地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 991 -1005. doi: 10.11867/j.issn.1001-8166.2020.089

综述与评述 上一篇    下一篇

基于石榴石的变质岩年代学
程昊( ),徐乃潇   
  1. 同济大学 海洋地质国家重点实验室,上海 200092
  • 收稿日期:2020-08-02 修回日期:2020-09-30 出版日期:2020-10-10
  • 基金资助:
    国家自然科学基金杰出青年科学基金项目“变质岩年代学”(41925013)

Garnet Geochronology of Metamorphic Rocks

Hao Cheng( ),Naixiao Xu   

  1. State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China
  • Received:2020-08-02 Revised:2020-09-30 Online:2020-10-10 Published:2020-11-30
  • About author:Cheng Hao (1975-), male, Guiding City, Guizhou Province, Professor. Research areas include geochronology and thermochronology on metamorphic rocks. E-mail: chenghao@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Metamorphic Petrochronology”(41925013)

准确厘定地质事件的绝对时间是地学最核心的内容之一,放射性同位素地质年代学是最为可靠的绝对定年方法。近半个世纪以来,国际上以固体岩石为定年对象的长周期定年体系的进展乏善可陈,基于石榴石的多同位素定年体系是近10多年来一个在理论和实践中得到长足发展的体系。因为含有多种长周期放射性同位素及其稳定的衰变产物,石榴石可以说是万能的地质年代学定年矿物。随着近些年的化学流程和质谱技术的进步,Sm-Nd和Lu-Hf体系逐渐从众多基于石榴石的定年体系中脱颖而出,成为基于石榴石首选的姊妹定年体系,为变质的时间和过程提供前所未有的分辨率。通过回顾和剖析石榴石姊妹定年体系的基础和发展,及其在获取和解释方面的优势、复杂性和存在的陷阱,指出今后发展的趋势和短期内潜在的突破点。

The determination of the Pressure-Temperature-time (P-T-t) path of metamorphic rocks has an essential role in understanding the tectonic evolution of metamorphic rocks. Garnet has played a crucially important part in our understanding of metamorphic and tectonic processes and conditions. The potential of garnet geochronology in metamorphic rock studies lies in the use of the compositional zoning in garnet to elucidate quantitative P-T paths and the coupled application of multiple geochronometers to constrain the timescales of garnet growth. Garnet has long been the mineral of choice for metamorphic chronology because it hosts a remarkable number of long-lived radioactive isotopes and their stable decay products. These include: 238U, 235U and 232Th, which decay via intermediate steps to 206Pb, 207Pb and 208Pb, respectively; 87Rb, which decays to 87Sr; 176Lu, which decays to 176Hf; and 147Sm, which decays to 143Nd. This makes garnet one of the most versatile mineral phases available to geochronologists. As a result of advances in the techniques for sample preparation and measuring Nd-Hf isotopes by Thermal Ionization Mass Spectrometry (TIMS) and Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS), garnet Lu-Hf and Sm-Nd geochronology has been increasingly used to constrain the rates and timing of tectonometamorphic processes in orogenic studies over the last two decades. Metamorphic geochronologists have developed new techniques, such as microsampling, to link garnet ages with textural and petrological fingerprints of particular metamorphic processes, leading to major advances in petrogenesis and tectonics. When combined with petrographic and chemical observations, Lu-Hf and Sm-Nd ages in garnets are able to give unprecedented resolution of the timing and processes of metamorphism, although there are many potential pitfalls in the acquisition and interpretation of these data. This paper provides a brief review of the basic science and development of the garnet Lu-Hf and Sm-Nd systems, highlights the potential of garnet Lu-Hf and Sm-Nd geochronology, and reviews several crucial issues related to the complexities of interpretation of the radiometric ages. Examples, limitations, advantages and potential research directions are presented.

