地球科学进展 ›› 2005, Vol. 20 ›› Issue (4): 414 -420. doi: 10.11867/j.issn.1001-8166.2005.04.0414

研究论文 上一篇    下一篇

洞穴碳酸盐 230Th- 234U- 238U测年初始钍校正的等时线研究
蔡演军 1,Cheng Hai 2,安芷生 1,Edwards R. Laurence 2,王先锋 2,Shen Chuan-Chou 3   
  1. 1.中国科学院地球环境研究所,黄土与第四纪地质国家重点实验室,陕西 西安 710054;
    2.Department of Geology and Geophysics, University of Minnesota, MN 55455 USA;
    3.Department of Geosciences, National Taiwan University, Taipei 106, China
  • 收稿日期:2004-01-19 修回日期:2004-10-12 出版日期:2005-04-25
  • 通讯作者: 蔡演军
  • 基金资助:

    中国科学院知识创新工程重要方向项目“我国自然环境分异耦合过程与发展趋势”(编号:KZCX2-SW-118); 中国科学院知识创新工程重要方向项目“我国环境敏感带全新世温暖期的高分辨率环境记录”(编号:KZCX3-SW-120)资助.

THE STUDY ON THE INITIAL THORIUM CORRECTION OF THE 230Th- 234U- 238U DATING OF THE SPLEOTHEM BY USING ISOCHRON METHOD

CAI Yanjun 1;Cheng Hai 2;AN Zhisheng 1;Edwards R. Laurence 2;WANG Xian-feng 2;SHEN Chuanchou 3   

  1. 1.State Key Labatory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710054, China;
    2.Department of Geology and Geophysics,University of Minnesota, MN 55455 USA;
    3.Department of Geosciences, National Taiwan University, Taipei 106, China
  • Received:2004-01-19 Revised:2004-10-12 Online:2005-04-25 Published:2005-04-25

初始钍的校正是不纯沉积碳酸盐230Th-234U-238U测年的一个重要方面,洞穴石笋初始Th校正通常采用230Th/232Th的原子比值为(4.4±2.2)×10-6。多年来4种不同的等时线方法应用到不纯碳酸盐测年初始Th的校正中,其中全样品的等时线方法是目前公认的较为完善的一种方法。通过测定云南同一石笋2个不同层位的9个样品的U、Th同位素组成,并进行等时线分析,结果表明2层样品初始钍230Th/232Th原子比值分别为(3.5±2.8)×10-6和(10.6±2.2)×10-6,这说明即使在同一地区,由于其混入Th来源的复杂性,230Th/232Th初始比值在同一样品不同层位仍可能有较大的差异,因此不能够完全采用单一层位等时线获得的初始值对整个样品进行校正。考虑到在实验测量过程中,232Th含量的过高对于230Th的准确测定也有很大的影响,应尽量选择纯净石笋样品进行测年研究,在样品的选择和前处理过程中就减少初始钍的影响,这对获得高精度的测年结果有着重要的意义。

The correction of initial 230Th is very important for the 230Th-234U-238U dating of impure speleothem. The corrected 230Th ages usually assume an initial 230Th/232Th atomic ratio of (4.4±2.2)×10-6. During the last 30 years, various leach-leach, leach-residue methodologies have been promoted to distinguish between the isotopic ratios in the authigenic and detrital phases, and the total dissolution techniques are the most reliable method to setup meaningful isochrones. In this paper, Uranium and Thorium isotopic composition of 9 sub-samples in two different layers of stalagmite MN04 have been analyzed and the respective isochrones have also been setup. The results show that the initial 230Th/232Th atomic ratio of the sub-samples from up layer is (3.5±2.8)×10-6,and that of from down layer is (10.6±2.2)×10-6. It suggests that, even in the same area, the initial 230Th/232Th atomic ratio in various layers of the same stalagmite could have sizable difference because of the complicated origin of the detrital thorium. Therefore, it is insufficient to use the initial 230Th/232Th ratio obtained from the single isochron to correct the whole sample as well as other samples from the same area. Considering the high content of 232Th would also have significant influence on the measurement of 230Th, choosing pure carbonates to the best in sample selecting and preprocessing will greatly reduce the age deviation caused by the incorporated detrital thorium.

