地球科学进展 ›› 2005, Vol. 20 ›› Issue (4): 421 -426. doi: 10.11867/j.issn.1001-8166.2005.04.0421

研究论文 上一篇    下一篇

黄镇低温榴辉岩中石榴石成分分带的扩散动力学研究
程 昊 1,2,陈道公 1,周祖翼 2   
  1. 1.中国科学技术大学地球和空间科学学院,安徽 合肥 230026;2.同济大学海洋地质教育部重点实验室,上海 200092
  • 收稿日期:2003-09-27 修回日期:2004-08-20 出版日期:2005-04-25
  • 通讯作者: 程昊
  • 基金资助:

    中国博士后科学基金项目“大别山石榴石成分环带的扩散动力学研究”;国家自然科学基金项目“大别山冷却史:地质年代学和扩散动力学研究”(编号:40273028)资助.

MODELING OF HUANGZHEN LOW-T ECLOGITE WITH DIFFUSION KINETICS THEORY

CHENG Hao 1,2;CHEN Daogong 1;ZHOU Zuyi 2   

  1. 1.Department of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026,China;2.Key Laboratory of Marine Geology, Ministry of Education, Tongji University, Shanghai 200092,China
  • Received:2003-09-27 Revised:2004-08-20 Online:2005-04-25 Published:2005-04-25

对南大别黄镇低温榴辉岩中不同粒径的石榴石颗粒所具有的不同化学成分分带进行研究,通过建立相应的扩散调整模型,运用扩散动力学的方法进行了模拟计算。结果表明该榴辉岩中石榴石经过峰期榴辉岩相变质之后,其成分环带经约23 Ma的扩散调整形成现在的组分特征。黄镇榴辉岩在峰期变质之后曾经历的是一个约6℃/Ma冷却过程,该过程持续了约23 Ma。黄镇榴辉岩不大可能与南大别超高压榴辉岩一样受到过超高压变质作用。

We determined the compositions of various sizes of garnets in so-called cold Huangzhen eclogites from Southern Dabie with electron microprobe, and observed that it shows intriguing zoning patterns. We find these zoning patterns can be interpreted by a relaxation diffusion mechanism. Using relaxation diffusion model, with the determined PT condition by means of traditional petrologic methods by others and numerically model of the profile’s adjusting, the result suggests the adjustment of the smallest garnet in this study cost 23Ma until the process ceased. This means that the rocks of Huangzhen suffered an exhumation velocity about 6℃/Ma after the peak metamorphism. This result supports the idea that the Huangzhen eclogites did not experienced UHPM, and also provides important information on the tectonic mechanism for the mountain Dabie eclogites exhumation.

中图分类号: 