中图分类号: 

图1 衰变常数的不确定性对不同定年体系年龄的影响
(a)衰变常数误差对定年结果的影响[ λ 147Sm=(6.54±0.05)×10 -12 a -1 (1 σ) [ 24 ]λ 176Lu=(1.867±0.008)×10 -11 a -1 (1 σ[ 30 , 31 ]];(b)黑色部分表示不考虑衰变常数误差影响的年龄值,延长的灰色部分表示加入衰变常数误差后的年龄值(据参考文献[ 19 ]修改),前者是2个具有显著性差异的年龄,后者则表现为在误差范围内是一致的2个年龄,据参考文献[ 21 ]修改
Fig.1 Errors in age determinations are controlled by uncertainties in decay constants of different isotopic systems
(a) Errors in age due solely to uncertainties in the decay constant as a function of time [ λ 147Sm = (6.54 ± 0.05)×10 -12 a -1 (1 σ) [ 24 ]; λ 176Lu = (1.867 ± 0.008)× 10 -11 a -1(1 σ[ 30 , 31 ]]; (b) The smaller black bar represents the analytical uncertainty for each age, whereas the larger white bar encompasses the combined analytical and the decay constants uncertainties (conceptually modified after reference[ 19 ]). In this case, although the analyses agree poorly within analytical uncertainties (black), they agree well when the day constants uncertainties are considered (gray), modified after reference[ 21 ]
图2 石榴石Sm-Nd方法的开创性应用
(a)全岩—石榴石核/边Sm-Nd等时线,据参考文献[ 58 ]修改;(b) 单颗粒石榴石钻取得的12个石榴石样本Sm-Nd等时线; (c) 不同年龄与石榴石半径和体积关系图,指示快速幕式生长,据参考文献[ 8 ]修改
Fig.2 A pioneering application of the garnet Sm-Nd method
(a) Sm-Nd isochron diagram for Whole-Rock (WR)-garnet core and matrix-garnet rim pairs from a graphite-free metapelite, modified after reference [ 58 ]; (b) Isochron diagram for 12 concentric zones in a single garnet showing the corresponding drilled annuli, the differences in isotope ratios relative to the composition of the rim are shown in the lower diagram; (c) Ages of different zones within a garnet plotted as a function of radius and volume with indications of rapid growth episodes, modified after reference [ 8 ]
图3 榴辉岩中石榴石核部与边部的Lu-Hf等时线呈现明显差异
(a)Trescolmen榴辉岩的全岩—石榴石Lu-Hf等时线, 其中插图为Fe元素成分,据参考文献[ 62 ]修改;(b) 大别千斤榴辉岩的石榴石和全岩Lu-Hf等时线图,内部插图显示分离出的2类石榴石具有明显不同的光学特征,据参考文献[ 63 ]修改
Fig.3 Garnet cores and rims from eclogites are distinguishable from Lu-Hf isochrons
(a) Isochron plots illustrating the different ages obtained for two garnet generations present in an eclogite from Trescolmen, the element map for Fe is also shown,modified after reference[ 62 ]; (b) Lu-Hf isochron plot for garnet fraction, bulk rock powder separates of the Qianjin eclogite from the Dabie orogen. Inset photomicrograph shows the separated garnet porphyroblasts with distinct optical contrasts,modified after reference[ 63 ]
图4 单颗粒石榴石的Lu-Hf内部等时线
(a)单颗粒石榴石内部连续分带的Lu-Hf两点等时线,等时线较低点为石榴石边部的组成,附图为Fe的X射线分布图,据参考文献[ 10 ]修改; (b)单颗粒石榴石内部的12个分区、2个石榴石边部与附着基质的混合物以及全岩的Lu-Hf等时线图,附图内带数字的方块对应石榴石颗粒内Lu-Hf定年的取样区域,据参考文献[ 11 ]修改
Fig.4 Lu-Hf isochrons of single garnet grain
(a) Lu-Hf garnet-only two-point isochrons of consecutive garnet segments showing the compositions of the rims of the garnets as the lower points of the isochrons. An X-ray map of Fe is also shown. Numbered boxes indicate sampled sections of the garnet crystals for dating, modified after reference[ 10 ]. (b) Lu-Hf plots for 12 garnet zones in the garnet grain, two mixtures of garnet rims and adhered matrix, and the whole rock. Numbered boxes in the inset photograph of the garnet porphyroblast indicate sampled sections for Lu-Hf dating, modified after reference[ 11 ]
