地球科学进展 ›› 2017, Vol. 32 ›› Issue (3): 262 -275. doi: 10.11867/j.issn.1001-8166.2017.03.0262

上一篇    下一篇

磁铁矿LA-ICP-MS分析在矿床成因研究中的应用
黄柯 1, 2( ), 朱明田 1, 张连昌 1, *( ), 李文君 1, 2, 高炳宇 1   
  1. 1. 中国科学院地质与地球物理研究所 矿产资源研究重点实验室,北京 100029
    2.中国科学院大学,北京 100049
  • 收稿日期:2016-11-01 修回日期:2017-02-10 出版日期:2017-03-20
  • 通讯作者: 张连昌 E-mail:huangke@mail.iggcas.ac.cn;lczhang@mail.iggcas.ac.cn
  • 基金资助:
    国家自然科学基金面上项目“内蒙古毕力赫单金斑岩型矿床成矿作用研究”(编号:41572073)资助

LA-ICP-MS Analysis of Magnetite and Application in Genesis of Mineral Deposit

Ke Huang 1, 2( ), Mingtian Zhu 1, Lianchang Zhang 1, *( ), Wenjun Li 1, 2, Bingyu Gao 1   

  1. 1.Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-11-01 Revised:2017-02-10 Online:2017-03-20 Published:2017-03-20
  • Contact: Lianchang Zhang E-mail:huangke@mail.iggcas.ac.cn;lczhang@mail.iggcas.ac.cn
  • About author:

    First author:Huang Ke(1992-),male,Quxian County,Sichuan Province,Master student.Research areas include hydrothermal ore deposit.E-mail:huangke@mail.iggcas.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China“Ore-forming processes of the Bilihe gold-only porphyry deposit, Inner Mongolia”(No.41572073)

激光剥蚀电感耦合等离子体质谱(LA-ICP-MS),由于其原位、实时、低检测限、高空间分辨率等优点,在矿物原位微量元素分析方面具有独特的优势。磁铁矿作为多种矿床和岩石中的常见矿物,其化学组成一直是国内外学者关注的焦点。而大量的研究表明,在磁铁矿LA-ICP-MS分析过程中,基体效应不明显,一般采用富铁硅酸盐玻璃作为标样,就能够取得较为准确的结果。因此近年来磁铁矿原位微量元素研究进展迅速,并在反演成岩成矿条件、辅助判别矿床类型和间接指导找矿勘探等方面显示出广泛的应用前景。通过总结25个不同类型岩浆和热液矿床中磁铁矿微量元素数据,与前人在矿床类型判别上的研究进行了一定的对比,发现常用的磁铁矿判别图解可以用来区分多种不同类型的矿床,但是已经划分出的分类边界可能需要进一步细化和严格验证,并且事先仔细的岩相学观察是数据解释的重要基础。另外,通过磁铁矿微量元素分配对岩浆和热液过程一系列复杂物理化学条件(熔/流体成分、温度、冷却速率、压力、氧逸度、硫逸度和二氧化硅活度等)的响应进行了一定探讨。在岩浆阶段,磁铁矿成分与熔体组成及分异演化密切相关;而热液阶段,流体性质的变化也会显著改变磁铁矿的化学成分。并且后期流体的改造或者磁铁矿的亚固相再平衡作用会对磁铁矿的成因鉴别产生严重干扰。综述了近年来LA-ICP-MS在磁铁矿微量元素分析方面的发展以及在矿床学领域的重要应用,以期对成矿作用和成矿过程研究提供新的思路和方向。

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is well characterized by the in-situ, real time, lower limit of detection and high space resolution, etc. Therefore, it is more excellent in the analysis of trace element for varied minerals in comparison to other micro-zone analysis technologies. Magnetite as a common mineral from different deposits and rocks has been focused on chemical compositions by researchers worldwide. In fact, as the insignificant matrix effect for most elements in magnetite, analysis results could be calculated effectively against Fe-rich silicate glass as the reference material. Therefore, researches on trace element distribution of magnetite have been developed rapidly in recent years, and it has a wide application prospect in reflecting the condition of ore-forming, discriminating different deposit types and indicating prospecting exploration. Comparing varied previous discrimination diagrams about magnetite via collecting trace element data from available literatures based on 25 deposits, we found that there was an urgent need for further detailing and reexamining the boundary of fields representing different genetic types, and it was vital for interpreting the data through carefully petrographical observation before analysis. In addition, we discussed several complex physicochemical factors, which would influence the element concentration of magmatite in igneous and hydrothermal processes, such as melt/fluid composition, temperature, cooling rate, pressure, oxygen fugacity, sulfur fugacity and silica activity. In magma stage, Magnetite’s components are closely related to melts composition and differentiation, while fluid features would also significantly change magnetie's components. Furthermore, there is serious interference for discriminating the genesis of magnetite because of late stage fluids and equilibrium again in subsolidus condition. This paper reviewed the developments of trace elements analysis by LA-ICP-MS and important applications about magnetite in mineral deposit so that unique thoughts for the research on mineralization and ore-forming processes could be obtained.

