[1] Strutt R J. The accumulation of helium in geologic time, II[J]. Proceedings of the Royal Society London(Series A),1910, 83: 96-99. [2] Strutt R J. The accumulation of helium in geologic time, III[J].Proceedings of the Royal Society London(Series A),1910, 83: 298-301. [3] Strutt R J. Measurements of the rate at which helium is produced in thorianite and pitchblende, with a minimum estimate of their antiquity[J].Proceedings of the Royal Society London(Series A),1910, 83: 386-388. [4] Hurley P M. The helium age method and the distribution and migration of helium in rocks[M]//Faul H,ed. Nuclear Geology. New York: Wiley & Sons,1954: 301-329. [5] Hurley P M, Larsen E S Jr, Gottfried D. Comparison of radiogenic helium and lead in zircon[J].Geochim Cosmochim Acta,1956, 9: 98-102. [6] Damon P E, Kulp J L. Determination of radiogenic helium in zircon by stable isotope dilution technique[J].Transaction-American Geophysical Union,1957, 38: 945-953. [7] Zeitler P K, Herczig A L, McDougall I, et al. U-Th-He dating of apatite: A potential thermochronometer[J].Geochimica et Cosmochimica Acta,1987, 51: 2 865-2 868. [8] Lippolt H J, Leitz M, Wernicke R S, et al. (U-Th)/He dating of apatite: Experience with samples from different geochemical environments[J].Chemical Geology, 1994, 112: 179-191. [9] Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta,1996, 60: 4 223-4 229. [10] Wolf R A, Farley K A, Silver L T. Helium diffusion and low-temperature thermochronometry of apatite[J].Geochimica et Cosmochimica Acta,1996, 60: 4 231-4 240. [11] Warnock A C, Zeitler P K, Wolf R A, et al. An evaluation of low-temperature apatite U-Th/He thermochronometry[J].Geochimica et Cosmochimica Acta,1997, 61: 5 371-5 377. [12] Wolf R A, Farley K A, Silver L T. Assessment of (U-Th)/He thermochronometry: The low temperature history of the San Jacinto mountains, California[J].Geology,1997, 25: 65-68. [13] Wolf R A, Farley K A, Kass D M. Modeling of the temperature sensitivity of the apatite U-Th/He thermochronometer[J].Chemical Geology,1998, 148: 105-114. [14] House M, Wernicke B, Farley K. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages[J].Nature,1998, 396: 66-69. [16] Spotila J A, Farley K A, Sieh K. Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreasfault, California, as constrained by radiogenic helium thermochronometry[J].Tectonics,1998, 17: 360-378. [17] Wolf R A. The Development of the (U-Th)/He Thermochronometry[D].Pasadena: California Institute of Technology,1997. [18] Reinwes W P, Farley K A. Helium diffusion and (U-Th)/He thermochronometry of titanite[J].Geochimica et Cosmochimica Acta,1999, 63: 3 845-3 859. [19] Stockli D F, Farley K A. Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole[J].Chemical Geology,2004, 227: 223-236. [20] Farley K A. Helium diffusion from apatite, general behavior as illustrated by Durango fluorapatite[J].Journal of Geophysical Research,2000, 105: 2 903-2 914. [21] Farley K A. (U-Th)/He dating: Techniques, calibrations, and applications[J].Review in Mineralogy and Geochemistry,2002, 47: 819-844. [22] Farley K A, Stockli D F. (U-Th)/He dating of phosphates: Apatite, monazite, and xenotime[J].Review in Mineralogy and Geochemistry,2002, 48: 559-577. [23] Farley K A, Kohn B P, Pillans B. The effects of secular disequilibrium on (U-Th)/He systematics and dating of Quaternary volcanic zircon and apatite[J].Earth and Planetary Science Letters,2002, 201: 117-125. [24] Reiners P W, Farley K A, Hickes H J I. He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte[J].Tectonophysics, 2002, 349: 297-308. [25] Reiners P W, Spell T L, Nicolescu S, et al. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating[J].Geochimica et Cosmochimica Acta,2004, 68: 1 857-1 887. [26] Reiners P W. Zircon (U-Th)/He Thermochronometry[J].Reviews in Mineralogy and Geochemistry,2005, 58: 151-179. [27] Shuster D L, Farley K A. 4He/3He thermochronometry[J].Earth and Planetary Science Letters,2004, 217: 1-17. [28] Shuster D L, Farley K A, Sisterson J M, et al. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing protoninduced 3He[J].Earth and Planetary Science Letters,2004, 217: 19-32. [29] Ehlers T A, Farley K A. Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes[J].Earth and Planetary Science Letters,2003, 206: 1-14. [30] Reiners P W, Zhou Z, Ehlers T A, et al. