Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (3): 262-275    DOI: 10.11867/j.issn.1001-8166.2017.03.0262
综述与评述     
磁铁矿LA-ICP-MS分析在矿床成因研究中的应用
黄柯1, 2, 朱明田1, 张连昌1, *, 李文君1, 2, 高炳宇1
1. 中国科学院地质与地球物理研究所 矿产资源研究重点实验室,北京 100029;
2.中国科学院大学,北京 100049
LA-ICP-MS Analysis of Magnetite and Application in Genesis of Mineral Deposit
Huang Ke1, 2, Zhu Mingtian1, Zhang Lianchang1, *, Li Wenjun1, 2, Gao Bingyu1
1.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
2.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(7646 KB)   HTML
摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS),由于其原位、实时、低检测限、高空间分辨率等优点,在矿物原位微量元素分析方面具有独特的优势。磁铁矿作为多种矿床和岩石中的常见矿物,其化学组成一直是国内外学者关注的焦点。而大量的研究表明,在磁铁矿LA-ICP-MS分析过程中,基体效应不明显,一般采用富铁硅酸盐玻璃作为标样,就能够取得较为准确的结果。因此近年来磁铁矿原位微量元素研究进展迅速,并在反演成岩成矿条件、辅助判别矿床类型和间接指导找矿勘探等方面显示出广泛的应用前景。通过总结25个不同类型岩浆和热液矿床中磁铁矿微量元素数据,与前人在矿床类型判别上的研究进行了一定的对比,发现常用的磁铁矿判别图解可以用来区分多种不同类型的矿床,但是已经划分出的分类边界可能需要进一步细化和严格验证,并且事先仔细的岩相学观察是数据解释的重要基础。另外,通过磁铁矿微量元素分配对岩浆和热液过程一系列复杂物理化学条件(熔/流体成分、温度、冷却速率、压力、氧逸度、硫逸度和二氧化硅活度等)的响应进行了一定探讨。在岩浆阶段,磁铁矿成分与熔体组成及分异演化密切相关;而热液阶段,流体性质的变化也会显著改变磁铁矿的化学成分。并且后期流体的改造或者磁铁矿的亚固相再平衡作用会对磁铁矿的成因鉴别产生严重干扰。综述了近年来LA-ICP-MS在磁铁矿微量元素分析方面的发展以及在矿床学领域的重要应用,以期对成矿作用和成矿过程研究提供新的思路和方向。
关键词: LA-ICP-MS微量元素成矿过程磁铁矿    
Abstract: Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is well characterized by the in-situ, real time, lower limit of detection and high space resolution, etc. Therefore, it is more excellent in the analysis of trace element for varied minerals in comparison to other micro-zone analysis technologies. Magnetite as a common mineral from different deposits and rocks has been focused on chemical compositions by researchers worldwide. In fact, as the insignificant matrix effect for most elements in magnetite, analysis results could be calculated effectively against Fe-rich silicate glass as the reference material. Therefore, researches on trace element distribution of magnetite have been developed rapidly in recent years, and it has a wide application prospect in reflecting the condition of ore-forming, discriminating different deposit types and indicating prospecting exploration. Comparing varied previous discrimination diagrams about magnetite via collecting trace element data from available literatures based on 25 deposits, we found that there was an urgent need for further detailing and reexamining the boundary of fields representing different genetic types, and it was vital for interpreting the data through carefully petrographical observation before analysis. In addition, we discussed several complex physicochemical factors, which would influence the element concentration of magmatite in igneous and hydrothermal processes, such as melt/fluid composition, temperature, cooling rate, pressure, oxygen fugacity, sulfur fugacity and silica activity. In magma stage, Magnetite’s components are closely related to melts composition and differentiation, while fluid features would also significantly change magnetie's components. Furthermore, there is serious interference for discriminating the genesis of magnetite because of late stage fluids and equilibrium again in subsolidus condition. This paper reviewed the developments of trace elements analysis by LA-ICP-MS and important applications about magnetite in mineral deposit so that unique thoughts for the research on mineralization and ore-forming processes could be obtained.