图5 单颗粒微区石榴石耦合Lu-Hf/Sm-Nd定年
(a)白点线所示,通过微锯对1/4的石榴石单颗粒取样,获得的10份样品合并为5份用作同位素测试;(b)该直径为2.1 cm的石榴石按简单的一维模型冷却模拟Sm-Nd和Lu-Hf年龄差。灰色方框代表5份石榴石的Lu-Hf和Sm-Nd年龄平均差异,指示Lu-Hf年龄代表的是前进到峰期变质的时间。模拟结果显示经过峰期变质温度约720 oC后,样品经历了一个速率为2.0~1.5 °C/Ma的冷却过程;据参考文献[ 6 ]修改
Fig.5 Coupled Lu-Hf and Sm-Nd geochronology on a single microsampling garnet
(a) Micro-sawing of a quarter of the mega garnet. Ten rectangle sections were micro-sawed to produce five garnet aliquots for isotope analysis indicated by the dotted white lines; (b) Sm-Nd age resetting profiles as a function of initial cooling rate and peak temperature for a 2.1 cm diameter garnet crystal. Square symbols represent the mean age differences between the calculated Lu-Hf and Sm-Nd ages of the five mega garnet zones, and implies that Lu-Hf ages solely represent prograde to peak metamorphic garnet growth. Note that to reset the Sm-Nd age of the garnet rim, would require peak metamorphic temperature of 720 °C and initial cooling rates of 2.0~1.5 °C/Ma, modified after reference[ 6 ]
图6 祁连榴辉岩中普通粒径石榴石微区钻样Lu-Hf定年(据参考文献[ 70 ]修改)
Fig.6 Lu-Hf isochrons for microdrilling of mm-sized garnets from the Qilian orogenmodified after reference [ 70 ])
图7 包裹体矿物对石榴石不同定年体系等时线的影响(据参考文献[ 21 ]修改)
(a)包裹体矿物对石榴石Sm-Nd等时线的影响;(b)包裹体矿物对石榴石Lu-Hf等时线的影响
Fig.7 Inclusion issues in different isochron systemsmodified after reference[ 21 ])
(a) Sm-Nd plot showing the effects of contamination due to high Sm/Nd inclusions on measured garnet compositions; (b) Lu-Hf plot showing the effects of old, inherited zircon included in garnet and whole rock samples
图8 石榴石年龄与颗粒大小相关的扩散重置(据参考文献[ 7 ]修改)
(a)大颗粒石榴石和小颗粒石榴石集合中内部裂隙分离开的小区域尺度的小提琴图; (b)定年结果指示石榴石生长的T-t过程的时间和事件记录,红色直线表示优选的T-t路径,不确定的部分用虚线标示
Fig.8 Diffusional resetting of garnet ages with varying radiimodified after reference [ 7 ])
(a) The violin plot of measured fraction sizes (radii) of the large garnet and a cluster of small euhedral grains, presenting the distribution of the length and probability density; (b) Summary of geochronological data reported in this study and interpreted T-t path. The red line indicates our preferred T-t path. When poorly constrained, the line is thick and dashed
1 Griffin W L, Brueckner H K. Caledonian Sm-Nd ages and a crustal origin for Norwegian eclogites[J]. Nature, 1980, 285(5 763): 319-321.
2 Van Breemen O, Hawkesworth C J. Sm-Nd isotopic study of garnets and their metamorphic host rocks[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1980, 71(2): 97-102.
3 Duchêne S, Blichert-Toft J, Luais B, et al. The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism[J]. Nature, 1997, 387(6 633): 586-589.
4 Lapen T J, Johnson C M, Baumgartner L P, et al. Burial rates during prograde metamorphism of an ultra-high-pressure terrane: An example from Lago di Cignana, western Alps, Italy[J]. Earth and Planetary Science Letters, 2003, 215(1/2): 57-72.
