地球科学进展 ›› 2010, Vol. 25 ›› Issue (4): 418 -427. doi: 10.11867/j.issn.1001-8166.2010.04.0418

“土地利用/覆盖变化与综合减灾”专辑 上一篇    下一篇

(U-Th)/He测年技术:α离子射出效应及其校正
常远,许长海,周祖翼   
  1. 同济大学海洋地质国家重点实验室,上海  200092
  • 收稿日期:2009-04-02 修回日期:2010-01-05 出版日期:2010-04-10
  • 通讯作者: 常远 E-mail:1011changyuan@tongji.edu.cn
  • 基金资助:

    国家自然科学基金项目“大别造山带侏罗纪的构造热历史重建:裂变径迹和Ar-Ar热年代约束”(编号:40872138);上海市科委学科带头人计划资助项目“西大别造山带俯冲、折返历史重建”(编号:08XD14042);国家自然科学基金群体项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号:40621063)资助.  
     

(U-Th)/He Dating Method: α-ejection Influence and Correction

Chang Yuan, Xu Changhai, Zhou Zuyi   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2009-04-02 Revised:2010-01-05 Online:2010-04-10 Published:2010-04-10

(U-Th)/He测年技术是近年来低温热年代学研究领域快速发展的一个重要分支,被应用于磷灰石、锆石、榍石、石榴子石等多种矿物,并且磷灰石(U-Th)/He在目前已知的所用低温热年代学指标中具有最低的封闭温度和较强的热敏感性,此外矿物的(U-Th)/He分析还可用来反演样品所经历的热历史,因此该技术在地质学中得到了广泛的应用。随着对(U-Th)/He方法研究程度的提高,影响测年结果的各种因素也被相继发现和认识。从(U-Th)/He测年的基本原理出发,详细介绍了矿物内α离子的射出效应及其对氦年龄计算的影响与校正,进一步说明了矿物成分环带、晶体形状、比表面积等因素对于氦年龄校正的作用,并详细阐述了已有的针对这些因素的不同校正模型的原理、特点、发展历程以及前缘研究方向。

The recently developed (U-Th)/He dating method is one of the important low-temperature thermochronometers and widely used by apatite, zircon, titanite, garnet, et al. in geosciences. The apatite (U-Th)/He has the lowest closure temperature among the known geo-thermochronometers and is strongly sensitive to thermal events. And the minerals’ (U-Th)/He measuring results also could be used to inverse the geothermal history. According to the development of this technique, the factors which are able to influence the helium dating results are studied deeply. On the base of the review of the principle of (U-Th)/He dating, this paper introduces the α-ejection, its effect on helium age calculation and correcting methods, especially analyzes the effect of mineral zonation, crystal shape, surface-to-volume ratio, and other factors on helium age correction. Furthermore, the principle, characters, development and recent achievements of α-ejection correcting models are also summarized in sequence.

中图分类号: 