Key words: Magnetite    Ore-forming process.    LA-ICP-MS    Trace elements
收稿日期: 2016-11-01 出版日期: 2017-03-20
ZTFLH:  P578.46  
基金资助: 国家自然科学基金面上项目“内蒙古毕力赫单金斑岩型矿床成矿作用研究”(编号:41572073)资助
通讯作者: 张连昌(1959-),男,陕西西安人,研究员,主要从事矿床学和地球化学研究.E-mail:lczhang@mail.iggcas.ac.cn   
作者简介: 黄柯(1992-),男,四川渠县人,硕士研究生,主要从事热液矿床研究.E-mail:huangke@mail.iggcas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱明田
李文君
高炳宇
张连昌
黄柯

引用本文:

黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.

Huang Ke, Zhu Mingtian, Zhang Lianchang, Li Wenjun, Gao Bingyu. LA-ICP-MS Analysis of Magnetite and Application in Genesis of Mineral Deposit. Advances in Earth Science, 2017, 32(3): 262-275.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.03.0262        http://www.adearth.ac.cn/CN/Y2017/V32/I3/262

[1] Liu Minwu, He Ying. Progress of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) applied in Earth science[J].Advances in Earth Science, 2003, 18(1): 116-121.
[刘民武, 赫英. 激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展[J]. 地球科学进展, 2003, 18(1): 116-121.]
[2] Liu Yongsheng, Hu Zhaochu, Li Ming,et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3 863-3 878.
[刘勇胜, 胡兆初, 李明,等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3 753-3 769.]
[3] Yuan Jihai, Zhan Xiuchun, Fan Xingtao,et al. Development of microanalysis of trace elements in sulfide minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(2): 121-130.
[袁继海,詹秀春, 樊兴涛,等. 硫化物矿物中痕量元素的激光剥蚀—电感耦合等离子体质谱微区分析进展[J]. 岩矿测试, 2011, 30(2): 121-130.]
[4] Chambefort I, Dilles J H, Longo A A. Amphibole geochemistry of the Yanacocha Volcanics, Peru: Evidence for diverse sources of magmatic volatiles related to gold ores[J].Journal of Petrology, 2013, 54(5): 1 017-1 046.
[5] Audétat A, Günther D, Heinrich C A. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia[J].Economic Geology, 2000, 95(8): 1 563-1 581.
[6] Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities[J].Chemical Geology, 2015, 402: 89-110.
[7] Williamson B J, Herrington R J, Morris A. Porphyry copper enrichment linked to excess aluminium in plagioclase[J].Nature Geoscience, 2016, 9(3): 237-241.
[8] Zhu L, Liu Y, Hu Z,et al. Simultaneous determination of major and trace elements in fused volcanic rock powders using a hermetic Vessel Heater and LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2013, 37(2): 207-229.
[9] Cao Mingjian. Petrogenesis and Metallogenesis of Baogutu Reduced Porphyry Copper Deposit, West Junggar, and Its Comparision with Porphyry Deposits from Balkhash[D].Beijing:University of Chinese Academy of Sciences, 2013.
[曹明坚. 西准包古图还原性斑岩铜矿成岩成矿过程及与巴尔喀什斑岩矿带对比[D]. 北京:中国科学院大学, 2013.]
[10] Stefanova E, Driesner T, Zajacz Z,et al. Melt and fluid inclusions in Hydrothermal Veins: The magmatic to hydrothermal evolution of the elatsite porphyry Cu-Au Deposit, Bulgaria[J]. Economic Geology, 2014, 109(5): 1 359-1 381.
[11] Wark D A, Watson E B. Titani Q: A titanium-in-quartz geothermometer[J].Contributions to Mineralogy and Petrology, 2006, 152(6): 743-754.
[12] Keith M, Haase K M, Schwarz-Schampera U,et al. Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8): 699-702.