[1]Dodson M H. Closure temperature in cooling geochronological and petrological systems[J].Contributions to Mineralogy and Petrology,1973, 40:259-274.
[2]Chakraborty S, Ganguly J. Compositional zoning and cation diffusion in garnets[J]. Advance Physical Geochemstry,1991, 8:121-175.
[3]Perchuk A L, Philippot P. Geospeedometry and times scales of high-pressure metamorphism[J]. International Geology Review,2000, 42:207-223.
[4]Weyer S, Jarick J, Mezger K. Quantitative temperature-time information from retrograde diffusion zoning in garnet: Constrains for the P-T-t history of the Central Black Forest, Germany[J]. Journal of Metamorphic Geology, 1999, 17:449-461.
[5]Dodson M H. Closure profiles in cooling systems[J]. Materials Science Forum, 1986,7:145-154.
[6]Burton K W, Kohn M J, Cohen A S, et al. The relative diffusion of Pb, Nd, Sr, and O in garnet[J]. Earth Planetary Science Letters, 1995, 133:199-211.
[7]Duch ne S, Albarede S, Lardeaux J M. Mineral zoning and exhumation history in the Munchberg eclogites (Bohemia)[J]. American Journal of Science, 1998, 298:30-59.
[8]Perchuk A L, Philippot P. Rapid cooling and exhumation of eclogite rocks from the Great Caucasus, Russia[J]. Journal of Metamorphic Geology, 1997, 15:299-310.
[9]Perchuk A L, Philippot P, Erdmer P, et al. Rates of thermal equilibration at the onset of subduction deduced from diffusion modeling of eclogitic garnets, Yukon-tannana terrain, Canada[J]. Geology, 1999, 27:531-534.
[10]Lindstrom R, Viitanen M, Huhanoja J, et al. Geospeedometry of metamorphic rocks: Examples in the Rantasalmi-Sulvaka and Kiuruvesi areas,eastern Filand: Birtite garnet diffusion couples[J]. Journal of Metamorphic Geology, 1991, 9:181-190.
[11]Medaris L G,Wang H F,Misar Z, et al. Thermobarometry,diffusion modeling and cooling rates of crustal garnet peridotities:Two examples from the Moldanubian zone of the Bohemian massif[J]. Lithos, 1990, 25:189-202.
[12]Gerasimov V Y, Savko K A. Geospeedometry and thermal evolution of garnet-cordierite metapelites of the Vironezh massif[J]. Petrology, 1995, 6:563-577.
[13]Cheng Hao,Chen Daogong, Cheng W,et al. Optimized geospeedometry—Evidence for slow cooling of Huangtuling granulite, Northern Dabie[J]. Geochimica, 2003, 32(2):167-172.[程昊,陈道公,Cheng W,等.最优化的矿物扩散地质速率计——北大别黄土岭麻粒岩缓慢冷却的证据[J].地球化学,2003,32(2):167-172.]
[14]Ganguly J, Dasgupta S, Cheng W, et al. Exhumation history of a section of the Sikkim Himalayas, India: Record in the metamorphic mineral equilibria and composition zoning of garnet[J]. Earth Planetary Science Letters, 2000, 183:471-486.
[15]Chavgnac V,Jahn B. Coesite-bearing eclogites from Bixiling complex, Dabie Mountains, China: Sm-Nd ages, geochemical characteristics and tectonic implications[J]. Chemical Geology, 1996, 133:29-51.
[16]Li S, Jagoutz E, Chen Y. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 2000, 64:1 077-1 093.
[17]Eide E, McWilliams M, Liou J. 40Ar/39Ar Geochronology and Exhumation of High-Pressure to Ultrahigh-Pressure Metamorphic Rocks in East-Central China[J]. Geology, 1994, 22:601-604.
[18]Okay A. Petrology of a diamond and coesite-bearing metamorphic terrain: Dabie Shan, China[J]. European Journal of Mineral, 1993, 5: 659-675.
[19]Carswell D, O'Brien P, Wilson R, et al. Thermobarometry of phengite-bearing eclogites in the Dabie mountains of central China[J]. Journal of Metamorphic Geology, 1997, 15:239-252.
[20]Wang X, Liou J, Mao H. Coesite-bearing eclogites from the Dabie Mountains in central China[J]. Geology, 1989, 17:1 085-1 088.
[21]Wang X, Liou J. Regional ultrahigh-pressure coesite-bearing ecoligitic terrane in central China: Evidence from country rocks, gneiss, marble, and metapelite[J]. Geology, 1991, 19:933-936.
[22]Wang X, Liu J, Maruyama S. Coesite-bearing eclogites from the Dabie mountains, central China: Petrogenesis, P-T paths, and implications for regional tectonics[J]. Journal of Geology, 1992, 100:231-250.
[23]Zhang Z , You Z, Hua Y, et al. Petrology, metamorphic process and genesis of Dabie-Sulu eclogite belt, eastern central China[J]. Acta Geologica Sinica, 1997, 9:134-156.
[24]Perchuk A, Gerasimov V, Philippot. Theoretical modeling of eclogite uplift[J]. Petrologiya, 1996, 4:518-532.
[25]Onsager L. Theories and problems of liquid diffusion[J]. Annual of the New York  Academy Sciences,1945,46:241-265 .
[26]Lasaga A C, Richardson S M, Holland H D. The mathematics of cation diffusion and exchange between silicate minerals during retrograde metamorphism [A]. In:Saxena S K, Bhattacharji S, eds. Energetics of Geological Processes[C]. Berlin: Springer,1977. 353-388.
[27]Crank J.Mathematics of Diffusion[M].Oxford: Clarendon Press, 1975.
[28]Ganguly J, Cheng W, Chakraborty S. Cation diffusion in aluminosilicate garnets: Experimental determination in pyroxene-almandine diffusion couples[J]. Contributions to Mineralogy and Petrology, 1998,131:171-180.
[29]Schwandt C, Cygan R, Westrich H. Ca self-diffusion in grossular garnet[J].American Mineral,1996, 81:448.
[30]Ganguly J. Diffusion, Atomic Ordering and Mass Transport:Selected Topics in Geochemistry, Advances in Physical Geochemistry[M]. Berlin: Springer-Verlag,1991.
[31]Cooper A R. The use and limitation of the concept of an effective binary diffusion coefficient for multicomponent diffusion[A]. In: Wachtman J B Jr, Franklin A D, eds. Mass Transport in Oxides.Process Symposium[C]. Washington DC: US National Standard Spectra Publisher,1968.79-84.
[32]Chakraborty S, Ganguly J. Cation diffusion in aluminosilicate garnets: Experimental determination in spessartine almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications[J]. Contributions to Mineralogy and Petrology, 1992, 111:74-86.
[33]Shewmon P G. Diffusion in Solids[M]. New York: McGraw-Hill Book Company,1963.
[34]Ganguly J, Chakraborty S, Sharp T, et al. Constraint on the time scale of biotite grade metamorphism during Acadian orogeny from a natural garnet-garnet diffusion couple[J]. American Mineralogist, 1996,81:1 208-1  216.
[35]Chen Daogong, Deloule E, Cheng Hao, et al. Multi-isotopic systems dating of Huangzhen eclogites[J]. Science in China(D),2003,33(9): 828-840. [陈道公, Deloule E, 程昊,等. 南大别黄镇低温榴辉岩多同位素体系年代学研究[J].中国科学D辑,2003,33(9): 828-840.]
[36]Chavagnac V, Jahn B M. Coesite-bearing eclogites from Bixiling complex, Dabie Mountains, China:Sm-Nd ages, geochemical characteristics and tectonic implications[J]. Chemical Geology, 1996,133:29-51.
[37]Li S, Jagoutz E, Chen Y. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 2000,64:1 077-1 093.