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track dating[J].Journal of American Science,2003, 303: 489-518. [31] Stockli D F, Farley K A, Dumitru T A. Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California[J].Geology,2000, 28: 983-986. [32] Stockli D F, Surpless B E, Dumitru T A, et al. Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada[J].Tectonics,2002, 21: 4. [33] Kirby E, Reiners P W, Krol M, et al. Late Cenozoic uplift and landscape evolution along the eastern margin of the Tibetan plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J].Tectonics,2002,21:1 001. [34] Pik R, Marty B, Carignan J, et al. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome[J].Earth and Planetary Science Letters,2003, 215: 73-88. [35] Brady R J. Very high slip rates on continental extensional faults: New evidence from (U-Th)/He thermochronometry of the Buckskin Mountains, Arizona[J].Earth and Planetary Science Letters,2002, 197: 95-104. [36] Persano C, Stuart F M, Bishop P, et al. Apatite (U-Th)/He age constraints on the development of the Great Escarpment on the southeastern Australian passive margin[J].Earth and Planetary Science Letters,2002, 200: 79-90. [37] Tagami T, Farley K A, Stockli D F. (U-Th)/He geochronology of single zircon grains of known Tertiary eruption age[J].Earth and Planet Science Letters,2003, 207: 57-67. [38] Fitzgerald P G, Baldwin S L, Webb L E, et al. Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountain of Southern Victoria Land[J].Chemical Geology,2006, 225: 91-120. [39] Stock G M, Ehlers T A, Farley K A. Where does sediment come from? Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry[J].Geology,2006, 34: 725-728. [40] Foeken J P, Persano C, Stuart F M, et al. Role of topography in isotherm perturbation: Apatite (U-Th)/He and fission track results from the Malta tunnel, Tauern Window, Austria[J].Tectonics,2007, 26,TC3006,doi: 10.1029/2006TC002049. [41] Hendriks B W H, Redfield T F. Apatite fission track and (U-Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite[J].Earth and Planetary Science Letters,2005, 236: 443-458. [42] Soderlund P, JuezLarre J, Page L M, et al. Extending the time range of apatite (U-Th)/He thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden[J].Earth and Planetary Science Letters,2005, 239: 266-275. [43] Green P F, Duddy I R. Interpretation of apatite (U-Th)/He ages and fission track ages from cratons[J].Earth and Planetary Science Letters,2006, 244: 541-547. [44] Green P F, Crowhurst P V, Duddy I R, et al. Conflicting (U-Th)/He and fission track ages in apatite: Enhanced He retention, not anomalous annealing behaviour[J].Earth and Planetary Science Letters,2006, 250: 407-427. [45] Reiners P W, Farley K A. Influence of crystal size on apatite (U-Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming[J].Earth and Planetary Science Letters,2001, 188: 413-420. [46] Mitchell S G, Reiners P W. Influence of wildfire on apatite and zircon (U-Th)/He ages[J].Geology,2003, 31: 1 025-1 028. [47] Hourigan J K, Reiners P W, Brandon M T. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry[J].Geochimica et Cosmochimica Acta,2005, 69: 3 349-3 365. [48] Boyce J W, Hodges K V. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology[J].Chemical Geology,2005, 219: 261-274. [49] Shuster D L, Flowers R M, Farley K A. The influence of natural radiation damage on helium diffusion kinetics in apatite[J].Earth and Planetary Science Letters,2006, 249: 148-161. [50] Flowers R M, Shuster D L, Wernicke B P, et al. Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau[J].Geology,2007, 35: 447-450. [51] Vermeesch P, Seward D, Latkoczy C, et al. α-Emitting mineral inclusions in apatite, their effect on (U-Th)/He ages, and how to reduce it[J].Geochimica Cosmochimica Acta,2007, 71: 1 737-1 746. [52] Meesters A G C A, Dunai T J. Solving the production-diffusion equation for finite diffusion domains of various shapes Part I. Implications for low-temperature (U-Th)/He thermochronology[J].Chemical Geology,2002, 186: 333-344. [53] Meesters A G C A, Dunai T J. Solving the production diffusion equation for finite diffusion domains of various shapes Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source[J].Chemical Geology,2002, 186: 347-363. |