[13] Reich M, Deditius A, Chryssoulis S,et al. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 2013, 104: 42-62.
[14] Jin Luying, Qin Kezhang, Li Guangming,et al. Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system, northern Great Xing’an Range, China: Implications for metal source and ore exploration[J]. Acta Petrologica Sinica, 2015, 31(8): 2 417-2 434.
[金露英, 秦克章, 李光明,等. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J]. 岩石学报, 2015, 31(8): 2 417-2 434.]
[15] Dupuis C, Beaudoin G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J].Mineralium Deposita, 2011, 46(4): 319-335.
[16] Huang X, Qi L, Meng Y. Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J].Acta Geologica Sinica, 2014, 88(1): 176-195.
[17] Beaudoin G. Application of iron-oxide chemistry in mineral exploration[C]∥McClenaghan M B,et al,eds. Application of Indicator Mineral Methods to Mineral Exploration. Geological Survey of Canada, Open File 7553 (also 26th International Applied Geochemistry Symposium, Short Course SC07, November 17, 2013, Rotarua, New Zealand), 2014: 47-49.
[18] Deyell C L, Hedenquist J W. Trace element geochemistry of enargite in the Mankayan district, Philippines[J].Economic Geology, 2011, 106(8): 1 465-1 478.
[19] Fang Weixuan, Li Jianxu. Metallogenic regulations,controlling factors,and evolutions of iron oxide copper and gold deposits in Chile[J].Advances in Earth Science, 2014,29(9): 1 011-1 024.
[方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律, 控制因素与成矿演化[J]. 地球科学进展, 2014,29(9): 1 011-1 024.]
[20] Xiong Xin, Xu Wenyi, Jia Liqiong, et al. Reviews of structural settings of porphyry copper deposits in China[J].Advances in Earth Science, 2014,29(2): 250-264.
[熊欣, 徐文艺, 贾丽琼, 等.斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展,2014,29(2): 250-264.]
[21] Jackson S E, Longerich H P, Dunning G R,et al. The application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass-Spectrometry(LAM-ICP-MS) to insitu trace-element determinations in minerals[J]. Canadian Mineralogist, 1992, 30: 1 049-1 064.
[22] Lai Ting, Li Hongjuan. Comparison of 93,213,266 nm Femtosecond Laser in LA-ICP-MS application[C]∥The 14th Annual Conference of China Society for Mineralogy, Petrology and Geochemistry,Geological Journal of China Universities, 2013,19(Suppl.): 473.
[赖挺, 李红娟. 93, 213, 266 nm飞秒激光在LA-ICP-MS应用中的比较[C]∥中国矿物岩石地球化学学会第14届学术年会.高校地质学报, 2013, 19(增刊): 473.]
[23] Miliszkiewicz N, Walas S, Tobiasz A. Current approaches to calibration of LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 327-338.
[24] Liu Y, Hu Z, Gao S,et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[25] Durrant F S. Laser ablation inductively coupled plasma mass spectrometry: Achievements, problems, prospects[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1 385-1 403.
[26] Sylvester P J. Matrix effects in laser ablation ICP-MS[C]∥Sylvester P, eds. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues.Mineralogical Association of Canada. Short Course Series,2008,40: 67-78.
[27] Carew M. Controls on Cu-Au Mineralisation and Fe-oxide Metasomatism in the Eastern Fold Belt, NW Queensland, Australia[D].Townsville:James Cook University, 2004.
[28] Klemme S, Günther D, Hametner K,et al. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon[J]. Chemical Geology, 2006, 234(3/4): 251-263.
[29] Savard D, Barnes S, Raju P S. Accurate LA-ICP-MS calibration for magnetite analysis using multiple reference materials[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): A914.
[30] Raju P S, Barnes S, Savard D,et al. Using magnetite as an indicator mineral, Step 1: Calibration of LA-ICP-MS[C]∥11th International Platinum Symposium(11th IPS). Laurentian University, Sudbury, 2010.