[1] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[2] 董治宝,吕萍,李超. 火星风沙地貌研究方法[J]. 地球科学进展, 2020, 35(8): 771-788.
[3] 李琼,王姣姣,潘保田. 构造和降水对祁连山北麓冲积扇演化影响的数值模拟研究[J]. 地球科学进展, 2020, 35(6): 607-617.
[4] 王蓉, 张强, 岳平, 黄倩. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 陈祖兴,曾志刚,王晓媛,殷学博,陈帅,张玉祥. 岩浆房持续的时间:矿物内元素扩散年代学研究进展及展望[J]. 地球科学进展, 2020, 35(12): 1232-1242.
[7] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[8] 王坚红,张萌,任淑媛,王兴,苗春生. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
[9] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[10] 张晨,王清,赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
[11] 王世红, 赵一丁, 尹训强, 乔方利. 全球海洋再分析产品的研究现状[J]. 地球科学进展, 2018, 33(8): 794-807.
[12] 李正泉, 宋丽莉, 马浩, 冯涛, 王阔. 海上风能资源观测与评估研究进展[J]. 地球科学进展, 2016, 31(8): 800-810.
[13] 陆雯茜, 吴涧. 气溶胶影响印度夏季风和东亚夏季风的研究进展[J]. 地球科学进展, 2016, 31(3): 248-257.
[14] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[15] 黄擎宇, 刘伟, 张艳秋, 石书缘, 王坤. 白云石化作用及白云岩储层研究进展 *[J]. 地球科学进展, 2015, 30(5): 539-551.
阅读次数
全文


摘要