中图分类号: 

[1]Winogard I J, Coplen T B, Landwehr J M , et al.  Continuous 500,000 year climate record from vein calcite in Device Hole, Nevada[J]. Science, 1992, 258: 255-260.
[2]Gascoyne M. Palaeoclimate determination from cave calcite deposits[J]. Quaternary Science Reviews, 1992, 11: 609-632.
[3]Burns S J, Matter A, Frank N, et al. Speleothem-based palaeoclimate record from northern Oman[J]. Geology, 1998, 26(6): 499-502.
[4]Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave[J]. Science, 2001, 294: 2 345-2 348.
[5]Baldini J U L, McDermott F, Fairchild I J. Structure of the 8200-year cold event revealed by a speleothem trace element record[J]. Science, 2002, 296: 2 203-2 206.
[6]Tan M, Liu T S, Hou J, et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letters, 2003, 30:1 617-1 620.
[7]Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon[J]. Science, 2004, 304: 575-578.
[8]Lauritzen S E, Lundberg J. Speleothems and climate: A special issue of the Holocene[J]. The Holocene, 1999, 9: 643-647.
[9]Peng Z C, Wang Z R, Sun W D, et al. High-precision timing of the Quaternary standard samples with thermal ionization mass spectrometry (TIMS) U-series method[J]. Chinese Science Bulletin, 1998, 43(4): 333-338.
[10]Chen J H, Edwards R L, Wasserburg G J. 238U,234U and 232Th in seawater[J]. Earth and Planetary Science Letters, 1986, 80: 241-255.
[11]Moran S B, Hoff J A, Buesseler K O, et al. High precision 230Th and 232Th in the Norwegian Sea and Denmark by the thermal ionization mass spectrometry[J]. Geophysical Research Letter, 1995, 22: 2 589-2 592.
[12]Edwards R L. High Precision Thorium-230 Age of Corals and the Timing of Sea Level Fluctuations in the Late Quaternary[D]. California Institute of Technology,1988.
[13]Edwards R L, Chen J H, Wasserburg G J. 238U-234U-230Th-232Th systematic and the precise measurement of time over the past 500,000 years[J]. Earth and Planetary Science Letters, 1987, 81: 175-192.
[14]Cai Yanjun. Variation of the Indian Monsoon during the Last 50ka: Inferred from Speleothem Records[D]. Xi'an: Institute of Earth Environment, CAS, 2003.[蔡演军.石笋记录的最近5万年印度季风气候变化[D]. 西安:中国科学院地球环境研究所,2003.]
[15]Short S A, Lowson R T, Ellis J. 234U/238U and 230Th/234U activity ratios in the colloidal phases of aquifers in lateritic weathered zones[J]. Geochemica et Cosmochemica Acta, 1988, 52:2 555-2 563.
[16]Dearlove J P L, Longworth G, Ivanovich M, et al. A study of groundwater-colloids and their geochemical interactions with natural radionuclides in the Gorleben aquifer systems[J]. Radiochemistry Acta, 1991, 52/53: 83-89.
[17]Langmuir D, Herman J S. The mobility of thorium in natural water at low temperatures[J]. Geochemica et Cosmochemica Acta, 1980, 44: 1 753-1 766.
[18]Gaffney J S , Marley N S , Orlandini K A. Evidence for thorium isotopic disequilibria due to organic complexation in natural waters[J]. Environmental Science Technology, 1992, 26: 1 248-1 250.
[19]Dervin J, Faucherre J. Study of carbonate complexes of thorium and cerium, II Constitution of the complexes in solution, III Solubility and nature of the complex ions in solution[J]. Bulletin de la Société Chimique de France, 1973,11:2 926-2 933.