中图分类号: 

图1 尖晶石族矿物间成分转换示意图 [ 15 ]
粗线连接的2个矿物表示可以形成完全固溶体,细线代表两者能形成有限固溶体
Fig.1 Schematic representation of composition transformation among the spinel group minerals [ 15 ]
Complete solid solution is shown by thick lines and limited solid solution is represented as thin lines between minerals
图2 不同配位数下Fe离子与其他常见阳离子的有效离子半径和化合价 [ 36 , 37 ]
Fig.2 Two diagrams that show the relationship between iron ion and other common cations with different ionic radiuses and cation charges in various coordination polyhedron [ 36 , 37 ]
图3 不同氧逸度—硫逸度条件下Fe赋存状态的变化 [ 37 , 43 ]
(a)Fe-Si-O体系氧化还原缓冲对与log fO 2- T关系图(HM:赤铁矿—磁铁矿,FMQ:铁橄榄石—磁铁矿—石英,MW:磁铁矿—方铁矿,IW:单质铁—方铁矿,IM:单质铁—磁铁矿,QIF:石英—单质铁—铁橄榄石);(b)Fe-O-S体系随氧逸度—硫逸度( fO 2fS 2)变化相图
Fig.3 The transformation of iron occurrence varies with oxygen and sulfur fugacity [ 37 , 43 ]
(a)log fO 2- T diagram showing relevant buffers for the Fe-Si-O system(HM: hematite-magnetite,FMQ:fayalite-magnetite-quartz,MW:magnetite-wüstite, IW: iron-wüstite, IM:iron-magnetite, QIF: quartz-iron-fayalite);(b)Schematic phase diagram for the system Fe-O-S in fO 2- fS 2 space
图4 磁铁矿成因判别三角图 [ 47 ~ 49 ]
(a)I.副矿物型,II.岩浆熔离钛磁铁矿型,III.火山岩型,IV.接触交代型,V.矽卡岩型,VI.沉积变质型;(b)I.沉积变质—接触交代磁铁矿,IIa.超基性—基性—中性岩浆磁铁矿,IIb.酸性—碱性岩浆磁铁矿;(c)I.花岗岩区(酸性岩浆岩—伟晶岩),II.玄武岩区(拉斑玄武岩等),III.辉长岩区(辉长岩—橄榄岩、二长岩、斜长岩—副矿物及铁矿石),IV.橄榄岩区(橄榄岩、纯橄榄岩、辉岩等—副矿物及铁矿石),V 1.角闪岩区(包括单斜辉石岩),V 2.闪长岩区,VI.金伯利岩区,VII.热液型及钙矽卡岩型(虚线以上主要为深成热液型,以下为热液型及矽卡岩型),VIII.热液型及镁矽卡岩型(深成热液型,部分为热液交代型),IX.沉积变质,热液叠加型,X.碳酸盐岩区(X 1与基性岩有关,X 2与围岩交代有关),XI.过渡区
Fig.4 Genetic discriminant ternary diagram of magnetite related major elements [ 47 ~ 49 ]
(a)I. Accessory mineral type,II. Magma immiscible titanomagnetite type,III. Volcanic type,IV. Contact metasomatic type,V. Skarn type,VI. Sedimentary metamorphic type;(b)I. Sedimentary metamorphic-contact metasomatic magnetite,IIa. Ultrabasic-basic-intermediate igneous magnetite,IIb. Acid-alkaline igneous magnetite;(c)I. Granite field(acidic rock,pegmatite),II. Basalt field(tholeiite, etc.),III. Gabbro field (gabbro,peridotite,monzonite,anorthosite-accessory mineral and iron ore),IV. Peridotite field(peridotite,dunite,pyroxenite, etc.accessory mineral and iron ore),V 1. Amphibolite filed(including clinopyroxenite),V 2. Diorite field,VI. Kimberlite field,VII. Hydrothermal type and calc-skarn type(hypogene hypothermal type above dash line,and hydrothermal plus skarn type below dash line),VIII. Hydrothermal type and magnesium skarn type(including hypothermal type and hydrothermal metasomatic type,partly),IX. Sedimentary metamorphic,hydrothermal overlapping type,X. Carbonatite field(including X 1 area related basic rock and X 2 area related wall rock alteration),XI. Transitional field
图5 判别不同类型矿床的Al/Co-Sn/Ga图解(数据来自参考文献[27,33,34,55~63])
Fig.5 The Sn/Ga vs. Al/Co diagram to distinguish magnetite from different deposit types(data from references [27,33,34,55~63])
表1 发育磁铁矿的代表性岩浆和热液矿床
Table 1 Representative magmatic and hydrothermal deposits that yield commonly magnetite
