanic Arcs: An in situ study from St Lucia,Lesser Antilles [J]. Journal of Petrology,2017,58(7): 1 279-1 318.
66 Izbekov P,Eichelberger J,Patino L,et al. Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment [J]. Geology, 2002, 30(9): 799.
67 Chen Zuxing,Zeng Zhigang,Wang Xiaoyuan,et al. Mineral chemistry indicates the petrogenesis of rhyolite from the southwestern Okinawa Trough[J]. Journal of Ocean University of China, 2017, 16(6): 1 097-1 108.
68 Oeser M,Dohmen R,Horn I,et al. Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines[J]. Geochimica et Cosmochimica Acta, 2015, 154: 130-150.
[1] 付广,张云峰,陈昕,薛永超. 实测天然气扩散系数在地层条件下的校正[J]. 地球科学进展, 2001, 16(4): 484-489.
阅读次数
全文


摘要