[31] Nadoll P, Koenig A E. LA-ICP-MS of magnetite: Methods and reference materials[J].Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1 872-1 877.
[32] Savard D, Barnes S, Dare S, et al. Improved calibration technique for magnetite analysis by LA-ICP-MS[J]. Mineralogical Magazine, 2012, 76(6): 2 329.
[33] Gao J-F, Zhou M-F, Lightfoot P C,et al. Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108(8): 1 833-1 848.
[34] Huang X W, Gao J F, Qi L,et al. In-situ LA-ICP-MS trace elements analysis of magnetite: The Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China[J]. Ore Geology Reviews, 2016, 72(Part 1): 746-759.
[35] Goldschmidt V M. Geochemistry[J].Soil Science, 1954, 78(2): 156.
[36] Chen Jun, Wang Henian. Geochemistry[M]. Beijing: Science Press, 2004.
[陈俊, 王鹤年. 地球化学[M]. 北京:科学出版社, 2004.]
[37] Nadoll P, Angerer T, Mauk J L,et al. The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32.
[38] Sauerzapf U, Lattard D, Burchard M,et al. The titanomagnetite-ilmenite equilibrium: New experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks[J]. Journal of Petrology, 2008, 49(6): 1 161-1 185.
[39] Hendry D A F, Chivas A R, Reed S J B,et al. Geochemical evidence for magmatic fluids in porphyry copper mineralization[J]. Contributions to Mineralogy and Petrology, 1982, 78(4): 404-412.
[40] Ray G, Webster I. Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, Heffley Lake, south-central British Columbia[J].Exploration and Mining Geology, 2007, 16(3/4): 159-186.
[41] Kamvong T, Zaw K, Siegele R.PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: A pilot study[C]∥5th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress, 2007: 197-200.
[42] Reguir E P, Chakhmouradian A R, Halden N M,et al. Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania[J]. Canadian Mineralogist, 2008, 46: 879-900.
[43] Nadoll P, Mauk J L. Wustite in a hydrothermal silver-lead-zinc vein, Lucky Friday mine, Coeur d'Alene mining district, USA[J].American Mineralogist, 2011, 96(2/3): 261-267.
[44] Buddington A F, Lindsley D H. Iron-Titanium Oxide Minerals and Synthetic Equivalents[J].Journal of Petrology, 1964, 5(2): 310-357.
[45] Frost B R. Introduction to oxygen fugacity and its petrologic importance[J].Reviews in Mineralogy and Geochemistry, 1991, 25(1): 1-9.
[46] Xu Guofeng, Shao Jielian. Typomorphic characteristics of magnetite and its practical significance[J].Geology and Exploration, 1979,(3): 30-37.
[徐国风, 邵洁莲. 磁铁矿的标型特征及其实际意义[J]. 地质与勘探, 1979, (3): 30-37.]
[47] Lin Shizheng. Discussion on mineral chemistry, origin and evolution of magnetite[J].Chinese Journal of Mineralogy, 1982, (3): 166-174.
[林师整. 磁铁矿矿物化学、成因及演化的探讨[J]. 矿物学报,1982,(3):166-174.]
[48] Chen Guangyuan, Sun Daisheng, Yin Huian. Genetic and Prospecting Mineralogy[M].Chongqing: Chongqing Publishing House, 1987.
[陈光远, 孙岱生, 殷辉安. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1987.]
[49] Wang Shunjin. Discussion on the Typomorphic Characteristics of Magnetite[M].Wuhan: China University of Geosciences Press, 1987.
[王顺金. 论磁铁矿的标型特征[M]. 武汉: 中国地质大学出版社, 1987.]
[50] Müller B, Axelsson M D, ?hlander B. Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS[J].GFF, 2003, 125(1): 1-5.
[51] Beaudoin G, Dupuis C. Iron-oxide trace element fingerprinting of mineral deposit types[C]∥Exploring for iron oxide copper-gold deposits: Canada and global analogues.GAC Short Course Notes, 2009: 107-121.