5 Cheng Hao, King R L, Nakamura E, et al. Coupled Lu-Hf and Sm-Nd geochronology constrains garnet growth in ultra‐high‐pressure eclogites from the Dabie orogen[J]. Journal of Metamorphic Geology, 2008, 26(7): 741-758.
6 Cheng Hao, Vervoort J D, Dragovic B, et al. Coupled Lu-Hf and Sm-Nd geochronology on a single eclogitic garnet from the Huwan shear zone, China[J]. Chemical Geology, 2018, 476: 208-222.
7 Cheng Hao, Bloch E M, Moulas E, et al. Reconciliation of discrepant U-Pb, Lu-Hf, Sm-Nd, Ar-Ar and U-Th/He dates in an amphibolite from the Cathaysia Block in Southern China[J]. Contributions to Mineralogy and Petrology, 2020, 175(1): 4.
8 Pollington A D, Baxter E F. High resolution Sm-Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes[J]. Earth and Planetary Science Letters, 2010, 293(1/2): 63-71.
9 Seman S, Stockli D F, McLean N M. U-Pb geochronology of grossular-andradite garnet[J]. Chemical Geology, 2017, 460: 106-116.
10 Schmidt A, Pourteau A, Candan O, et al. Lu-Hf geochronology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey)[J]. Earth and Planetary Science Letters, 2015, 432: 24-35.
11 Cheng Hao, Liu Xiaochun, Vervoort J D, et al. Micro-sampling Lu-Hf geochronology reveals episodic garnet growth and multiple high-P metamorphic events[J]. Journal of Metamorphic Geology, 2016, 34(4): 363-377.
12 Gevedon M, Seman S, Barnes J D, et al. Unraveling histories of hydrothermal systems via U-Pb laser ablation dating of skarn garnet[J]. Earth and Planetary Science Letters, 2018, 498: 237-246.
13 Mezger K, Hanson G N, Bohlen S R. U-Pb systematics of garnet: Dating the growth of garnet in the late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada[J]. Contributions to Mineralogy and Petrology, 1989, 101(2): 136-148.
14 Christensen J N, Rosenfeld J L, DePaolo D J. Rates of tectonometamorphic processes from rubidium and strontium isotopes in Garnet[J]. Science, 1989, 244(4 911): 1 465.
15 Qiu Huaning, Wijbrans J R. Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing[J]. Geochimica et Cosmochimica Acta, 2006, 70: 2 354-2 370.
16 Kohn M J, Valley J W. Oxygen isotope constraints on metamorphic fluid flow, Townshend Dam, Vermont, U.S.A.[J]. Geochimica et Cosmochimica Acta, 1994, 58(24): 5 551-5 566.
17 Romer R L, Xiao Yilin. Initial Pb-Sr(-Nd) isotopic heterogeneity in a single allanite-epidote crystal: Implications of reaction history for the dating of minerals with low parent-to-daughter ratios[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 662-674.
18 Sousa J, Kohn M J, Schmitz M D, et al. Strontium isotope zoning in garnet: Implications for metamorphic matrix equilibration, geochronology and phase equilibrium modelling[J]. Journal of Metamorphic Geology, 2013, 31(4): 437-452.
19 Schoene B, Condon D J, Morgan L, et al. Precision and accuracy in geochronology[J]. Elements, 2013, 9(1): 19-24.
20 Spear F S, Selverstone J. Quantitative P-T paths from zoned minerals: Theory and tectonic applications[J]. Contributions to Mineralogy and Petrology, 1983, 83(3): 348-357.
21 Cheng Hao. Garnet Lu-Hf and Sm-Nd geochronology: A time capsule of the metamorphic evolution of orogenic belts[J]. Geological Society, London, Special Publications, 2019, 474(1): 47-67.
22 Nicolaysen L O. Graphic interpretation of discordant age measurements on metamorphic rocks[J]. Annals of the New York Academy of Sciences, 1961, 91(2): 198-206.
