地球科学进展 ›› 2012, Vol. 27 ›› Issue (10): 1080 -1086. doi: 10.11867/j.issn.1001-8166.2012.10.1080

应用同位素地球化学 上一篇    下一篇

广西大新地区辉绿岩地质地球化学、年代学特征及其意义
徐争启 1,程发贵 2,唐纯勇 2,宋 昊 1,张成江 1,倪师军 1,郭景腾 1,祁家明 1   
  1. 1.成都理工大学地球化学与核资源工程系,四川 成都 610059;2.广西305核地质大队,广西 柳州 545005
  • 收稿日期:2012-07-24 修回日期:2012-08-27 出版日期:2012-10-10
  • 通讯作者: 徐争启(1975-),男,甘肃正宁人,副教授,主要从事铀矿地质及地球化学教学和研究工作.E-mail:xuzhengq@163.com
  • 基金资助:

    国家自然科学基金项目“广西大新铀矿成矿物质来源研究”(编号:41173059);中国核工业地质局重点科研项目“西南地区深部地质过程与铀成矿作用”(编号:201148);广西地矿局项目“广西大新地区铀成矿规律及找矿方向”资助.

Geological,Geochemical and Chronology Characteristics and Its Significance of the Dolerite in Daxin, Guangxi Province

Xu Zhengqi 1, Cheng Fagui 2,Tang Chunyong 2,Song Hao 1,Zhang Chengjiang 1,Ni Shijun 1, Guo Jingteng 1,Qi Jiaming 1   

  1. 1.Department of Geochemistry and Nuclear Resources Engineering, Chengdu University of Technology,Chengdu 610059,China;2.305 Nuclear Geological Prospecting Units of Guangxi, Liuzhou 545005,  China
  • Received:2012-07-24 Revised:2012-08-27 Online:2012-10-10 Published:2012-10-10

广西大新地区位于华南板块南华活动带右江褶皱系西大明山凸起,大新凹断束,那岭—俸屯褶断地垒的北端,辉绿岩脉沿断裂呈北西向零星分布。该区产有铀矿、铅锌矿等矿产资源。前人在进行矿床成因等研究时没有将辉绿岩脉与矿床的形成联系起来。通过研究辉绿岩的地质、地球化学和年代学特征,对二者的关系进行了探讨,取得如下认识:①该区辉绿岩分布受北西向断裂控制,并且遭受了后期变质作用和蚀变作用,使其主要由高岭石、蛇纹石、绿泥石等蚀变矿物组成,局部地段有铀矿化。②辉绿岩的SiO2含量变化较大,主要由后期硅化导致。Fe2O3,MgO,CaO及FeO与SiO2呈明显的负相关,碱质程度(Na2O+K2O)较贫,K2O/Na2O比值较大,为钙碱性系列。微量元素富集高场强元素Ta,Nb,Zr,Hf,及大离子亲石元素Rb,U,Th,Ba,而亏损Sr,构造环境判别为板内玄武岩(WPB)。稀土元素球粒陨石标准化分布型式图呈右倾,稀土元素总量较高,轻稀土较重稀土富集,无明显Eu异常。③辉绿岩的锆石U-Pb年龄总体为90 Ma左右,形成于晚白垩世。④辉绿岩脉与该区矿产资源的形成有一定关系。

Guangxi Daxin is located in south China plate of the South China region, the west of Youjiang drape, the north end of daming mountain convex, Daxin concave broken beam, and the ridgeFengTun broken plait horst. The dolerite dikes are distributed sporadically in the north west, along the crack. There are the abundance mineral resources in the region, such as uranium deposits and Pb, Zn. Previous study of ore genesis did not connect the dolerite dikes with the formation of deposit. Through studies of dolerite of the geological, geochemical characteristics and chronology, the relationship between the two is discussed and the conclusions are drawn in this article as follows: (1) Dolerite are controlled by the crack in north west, and the dolerite is made up of altered mineral such as kaolinite, hauling, chlorite, and uranium mineralized in local area, suffering the later metamorphism and altered effect. (2) The content of SiO2 in rocks has a large variation, mainly caused by chloride. SiO2 is obviously negatively correlated with Fe2O3, MgO, CaO and FeO. Alkali degree (Na2O+K2O) is poor. Based on the big ratio of K2O/Na2O, the magma series is for calcium alkaline series. Trace element enriches high field strength element Ta, Nb, Zr, Hf, and big ion lithophile element Rb, U, Th, Ba, and losses Sr. Therefore, tectonic environment is distinguished as the plate basalt (WPB). Rare earth elements the chondritic standardized distribution type is more consistent figure right mode, no obvious Eu abnormal, the total amount of rare earth elements is higher. (3) The U-Pb age of zircons in dolerite rock is overall for 90 Ma or so, developed in late cretaceous. (4) We can speculate that areal mineralization and dolerite are involved in the creation of rock.