[1] Strutt R J. The accumulation of helium in geologic time, II[J]. Proceedings of the Royal Society London(Series A),1910, 83: 96-99.
[2] Strutt R J. The accumulation of helium in geologic time, III[J].Proceedings of the Royal Society London(Series A),1910, 83: 298-301. 
[3] Strutt R J. Measurements of the rate at which helium is produced in thorianite and pitchblende, with a minimum estimate of their antiquity[J].Proceedings of the Royal Society London(Series A),1910, 83: 386-388. 
[4] Hurley P M. The helium age method and the distribution and migration of helium in rocks[M]//Faul H,ed. Nuclear Geology. New York: Wiley & Sons,1954: 301-329. 
[5] Hurley P M, Larsen E S Jr, Gottfried D. Comparison of radiogenic helium and lead in zircon[J].Geochim Cosmochim Acta,1956, 9: 98-102. 
[6] Damon P E, Kulp J L. Determination of radiogenic helium in zircon by stable isotope dilution technique[J].Transaction-American Geophysical Union,1957, 38: 945-953. 
[7] Zeitler P K, Herczig A L, McDougall I, et al. U-Th-He dating of apatite: A potential thermochronometer[J].Geochimica et Cosmochimica Acta,1987, 51: 2 865-2 868. 
[8] Lippolt H J, Leitz M, Wernicke R S, et al. (U-Th)/He dating of apatite: Experience with samples from different geochemical environments[J].Chemical Geology, 1994, 112: 179-191. 
[9] Farley K A, Wolf R A, Silver L T. The effects of long alpha-stopping distances on (U-Th)/He ages[J]. Geochimica et Cosmochimica Acta,1996, 60: 4 223-4 229. 
[10] Wolf R A, Farley K A, Silver L T. Helium diffusion and low-temperature thermochronometry of apatite[J].Geochimica et Cosmochimica Acta,1996, 60: 4 231-4 240. 
[11] Warnock A C, Zeitler P K, Wolf R A, et al. An evaluation of low-temperature apatite U-Th/He thermochronometry[J].Geochimica et Cosmochimica Acta,1997, 61: 5 371-5 377. 
[12] Wolf R A, Farley K A, Silver L T. Assessment of (U-Th)/He thermochronometry: The low temperature history of the San Jacinto mountains, California[J].Geology,1997, 25: 65-68. 
[13] Wolf R A, Farley K A, Kass D M. Modeling of the temperature sensitivity of the apatite U-Th/He thermochronometer[J].Chemical Geology,1998, 148: 105-114. 
[14] House M, Wernicke B, Farley K. Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages[J].Nature,1998, 396: 66-69. 
[16] Spotila J A, Farley K A, Sieh K. Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreasfault, California, as constrained by radiogenic helium thermochronometry[J].Tectonics,1998, 17: 360-378. 
[17] Wolf R A. The Development of the (U-Th)/He Thermochronometry[D].Pasadena: California Institute of Technology,1997. 
[18] Reinwes W P, Farley K A. Helium diffusion and (U-Th)/He thermochronometry of titanite[J].Geochimica et Cosmochimica Acta,1999, 63: 3 845-3 859. 
[19] Stockli D F, Farley K A. Empirical constraints on the titanite (U-Th)/He partial retention zone from the KTB drill hole[J].Chemical Geology,2004, 227: 223-236. 
[20] Farley K A. Helium diffusion from apatite, general behavior as illustrated by Durango fluorapatite[J].Journal of Geophysical Research,2000, 105: 2 903-2 914. 
[21] Farley K A. (U-Th)/He dating: Techniques, calibrations, and applications[J].Review in Mineralogy and Geochemistry,2002, 47: 819-844. 
[22] Farley K A, Stockli D F. (U-Th)/He dating of phosphates: Apatite, monazite, and xenotime[J].Review in Mineralogy and Geochemistry,2002, 48: 559-577. 
[23] Farley K A, Kohn B P, Pillans B. The effects of secular disequilibrium on (U-Th)/He systematics and dating of Quaternary volcanic zircon and apatite[J].Earth and Planetary Science Letters,2002, 201: 117-125. 
[24] Reiners P W, Farley K A, Hickes H J I. He diffusion and (U-Th)/He thermochronometry of zircon: Initial results from Fish Canyon Tuff and Gold Butte[J].Tectonophysics, 2002, 349: 297-308. 
[25] Reiners P W, Spell T L, Nicolescu S, et al. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating[J].Geochimica et Cosmochimica Acta,2004, 68: 1 857-1 887. [26] Reiners P W. Zircon (U-Th)/He Thermochronometry[J].Reviews in Mineralogy and Geochemistry,2005, 58: 151-179. 
[27] Shuster D L, Farley K A. 4He/3He thermochronometry[J].Earth and Planetary Science Letters,2004, 217: 1-17. 
[28] Shuster D L, Farley K A, Sisterson J M, et al. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing protoninduced 3He[J].Earth and Planetary Science Letters,2004, 217: 19-32. 
[29] Ehlers T A, Farley K A. Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes[J].Earth and Planetary Science Letters,2003, 206: 1-14. 
[30] Reiners P W, Zhou Z, Ehlers T A, et al. Post-orogenic evolution of the Dabie Shan, eastern China, from (U-Th)/He and fission-track dating[J].Journal of American Science,2003, 303: 489-518. 