23 Begemann F, Ludwig K R, Lugmair G W, et al. Call for an improved set of decay constants for geochronological use[J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 111-121.
24 Lugmair G W, Marti K. Lunar initial 143Nd/144Nd: Differential evolution of the lunar crust and mantle[J]. Earth and Planetary Science Letters, 1978, 39(3): 349-357.
25 Kinoshita N, Yokoyama A, Nakanishi T. Half-Life of Samarium-147[J]. Journal of Nuclear and Radiochemical Sciences, 2003, 4(1): 5-7.
26 Su Jun, Li Zhihong, Zhu L C, et al. Alpha decay half-life of 147Sm in metal samarium and Sm2O3[J]. The European Physical Journal A, 2010, 46(1): 69-72.
27 Hult M, Vidmar T, Roseng?rd U, et al. Half-life measurements of Lutetium-176 using underground HPGe-detectors[J]. Applied Radiation and Isotopes, 2014, 87: 112-117.
28 Herr W, Merz E, Eberhardt P, et al. Zur Bestimmung der β-Halbwertszeit des 176Lu durch den Nachweis von radiogenem 176Hf[J]. Zeitschrift für Naturforschung A, 1958, 13(4): 268-273.
29 Patchett P J, Tatsumoto M. Lu-Hf total-rock isochron for the eucrite meteorites[J]. Nature, 1980, 288(5 791): 571-574.
30 Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium Clock[J]. Science, 2001, 293(5 530): 683.
31 S?derlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3): 311-324.
32 Blichert-Toft J, Boyet M, Télouk P, et al. 147Sm-143Nd and 176Lu-176Hf in eucrites and the differentiation of the HED parent body[J]. Earth and Planetary Science Letters, 2002, 204(1): 167-181.
33 Bizzarro M, Baker J A, Haack H, et al. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites[J]. Nature, 2003, 421(6 926): 931-933.
34 Ludwig K R. Mathematical-statistical treatment of data and errors for 230Th/U geochronology[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 631-656.
35 Allègre C J. Isotope Geology[M]. Cambridge: Cambridge University Press, 2008.
36 Wendt I, Carl C. The statistical distribution of the mean squared weighted deviation[J]. Chemical Geology: Isotope Geoscience Section, 1991, 86(4): 275-285.
37 Baxter E F, Scherer E E. Garnet geochronology: Timekeeper of tectonometamorphic processes[J]. Elements, 2013, 9(6): 433-438.
38 Jager E, Niggli E, Wenk E. Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen[M]. Bern: Kummerly & Frey, 1967.
39 Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40(3): 259-274.
40 Mezger K, Essene E J, Halliday A N. Closure temperatures of the Sm-Nd system in metamorphic garnets[J]. Earth and Planetary Science Letters, 1992, 113(3): 397-409.
41 Van Orman J A, Grove T L, Shimizu N, et al. Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa[J]. Contributions to Mineralogy and Petrology, 2002, 142(4): 416-424.
42 Smit M A, Scherer E E, Mezger K. Lu-Hf and Sm-Nd garnet geochronology: Chronometric closure and implications for dating petrological processes[J]. Earth and Planetary Science Letters, 2013, 381: 222-233.
43 Bloch E, Ganguly J, Hervig R, et al. 176Lu-176Hf geochronology of garnet I: Experimental determination of the diffusion kinetics of Lu3+ and Hf 4+ in garnet, closure temperatures and geochronological implications[J]. Contributions to Mineralogy and Petrology, 2015, 169(2): 12.
44 Scherer E E, Cameron K L, Blichert-Toft J. Lu-hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3 413-3 432.
45 Dodson M H. Closure profiles in cooling systems[J]. Materials Science Forum, 1986, 7: 145-154.
46 Ganguly J, Tirone M. Relationship between cooling rate and cooling age of a mineral: Theory and applications to meteorites[J]. Meteoritics & Planetary Science, 2001, 36(1): 167-175.
47 Th?ni M. Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): Age results, and an evaluation of potential problems for garnet Sm-Nd chronometry[J]. Chemical Geology, 2002, 185(3): 255-281.