中图分类号: 

[1]Cao Haojie,Huang Lezhen,Shen Weizhou, et al.The geochemical characteristics and its genesis of Niudai Diabase in North Guangzhou[J].Journal of East China Institute of Technology, 2011,34(4):323-331.[曹豪杰,黄乐真,沈渭洲,等.粤北牛岱辉绿岩脉的地球化学特征及其成因研究[J].东华理工大学学报:自然科学版,2011,34(4):323-331.]

[2]Liu Xuemin,Chen Yuelong,Li Dapeng,et al. The U-Pb ages and Hf isotopes of zircons in the metadiabase and gneissic granite,Beishan orogenic belt,Inner Mongolia,China and its significance[J]. Geological Bulletin of China,2010,29(4):518-529.[刘雪敏,陈岳龙,李大鹏,等.内蒙古北山造山带变辉绿岩和片麻状花岗岩锆石U-Pb年龄、Hf同位素组成及地质意义[J].地质通报,2010,29(4):518-529.]

[3]Mao Jingwen, Hu Ruizhong,Chen Yuchuan,et al. Large-Scale Metallogeny and Large Enriched Mineral District[M].Beijing: Geological Publishing House,2006: 765-770.[毛景文,胡瑞忠,陈毓川,等.大规模成矿作用与大型矿集区[M].北京:地质出版社,2006:765-770.]

[4]Qin Xiaofeng,Xia Bin,Li Jiang,et al.Geochemical characteristics and tectonic settings of the diabase dyke swarms in the western segment of the southern Altun tectonic belt[J]. Acta Petrologica et Mineralogica,2008,27(1):14-22.[覃小锋,夏斌,李江,等.阿尔金南缘构造带西段辉绿岩墙群的地球化学特征及构造环境[J].岩石矿物学杂志,2008,27(1):14-22.]

[5]Wang Yanbin, Liu Dunyi, Meng Yifeng,et al. SHRIMP U-Pb geochronology of the Xinqiao Cu-S-Fe-Au deposit in the Tongling ore district, Anhui[J]. Chinese Geology,2004,31(2):169-173.[王彦斌,刘敦一,蒙义峰,等.安徽铜陵新桥铜—硫—铁—金矿床中石英闪长岩和辉绿岩锆石SHRIMP年代学及其意义[J].中国地质,2004,31(2):169-173.]

[6]Xu Yunfu,Ji Bingyan. Study on the geochemical property and structural background of diabase in kayakedengtage[J]. Plateau Earthquake Research, 2009,21(3):58-63.[徐云甫,姬丙艳.喀雅克登塔格北坡辉绿岩地球化学特征及构造背景研究[J].高原地震, 2009,21(3):58-63.]

[7]Zhang Fangrong, Liu Qianjin. Forming era and their geological significance of diabase in Zhulou Mountain at the south edge of JiuLing Mountain[J]. Journal of East China Institute of Technology,2007,30(4):328-340.[张芳荣,刘前进.九岭南缘安义珠洛山辉绿岩形成时代及地质意义[J]. 东华理工学院学报,2007,30(4):328-340.]

[8]John S Fedorowich.U-Pb dating of a diabase dike resolves the probem of mutually crosscutting relationships within the fraser-strathcona deep copper vein system,Sudbury basin[J].Society of Economic Geologists,2006,101:1 593-1 603.

[9]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]∥Sauuders A D,Norry M J.Magmatism in the Ocean Basins.London:Geological Society Publishing House,1989:313-345.

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[3] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[4] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[5] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[6] 张凌, 王平, 陈玺赟, 殷勇. 碎屑锆石 U-Pb年代学数据获取、分析与比较[J]. 地球科学进展, 2020, 35(4): 414-430.
[7] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[8] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[9] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[10] 程昊,徐乃潇. 基于石榴石的变质岩年代学[J]. 地球科学进展, 2020, 35(10): 991-1005.
[11] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[12] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[13] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[14] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[15] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
阅读次数
全文


摘要