[31] Stockli D F, Farley K A, Dumitru T A. Calibration of the apatite (U-Th)/He thermochronometer on an exhumed fault block, White Mountains, California[J].Geology,2000, 28: 983-986. 
[32] Stockli D F, Surpless B E, Dumitru T A, et al. Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada[J].Tectonics,2002, 21: 4.
[33] Kirby E, Reiners P W, Krol M, et al. Late Cenozoic uplift and landscape evolution along the eastern margin of the Tibetan plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology[J].Tectonics,2002,21:1 001.
[34] Pik R, Marty B, Carignan J, et al. Stability of the Upper Nile drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry: Implications for uplift and erosion of the Afar plume dome[J].Earth and Planetary Science Letters,2003, 215: 73-88. 
[35] Brady R J. Very high slip rates on continental extensional faults: New evidence from (U-Th)/He thermochronometry of the Buckskin Mountains, Arizona[J].Earth and Planetary Science Letters,2002, 197: 95-104. 
[36] Persano C, Stuart F M, Bishop P, et al. Apatite (U-Th)/He age constraints on the development of the Great Escarpment on the southeastern Australian passive margin[J].Earth and Planetary Science Letters,2002, 200: 79-90. 
[37] Tagami T, Farley K A, Stockli D F. (U-Th)/He geochronology of single zircon grains of known Tertiary eruption age[J].Earth and Planet Science Letters,2003, 207: 57-67. 
[38] Fitzgerald P G, Baldwin S L, Webb L E, et al. Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountain of Southern Victoria Land[J].Chemical Geology,2006, 225: 91-120. 
[39] Stock G M, Ehlers T A, Farley K A. Where does sediment come from? Quantifying catchment erosion with detrital apatite (U-Th)/He thermochronometry[J].Geology,2006, 34: 725-728. 
[40] Foeken J P, Persano C, Stuart F M, et al. Role of topography in isotherm perturbation: Apatite (U-Th)/He and fission track results from the Malta tunnel, Tauern Window, Austria[J].Tectonics,2007, 26,TC3006,doi: 10.1029/2006TC002049. 
[41] Hendriks B W H, Redfield T F. Apatite fission track and (U-Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite[J].Earth and Planetary Science Letters,2005, 236: 443-458. 
[42] Soderlund P, JuezLarre J, Page L M, et al. Extending the time range of apatite (U-Th)/He thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden[J].Earth and Planetary Science Letters,2005, 239: 266-275. 
[43] Green P F, Duddy I R. Interpretation of apatite (U-Th)/He ages and fission track ages from cratons[J].Earth and Planetary Science Letters,2006, 244: 541-547. 
[44] Green P F, Crowhurst P V, Duddy I R, et al. Conflicting (U-Th)/He and fission track ages in apatite: Enhanced He retention, not anomalous annealing behaviour[J].Earth and Planetary Science Letters,2006, 250: 407-427. 
[45] Reiners P W, Farley K A. Influence of crystal size on apatite (U-Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming[J].Earth and Planetary Science Letters,2001, 188: 413-420. 
[46] Mitchell S G, Reiners P W. Influence of wildfire on apatite and zircon (U-Th)/He ages[J].Geology,2003, 31: 1 025-1 028. 
[47] Hourigan J K, Reiners P W, Brandon M T. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry[J].Geochimica et Cosmochimica Acta,2005, 69: 3 349-3 365.
[48] Boyce J W, Hodges K V. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic 4He on (U-Th)/He thermochronology[J].Chemical Geology,2005, 219: 261-274. 
[49] Shuster D L, Flowers R M, Farley K A. The influence of natural radiation damage on helium diffusion kinetics in apatite[J].Earth and Planetary Science Letters,2006, 249: 148-161. 
[50] Flowers R M, Shuster D L, Wernicke B P, et al. Radiation damage control on apatite (U-Th)/He dates from the Grand Canyon region, Colorado Plateau[J].Geology,2007, 35: 447-450. 
[51] Vermeesch P, Seward D, Latkoczy C, et al. α-Emitting mineral inclusions in apatite, their effect on (U-Th)/He ages, and how to reduce it[J].Geochimica Cosmochimica Acta,2007, 71: 1 737-1 746. 
[52] Meesters A G C A, Dunai T J. Solving the production-diffusion equation for finite diffusion domains of various shapes Part I. Implications for low-temperature (U-Th)/He thermochronology[J].Chemical Geology,2002, 186: 333-344. 
[53] Meesters A G C A, Dunai T J. Solving the production diffusion equation for finite diffusion domains of various shapes Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source[J].Chemical Geology,2002, 186: 347-363.

[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[3] 丁汝鑫,周祖翼,王玮. 利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-456.
[4] 吴堑虹,刘厚昌. (U-Th)/He定年——低温热年代学研究的一种新技术[J]. 地球科学进展, 2002, 17(1): 126-131.
阅读次数
全文


摘要