48 Crock J G, Lichte F E, Wildeman T R. The group separation of the rare-earth elements and yttrium from geologic materials by cation-exchange chromatography[J]. Chemical Geology, 1984, 45(1): 149-163.
49 Caro G, Bourdon B, Birck J, et al. High-precision 142Nd/144Nd measurements in terrestrial rocks: Constraints on the early differentiation of the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 164-191.
50 Harvey J, Baxter E F. An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1-10 ng)[J]. Chemical Geology, 2009, 258(3): 251-257.
51 Lide D R. Handbook of chemistry and physics, section 10[M]//Atomic, Molecular, and Optical Physics; Ionization Potentials of Atoms and Atomic Ions. London: CRC Press, 2003.
52 Münker C, Weyer S, Scherer E, et al. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(12). DOI:10.1029/2001GC000183.
doi: 10.1029/2001GC000183    
53 Bast R, Scherer E E, Sprung P, et al. Correction: A rapid and efficient ion-exchange chromatography for Lu-Hf, Sm-Nd, and Rb-Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2 554.
54 Ma Qian, Yang Ming, Zhao Han, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1 256-1 262.
55 Vervoort J D, Patchett P J, S?derlund U, et al. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(11). DOI:10.1029/2004GC000721.
doi: 10.1029/2004GC000721    
56 Wang Da, Fisher C M, Vervoort J D, et al. Nd isotope re-equilibration during high temperature metamorphism across an orogenic belt: Evidence from monazite and garnet[J]. Chemical Geology, 2020, 551: 119 751.
57 Dragovic B, Angiboust S, Tappa M J. Petrochronological close-up on the thermal structure of a paleo-subduction zone W. Alps)[J]. Earth and Planetary Science Letters, 2020, 547: 116 446.
58 Burton K W, Keith O'Nions R. High-resolution garnet chronometry and the rates of metamorphic processes[J]. Earth and Planetary Science Letters, 1991, 107(3): 649-671.
59 Ducea M N, Ganguly J, Rosenberg E J, et al. Sm-Nd dating of spatially controlled domains of garnet single crystals: A new method of high-temperature thermochronology[J]. Earth and Planetary Science Letters, 2003, 213(1): 31-42.
60 Schmidt A, Weyer S, Mezger K, et al. Rapid eclogitisation of the Dabie-Sulu UHP terrane: Constraints from Lu-Hf garnet geochronology[J]. Earth and Planetary Science Letters, 2008, 273(1/2): 203-213.
61 Skora S, Lapen T J, Baumgartner L P, et al. The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy[J]. Earth and Planetary Science Letters, 2009, 287(3): 402-411.
62 Herwartz D, Nagel T J, Münker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience, 2011, 4(3): 178-183.
63 Cheng Hao, Cao Dadi. Protracted garnet growth in high‐P eclogite: Constraints from multiple geochronology and P-T pseudosection[J]. Journal of Metamorphic geology, 2015, 33(6): 613-632.
64 Briggs S I, Cottle J M, Smit M A. Record of plate boundary metamorphism during Gondwana breakup from Lu-Hf garnet geochronology of the Alpine Schist, New Zealand[J]. Journal of Metamorphic Geology, 2018, 36(7): 821-841.
65 Cutts J A, Smit M A, Spengler D, et al. Two billion years of mantle evolution in sync with global tectonic cycles[J]. Earth and Planetary Science Letters, 2019, 528: 115 820.
66 Thiessen E J, Gibson H D, Regis D, et al. High-grade metamorphism flying under the radar of accessory minerals[J]. Geology, 2019, 47(6): 568-572.
67 Li Shuguang, Xiao Yilin, Deliang Liou, et al. Collision of the North China and Yangtse Blocks and formation of coesite-bearing eclogites: Timing and processes[J]. Chemical Geology, 1993, 109(1): 89-111.
68 Kelsey D E, Powell R. Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: A thermodynamic approach in the Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-ZrO2 system[J]. Journal of Metamorphic Geology, 2011, 29(1): 151-166.
