地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.10.1087

应用同位素地球化学 上一篇    下一篇

贵州戈塘金矿萤石微量元素特征及钐—钕测年
黄建国 1,2,李虎杰 1,李文杰 1,董磊 1   
  1. 1.西南科技大学环境与资源学院,四川 绵阳 621010;2.贵州大学资源与环境工程学院,贵州 贵阳 550003
  • 收稿日期:2012-07-24 修回日期:2012-08-17 出版日期:2012-10-10
  • 基金资助:

    全国危机矿山接替资源找矿项目“西南地区层控型多金属矿床成矿规律总结”(编号:20089943)资助.

Trace Element Characteristics of Fluorite and Its Sm-Nd Isotopic Dating in Getang Gold Deposit, Guizhou Province

Huang Jianguo 1,2, Li Hujie 1, Li Wenjie 1, Dong Lei 1   

  1. 1.College of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China;
    2.College of Resource and Environment Engineering, Guizhou University, Guiyang 550003, China)
  • Received:2012-07-24 Revised:2012-08-17 Online:2012-10-10 Published:2012-10-10

对与戈塘金矿共生的萤石微量元素特征研究表明:萤石中Mo,W,As,Cd,Bi等高温元素含量均高于地壳值,V,Cr,Cu,Cs,Th,Mo,Ga和Ge等元素变异系数大,活化能力强。萤石的稀土总量很低,仅为10.299×10-6~17.455×10-6,明显富集重稀土(LREE/HREE为0.48~0.69),并具有Eu和Ce的负异常(δEu为0.71~0.91,δCe为0.62~0.78),Tb/CaTb/La图解显示萤石为热液成因且为热液的晚期阶段。萤石的Rb/Sr比值和初始87Sr/86Sr比值均与地幔值较为接近,反映出其成矿流体主要来源于上地幔或(岩浆)深部。萤石的形成经历了长期演化的热液活动,成矿温度较低(<200°~250°),成矿年龄为(35.83±0.37)Ma(Sm-Nd等时线年龄)。

Trace element characteristics of symbiotic fluorite with Getang gold deposit have shown that: Its high-temperature element (including Mo, W, As, Cd, Bi, etc.) have higher contents than the crustal values. Those elements (including V, Cr, Cu, Cs, Th, Mo, Ga, Ge, etc.) have bigger coefficient of variation and strong activation energy. Fluorite’s total REE is low, only 10.299×10-6~17.455×10-6, and enrichment of heavy rare earth is obvious (LREE/HREE is 0.48-0.69), and have negative anomalies of Eu and Ce (δEu=0.71-0.91,δCe=0.62-0.78). The Tb/Ca vs. Tb/La diagram shows that fluorite is hydrothermal and is in its late stage. Rb/Sr ratios of fluorite and its initial 87Sr/86Sr ratios are closer to the mantle value, which reflect that its ore-forming fluids are from the upper mantle or (magma) deep. The formation of fluorite experienced a long-term evolution of the hydrothermal activity, lower ore-forming temperature (<200°~250°), and mineralization age is 35.83±0.37 Ma (Sm-Nd isochron age)

中图分类号: 

[1]Cao Junchen. REE geochemical characteristics of epithermal vein fluorite deposits in south China[J].Geochimica, 1995,24(3):225-233.[曹俊臣.华南低温热液脉状萤石矿床稀土元素地球化学特征[J].地球化学, 1995,24(3):225-233.]

[2]Peng Jiantang, Fu Yazhou, Yuan Shunda, et al. Sm-Nd isotope dating of some Ca-bearing minerals in hydrothermal deposits[J].Geological Review, 2006,52(5):662-667. [彭建堂,符亚洲,袁顺达,等.热液矿床中含钙矿物的Sm-Nd同位素定年[J].地质论评, 2006,52(5):662-667.]

[3]Wang Guozhi, Hu Ruizhong, Li Ying, et al. REE geochemical characteristic from fluorite in Qinglong antimony deposit, south-western Guizhou[J]. Journal of Mineralogy and Petrology, 2003,23(2): 62-65. [王国芝,胡瑞忠,刘颖,等.黔西南晴隆锑矿区萤石的稀土元素地球化学特征[J].矿物岩石, 2003,23(2): 62-65.]

[4]Yang Zirong, Liu Jingdang, Sun Xiang, et al. REE geochemical characteristics of fluorite in Fuxin metallogenic region and its geological implications [J]. Geoscience, 2008,22(5):751-756. [杨子荣,刘敬党,孙祥,等.阜新萤石成矿区稀土元素地球化学特征及指示意义[J].现代地质, 2008,22(5):751-756.]

[5]Li Changjiang, Jiang Xuliang. Strontium isotope geochemistry of fluorite deposits in Wuyi-Dongyang area, Zhejiang province [J]. Mineral Deposits, 1989, 8(3): 65-74. [李长江,蒋叙良.浙江武义—东阳地区萤石矿床的锶同位素地球化学研究[J].矿床地质, 1989, 8(3): 65-74.]

[6]Pan Zhonghua, Fan Delian. Isotope geochemistry of vein fluorite and barite deposits in southeast Sichuan [J].Acta petrologica sinica, 1996,12(1): 127-136. [潘忠华,范德廉.川东南脉状萤石—重晶石矿床同位素地球化学[J].岩石学报, 1996,12(1): 127-136.]