[52] Dare S A S, Barnes S J, Beaudoin G,et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49(7): 785-796.
[53] Nadoll P, Mauk J L, Hayes T S,et al. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States[J]. Economic Geology, 2012, 107(6): 1 275-1 292.
[54] Singoyi B, Danyushevsky L, Davidson G,et al.Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique[C]∥SEG 2006: Wealth Creation in the Minerals Industry. Society of Economic Geologists, Keystone, USA,2006: 367-368.
[55] Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G,et al. Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits[J]. Ore Geology Reviews, 2016, 72(Part 1): 60-85.
[56] Duran C J, Barnes S J, Corkery J T. Trace element distribution in primary sulfides and Fe-Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration[J].Journal of Geochemical Exploration, 2016, 166: 45-63.
[57] Liu P P, Zhou M F, Chen W T,et al. In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(Part 4): 853-871.
[58] Canil D, Grondahl C, Lacourse T,et al. Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada[J]. Ore Geology Reviews, 2016, 72(Part 1): 1 116-1 128.
[59] Zhao W W, Zhou M-F. In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China[J].Ore Geology Reviews, 2015, 65(Part 4): 872-883.
[60] Dare S A S, Barnes S-J, Beaudoin G. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS[J].Mineralium Deposita, 2015, 50(5): 607-617.
[61] Chen W T, Zhou M F, Gao J F,et al. Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China[J]. Mineralium Deposita, 2015, 50(7): 795-809.
[62] Angerer T, Hagemann S G, Danyushevsky L V. Geochemical Evolution of the Banded Iron Formation-Hosted High-Grade Iron Ore System in the Koolyanobbing Greenstone Belt, Western Australia[J].Economic Geology, 2012, 107(4): 599-644.
[63] Chung D, Zhou M F, Gao J F,et al. In-situ LA-ICP-MS trace elemental analyses of magnetite: The late Palaeoproterozoic Sokoman Iron Formation in the Labrador Trough, Canada[J]. Ore Geology Reviews, 2015, 65(Part 4): 917-928.
[64] Dare S A S, Barnes S J, Beaudoin G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination[J].Geochimica et Cosmochimica Acta, 2012, 88: 27-50.
[65] Ryabchikov I D, Kogarko L N. Magnetite compositions and oxygen fugacities of the Khibina magmatic system[J].Lithos, 2006, 91(1/4): 35-45.
[66] Rudnick R L, Gao S. 3.01-Composition of the Continental Crust A2[C]∥Holland H D, Turekian K K, eds.Treatise on Geochemistry. Oxford, Pergamon, 2003: 1-64.
[67] Nielsen R L, Beard J S. Magnetite-melt HFSE partitioning[J].Chemical Geology, 2000, 164(1/2): 21-34.
[68] Toplis M J, Corgne A. An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium[J].Contributions to Mineralogy and Petrology, 2002, 144(1): 22-37.
[69] Mahood G, Hildreth W. Large partition-coefficients for trace-elements in high-silica rhyolites[J].Geochimica et Cosmochimica Acta, 1983, 47(1): 11-30.
[70] Nadoll P, Mauk J L, Leveille R A,et al. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States[J]. Mineralium Deposita, 2015, 50(4): 493-515.
[71] Rusk B, Oliver N, Brown A,et al. Barren magnetite breccias in the Cloncurry region, Australia: Comparisons to IOCG deposits[C]∥Smart Science for Exploration and Mining: Proceedings 10th Biennial Meeting of the SGA. Townsville, Australia,2009: 656-658.
[72] Rusk B G, Reed M H, Dilles J H. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana[J].Economic Geology, 2008, 103(2): 307-334.
[73] Baker T, Van Achterberg E, Ryan C G,et al. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 2004, 32(2): 117-120.
[74] Yardley B W D. 100th anniversary special paper: Metal concentrations in crustal fluids and their relationship to ore formation[J].Economic Geology, 2005, 100(4): 613-632.
[75] Ulrich T, Gunther D, Heinrich C A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature, 1999, 399(6 737): 676-679.