69 Kohn M J. Geochemical Zoning in Metamorphic Minerals. Treatise on Geochemistry (Second Edition) [M]. Oxford: Elsevier, 2014.
70 Cheng Hao, Zhou Ying, Du Kaiyang, et al. Microsampling Lu-Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt[J]. Journal of Metamorphic Geology, 2018, 36(8):987-1 008.
71 Cao Dadi, Cheng Hao, Zhang Lingmin. Pseudosection modelling and garnet Lu-Hf geochronology of HP amphibole schists constrain the closure of an ocean basin between the northern and southern Lhasa blocks, central Tibet[J]. Journal of Metamorphic Geology, 2017, 35(7): 777-803.
72 Romer R L, R?tzler J. The role of element distribution for the isotopic dating of metamorphic minerals[J]. European Journal of Mineralogy, 2011, 23(1): 17-33.
73 DePaolo D J. Neodymium Isotope Geochemistry: An introduction[M]. Berlin: Springer, 1988.
74 Luais B, Duchêne S, de Sigoyer J. Sm-Nd disequilibrium in high-pressure, low-temperature Himalayan and Alpine rocks[J]. Tectonophysics, 2001, 342(1): 1-22.
75 Pollington A D, Baxter E F. High precision microsampling and preparation of zoned garnet porphyroblasts for Sm-Nd geochronology[J]. Chemical Geology, 2011, 281(3): 270-282.
76 Anczkiewicz R, Thirlwall M F. Improving precision and accuracy of the Lu-Hf and Sm-Nd garnet dating by acid leaching[C]//EGS-AGU-EUG Joint Assembly, Abstracts from the Meeting Held in Nice, France,2003: 13 234.
77 Spear F S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths[M]. Chantilly: Mineralogical Society of America Monograph, 1993: 352-356.
78 Harley S L. Ultrahigh temperature granulite metamorphism (1 050 °C, 12 kbar) and decompression in garnet (Mg70)-orthopyroxene-sillimanite gneisses from the Rauer Group, East Antarctica[J]. Journal of Metamorphic Geology, 1998, 16(4): 541-562.
79 Carlson W D. Rates and mechanism of Y, REE, and Cr diffusion in garnet[J]. American Mineralogist, 2012, 97(10): 1 598-1 618.
80 Anczkiewicz R, Platt J P, Thirlwall M F, et al. Franciscan subduction off to a slow start: Evidence from high-precision Lu-Hf garnet ages on high grade-blocks[J]. Earth and Planetary Science Letters, 2004, 225(1): 147-161.
81 Anczkiewicz R, Thirlwall M, Alard O, et al. Diffusional homogenization of light REE in garnet from the Day Nui Con Voi Massif in N-Vietnam: Implications for Sm-Nd geochronology and timing of metamorphism in the Red River shear zone[J]. Chemical Geology, 2012, 318/319: 16-30.
82 Cheng Hao, DuFrane S A, Vervoort J D, et al. Protracted oceanic subduction prior to continental subduction: New Lu-Hf and Sm-Nd geochronology of oceanic-type high-pressure eclogite in the western Dabie orogen[J]. American Mineralogist, 2010, 95(8/9): 1 214-1 223.
83 Mezger K, Bohlen S R, Hanson G N. Metamorphic history of the archean pikwitonei granulite domain and the Cross Lake Subprovince, Superior Province, Manitoba, Canada[J]. Journal of Petrology, 1990, 31(2): 483-517.
84 Tirone M, Ganguly J, Dohmen R, et al. Rare earth diffusion kinetics in garnet: Experimental studies and applications[J]. Geochimica et Cosmochimica Acta, 2005, 69(9): 2 385-2 398.
85 Dragovic B, Baxter E F, Caddick M J. Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece[J]. Earth and Planetary Science Letters, 2015, 413: 111-122.
86 Dragovic B, Samanta L M, Baxter E F, et al. Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece[J]. Chemical Geology, 2012, 314/317: 9-22.