[7]Wang Yangeng, Suo Shutian, Zhang Mingfa. Structure of Southwest Guizhou and Carlin-type Gold[M].Beijing: Geological Publishing House,1994:1-155. [王砚耕,索书田,张明发.黔西南构造与卡林型金矿[M].北京:地质出版社, 1994:1-155.]

[8]Zhu Kaijun, Zhang Jingrong. Modes of occurrence of gold in the Carlin-type gold deposits of Hunan-Guizhou area[J]. Acta petrrologica et mineralogica, 1994,13(2):160-167.[朱恺军,张景荣.湘黔地区“卡林型”金矿中金的赋存形式[J].岩石矿物学杂志, 1994,13(2):160-167.]

[9]Li Tong. Chemical element abundances in the Earth and it’s major shells[J]. Geochimica, 1976,5(3):167-174.[黎彤.元素化学的地球丰度[J].地球化学, 1976,5(3):167-174.]

[10]Moller P, Parekh P P, Sehneider H J. The application of Tb/Ca-Tb/La abundance ratios to problems of fluorspar genesis [J].Mineral Depositas, 1976,11:111-116.

[11]Baum M, Moller P. Rare Earth element fraction inmetamorphogenic hydrothermal calcitemagnesite and siderite[J]. Mineralogy Petrology, 1992, 145: 231-256.

[12]Huang Jianguo, Li Hujie, Li Wenjie,et al.2013.Geochemistry of elements of ore-bearing rock series in Getang gold deposit, Guizhou Province[J].Geology in China,2012(Accepted).[黄建国,李虎杰,李文杰,董磊.2013年,贵州戈塘金矿含矿岩系元素地球化学特征[J].中国地质,2012(已录用).]

[13]Peng Jiantang, Hu Ruizhong, Qi Liang, et al. REE geochemistry of fluorite from the Qinglong antimony deposit and its geological implication[J].Chinese Journal of Geology, 2002,37(3):277-287.[彭建堂,胡瑞忠,漆亮,等.晴隆锑矿床中萤石的稀土元素特征及其指示意义[J].地质科学, 2002,37(3):277-287.]

[14]Constantopoulos J.Fluid inclusions and rare earth element geochemistry of fluorite from South-Central Idaho [J]. Economic Geology, 1988,83: 626-636.

[15]Williams-Jones A E, Samoson I M, Olivo G R. The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico [J]. Economic Geology, 2000, 95: 327-341.

[16]Boynton W V. Cosmochemistry of the rare earth elements:Meteorite studies[C]∥Henderson P ed. Rare Earth Element Geochemistry: Developments in Geochemistry 2. Amsterdam: Elsevier,1984:63-114.

[17]Shen Weizhou, et al. Stable Lsotope Geology[M].Beijing:Atomic Energy Press,1987:246-259.[沈渭洲,等编.稳定同位素地质[M].北京:原子能出版社, 1987:246-259.]

[18]Yang Jiedong, Wang Yinxi, Wang Zongzhe. Fossil’s Sm-Nd isotope studies of Cambrian/Ordovician boundary strata in Dayangcha, Jilin [J]. Chinese Science Bulletin, 1988,36 (16):1 247-1 249.[杨杰东,王银喜,王宗哲.吉林大阳岔寒武系/奥陶系界线地层化石中Sm-Nd同位素的研究[J].科学通报, 1988,36 (16):1 247-1 249.]

[19]Zhang Zongqing, Wu Jiashan, Ye Xiaojiang. Archaean metamorphic rocks from the lower Fuping group in the mt. Taihang region, north China: REE geochemistry, Rb-Sr and Sm-Nd ages and implications[J]. Geochimica, 1991,(2):118-127. [张宗清,伍家善,叶笑江.阜平群下部太古代变质岩的REE、Rb-Sr和Sm-Nd年龄及其意义[J].地球化学, 1991,(2):118-127.]

[20]Faure G. Principle of Isotope Geology [M]. John Wiley and Sons Inc., 1986: 1-207.

[21]Zhu Laimin, Jin Jingfu, He Mingyou, et al. A discussion about the genesis of fine-grained disseminated gold deposits in southwestern Guizhou province[J]. Volcanology & Mineral Resources, 1997,18(2):117-125.[朱赖民,金景福,何明友,等.黔西南微细浸染型金矿床成因讨论——矿床时空分布及同位素证据[J].火山地质与矿产, 1997,18(2):117-125.]

[1] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[2] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[3] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[4] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[5] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[6] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[7] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[8] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[9] 王将克;邹和平;郑卓. 农业生物地球化学———新兴的边缘学科[J]. 地球科学进展, 2004, 19(5): 852-859.
[10] 陈晋阳;郑海飞;曾贻善. 微量元素在幔源矿物与热液之间分配系数的研究进展[J]. 地球科学进展, 2004, 19(2): 224-229.
[11] 刘大锰,刘志华,李运勇. 煤中有害物质及其对环境的影响研究进展[J]. 地球科学进展, 2002, 17(6): 840-847.
[12] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.
[13] 刘桂建,彭子成,王桂梁,杨萍月,Chou Chenglin. 煤中微量元素研究进展[J]. 地球科学进展, 2002, 17(1): 53-62.
[14] 唐红峰,刘丛强. 变质流体作用的元素地球化学研究[J]. 地球科学进展, 2001, 16(4): 508-513.
[15] 章程,袁道先. 洞穴滴石石笋与陆地古环境记录研究进展[J]. 地球科学进展, 2001, 16(3): 374-381.
阅读次数
全文


摘要