[76] Audetat A, Pettke T, Heinrich C A,et al. The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J]. Economic Geology, 2008, 103(5): 877-908.
[77] McQueen K, Cross A. Magnetite as a Geochemical Sampling Medium: Application to Skarn Deposits[C]. Brisbane, Geological Society of Australia, 1998: 194-199.
[78] Simon A C, Candela P A, Piccoli P M,et al. The effect of crystal-melt partitioning on the budgets of Cu, An, and Ag[J]. American Mineralogist, 2008, 93(8/9): 1 437-1 448.
[79] Carew M, Mark G, Oliver N,et al. Trace element geochemistry of magnetite and pyrite in Fe oxide (±Cu-Au) mineralised systems: Insights into the geochemistry of ore-forming fluids[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A83.
[80] Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J].Mineralium Deposita, 2005, 39(8): 864-889.
[81] Bhattacharya H N, Chakraborty I, Ghosh K K. Geochemistry of some banded iron-formations of the Archean supracrustals, Jharkhand-Orissa region, India[J].Journal of Earth System Science, 2007, 116(3): 245-259.
[82] Nielsen R L, Forsythe L M, Gallahan W E,et al. Major-element and trace-element magnetite-melt equilibria[J]. Chemical Geology, 1994, 117(1/4): 167-191.
[83] Otake T, Wesolowski D J, Anovitz L M,et al. Mechanisms of iron oxide transformations in hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2010, 74(21): 6 141-6 156.
[84] Larocque A C L, Stimac J A, McMahon G,et al. Ion-microprobe analysis of Fe-Ti oxides: Optimization for the determination of invisible gold[J]. Economic Geology, 2002, 97(1): 159-164.
[85] Jenner F E, O’Neill H S C, Arculus R J,et al. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu[J]. Journal of Petrology, 2010, 51(12): 2 445-2 464.
[86] Hu H, Lentz D, Li J W,et al. Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1): 1-8.
[87] Chen Huayong, Han Jinsheng. Study of Magnetite: Problems and Future[J].Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(4): 724-730.
[陈华勇, 韩金生. 磁铁矿单矿物研究现状, 存在问题和研究方向[J]. 矿物岩石地球化学通报, 2015, 34(4): 724-730.]
[88] Grigsby J D. Detrital magnetite as a provenance indicator[J].Journal of Sedimentary Research, 1990, 60(6): 940-951.
[89] Razjigaeva N G, Naumova V V. Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study[J].Journal of Sedimentary Research, 1992, 62(5): 802-809.
[90] Rusk B G, Oliver N, Zhang D,et al. Compostions of magnetite and sulfides from barren and mineralized IOCG deposits in the Eastern succession of the Mt Isalier, Australia[C]∥Geological Society of America Abstracts with Programs: GSA Annual Meeting. Portland, 2009, 41(7): 84.
[1] 张鹏, 袁洪林, 徐建, 高莲凤, 张振国, 杨策. 印尼海区浮游有孔虫壳体Mg/Ca值的LA-ICP-MS原位微区分析[J]. 地球科学进展, 2016, 31(5): 494-502.
[2] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[3] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[4] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[5] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[6] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[7] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[8] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
[9] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[10] 王将克;邹和平;郑卓. 农业生物地球化学———新兴的边缘学科[J]. 地球科学进展, 2004, 19(5): 852-859.
[11] 陈晋阳;郑海飞;曾贻善. 微量元素在幔源矿物与热液之间分配系数的研究进展[J]. 地球科学进展, 2004, 19(2): 224-229.
[12] 李江海;牛向龙;冯军. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展, 2004, 19(1): 17-025.
[13] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
[14] 刘大锰,刘志华,李运勇. 煤中有害物质及其对环境的影响研究进展[J]. 地球科学进展, 2002, 17(6): 840-847.
[15] 陈建芳. 古海洋研究中的地球化学新指标[J]. 地球科学进展, 2002, 17(3): 402-410.