[20]Joao A, Bigot S, Fromage F. Study of the carbonate complexes of IVB elements: I determination of the stability constant of Th(IV) pentacarboonate[J]. Bulletin de la Société Chimique de France, 1987,1:42-44.
[21]Whitehead N E, Ditchburn R G, Williams P W, et al. 231Pa and 230Th contamination at zero age: A possible limitation on U/Th series dating of speleothem material[J]. Chemical Geology, 1999, 156: 359-366.
[22]Peng Z C, Liu W G, Zhang P X, et al. Precise timing of lacustrine gypsum in Luobubo, Xinjiang using the thermal ionization mass spectrometry U-series method[J]. Chinese Science Bulletin, 2001, 46(18): 1 538-1 541.
[23]Faure G. Principles of Isotope Geology[M]. New York: John Wiley & Sons Press, 1986. 363-381.
[24]Ivanovich M, Latham A G, Ku T L. Uranium-Series disequilibrium applications in geocheonology[A]. In: Ivanovich M, Harmon R S, eds. Uranium-Series Disequilibrium: Application to Earth, Marine and Environmental Sciences (Second Edition) [C]. Oxford: Calrendon Press, 1992. 63-94.
[25]Kaufman A. An evaluation of several methods for determining 230Th/U ages in impure carbonates[J]. Geochimica et Cosmochimica Acta, 1993, 57: 2 303-2 317.
[26]Beck J W, Richards D A, Edwards R L, et al. Extremely large variations of atmospheric 14C concentration during the last glacial period[J]. Science, 2001, 292: 2 453-2 458.
[27]Dorale J A, Edwards R L, Alexander E C, et al. Uranium series dating of speleothems: Current techniques, limits and applications[A]. In: Sasowskym I D, Mylroie J, eds. Studies of Cave Sediments[C]. New York: Kluwer Academic/Plenum Publishers, 2004. 171-195.
[28]Osmend J K, May J P, Tanner F. Age of the Cape Kennedy Barrier and Lagoon complex[J]. Journal of Geophysical Research, 1970, 75(2): 469-479.
[29]Harmon R S, Ford D C, Schwarcz H P. Interglacial chronology of the Rocky and Mackenzie Mountains based upon 230Th-234U dating of calcite speleothem[J]. Canadian Journal of Earth Science, 1977, 14: 2 543-2 552.
[30]Ku T L, Bull W B, Freeman S T, et al. 230Th-234U dating of pedogenic carbonates in gravelly desert soils of Vidal Valley, southeastern California[J]. Geological Society of America Bulletin, 1979, 90: 1 063-1 073.
[31]Rosholt J N.230Th/234U dating of travertine and calcite rinds[J]. GSA Abstract Progress, 1976, 8: 1 076.
[32]Bischoff J L, Fitzpatrick J A. U-series dating of impure carbonates: An isochron technique using total-sample dissolution[J]. Geochimica et Cosmochimica Acta, 1991, 55: 543-554.
[33]Luo S D, Ku T L. U- Series isochron dating: A generalized method employing total-sample dissolution[J]. Geochimica et Cosmochimica Acta, 1991, 55: 555-564.
[34]Shen C C, Edwards R L, Cheng H, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185: 165-178.
[35]Ludwig K R, Titterington D M. Calculation of 230Th/U isochrons, ages, and errors[J]. Geochimica et Cosmochimica Acta, 1994, 58(22): 5 031-5 042.
[36]Schwarcz H P, Latham A G. Dirty calcites, 1. Uranium-series dating of contaminated calcite using leachates alone[J].Chemical Geology (Isotope Geoscience Section), 1989, 80: 35-43.
[37]Cheng H, Edwards R L, Hoff J, et al. The half-lives of uranium-234 and thorium-230[J]. Chemical Geology, 2000, 169: 17-33.

[1] 蔡演军;ChengHai;安芷生;EdwardsR.Laurence;王先锋;ShenChuan-Chou. 洞穴碳酸盐230Th-234U-238U测年初始钍校正的等时线研究[J]. 地球科学进展, 2005, 20(4): 414-420.
阅读次数
全文


摘要