87 Christensen J N, Selverstone J, Rosenfeld J L, et al. Correlation by Rb-Sr geochronology of garnet growth histories from different structural levels within the Tauern Window, Eastern Alps[J]. Contributions to Mineralogy and Petrology, 1994, 118(1): 1-12.
88 Vance D, O'Nions R K. Isotopic chronometry of zoned garnets: Growth kinetics and metamorphic histories[J]. Earth and Planetary Science Letters, 1990, 97(3): 227-240.
89 de Meyer C M C, Baumgartner L P, Beard B L, et al. Rb-Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps[J]. Earth and Planetary Science Letters, 2014, 395: 205-216.
90 Gouzu C, Itaya T, Hyodo H, et al. Cretaceous isochron ages from K-Ar and 40Ar/39Ar dating of eclogitic rocks in the Tso Morari Complex, western Himalaya, India[J]. Gondwana Research, 2006, 9(4): 426-440.
91 Qiu Huaning, Wijbrans J R. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions[J]. Earth and Planetary Science Letters, 2008, 268(3): 501-514.
92 Dewolf C P, Zeissler C J, Halliday A N, et al. The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis[J]. Geochimica et Cosmochimica Acta, 1996, 60(1): 121-134.
93 Smith S R, Foster G L, Romer R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and Laser Ablation-Multi Collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147(5): 549-564.
94 Millonig L J, Albert R, Gerdes A, et al. Exploring laser ablation U-Pb dating of regional metamorphic garnet-The Straits Schist, Connecticut, USA[J]. Earth and Planetary Science Letters, 2020, 552. DOI:10.1016/j.epsl.2020.116589.
doi: 10.1016/j.epsl.2020.116589    
95 Tong Shuoyun, Meija J, Zhou Lian, et al. Determination of the isotopic composition of hafnium using MC-ICPMS[J]. Metrologia, 58(4): 1-8.
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[3] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[4] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[5] 王晓先, 张进江, 王佳敏. 喜马拉雅早古生代岩浆事件:以吉隆和聂拉木眼球状片麻岩为例[J]. 地球科学进展, 2016, 31(4): 391-402.
[6] 汪正江,许效松,杜秋定,杨菲,邓奇,伍皓,周小琳. 南华冰期的底界讨论:来自沉积学与同位素年代学证据[J]. 地球科学进展, 2013, 28(4): 477-489.
[7] 徐争启,程发贵,唐纯勇,宋 昊,张成江,倪师军,郭景腾,祁家明. 广西大新地区辉绿岩地质地球化学、年代学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1080-1086.
[8] 常远,许长海,周祖翼. (U-Th)/He测年技术:α离子射出效应及其校正[J]. 地球科学进展, 2010, 25(4): 418-427.
[9] 孙贺,肖益林. 流体包裹体研究:进展、地质应用及展望[J]. 地球科学进展, 2009, 24(10): 1105-1121.
[10] 张沛,周祖翼. 碎屑矿物热年代学研究进展[J]. 地球科学进展, 2008, 23(11): 1130-1140.
[11] 丁汝鑫,周祖翼,王玮. 利用低温热年代学数据计算造山带剥露速率[J]. 地球科学进展, 2007, 22(5): 447-456.
[12] 何世平,王洪亮,徐学义,张宏飞,任光明. 北祁连东段红土堡基性火山岩锆石LA -IC P-MS U-Pb年代学及其地质意义[J]. 地球科学进展, 2007, 22(2): 143-151.
[13] 钟玉芳,马昌前. 含U副矿物的地质年代学研究综述[J]. 地球科学进展, 2006, 21(4): 372-382.
[14] 程昊;陈道公;周祖翼. 黄镇低温榴辉岩中石榴石成分分带的扩散动力学研究[J]. 地球科学进展, 2005, 20(4): 421-426.
[15] 任留东;陈炳蔚. 高喜马拉雅变质岩“夕线石带”的地质意义[J]. 地球科学进展, 2004, 19(5): 715-721.
阅读次数
全文


摘要