图6 基于磁铁矿成分的多种矿床类型判别图(底图据参考文献[15,37])
Fig.6 Discrimination diagram of different deposit fields based on magnetite compositions (base maps are from references[15,37])
图7 区分岩浆和热液磁铁矿的Ni/Cr-Ti图解(分界线据参考文献[52])
Fig.7 The Ni/Cr vs Ti diagram to distinguish magmatic and hydrothermal magnetite (boundary refers to reference[52])
[1] Liu Minwu, He Ying.Progress of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) applied in Earth science[J].Advances in Earth Science, 2003, 18(1): 116-121.
[刘民武, 赫英. 激光剥蚀等离子质谱微区分析在固体地球科学中的应用进展[J]. 地球科学进展, 2003, 18(1): 116-121.]
[2] Liu Yongsheng, Hu Zhaochu, Li Ming,et al.Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3 863-3 878.
[刘勇胜, 胡兆初, 李明,等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3 753-3 769.]
[3] Yuan Jihai, Zhan Xiuchun, Fan Xingtao,et al.Development of microanalysis of trace elements in sulfide minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2011, 30(2): 121-130.
[袁继海,詹秀春, 樊兴涛,等. 硫化物矿物中痕量元素的激光剥蚀—电感耦合等离子体质谱微区分析进展[J]. 岩矿测试, 2011, 30(2): 121-130.]
[4] Chambefort I, Dilles J H, Longo A A.Amphibole geochemistry of the Yanacocha Volcanics, Peru: Evidence for diverse sources of magmatic volatiles related to gold ores[J].Journal of Petrology, 2013, 54(5): 1 017-1 046.
[5] Audétat A, Günther D, Heinrich C A.Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia[J].Economic Geology, 2000, 95(8): 1 563-1 581.
[6] Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities[J].Chemical Geology, 2015, 402: 89-110.
[7] Williamson B J, Herrington R J, Morris A.Porphyry copper enrichment linked to excess aluminium in plagioclase[J].Nature Geoscience, 2016, 9(3): 237-241.
[8] Zhu L, Liu Y, Hu Z,et al.Simultaneous determination of major and trace elements in fused volcanic rock powders using a hermetic Vessel Heater and LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2013, 37(2): 207-229.
[9] Cao Mingjian.Petrogenesis and Metallogenesis of Baogutu Reduced Porphyry Copper Deposit, West Junggar, and Its Comparision with Porphyry Deposits from Balkhash[D].Beijing:University of Chinese Academy of Sciences, 2013.
[曹明坚. 西准包古图还原性斑岩铜矿成岩成矿过程及与巴尔喀什斑岩矿带对比[D]. 北京:中国科学院大学, 2013.]
[10] Stefanova E, Driesner T, Zajacz Z,et al.Melt and fluid inclusions in Hydrothermal Veins: The magmatic to hydrothermal evolution of the elatsite porphyry Cu-Au Deposit, Bulgaria[J]. Economic Geology, 2014, 109(5): 1 359-1 381.
[11] Wark D A, Watson E B.Titani Q: A titanium-in-quartz geothermometer[J].Contributions to Mineralogy and Petrology, 2006, 152(6): 743-754.
[12] Keith M, Haase K M, Schwarz-Schampera U,et al.Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents[J]. Geology, 2014, 42(8): 699-702.
[13] Reich M, Deditius A, Chryssoulis S,et al.Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study[J]. Geochimica et Cosmochimica Acta, 2013, 104: 42-62.
[14] Jin Luying, Qin Kezhang, Li Guangming,et al.Trace element distribution in sulfides from the Chalukou porphyry Mo-vein-type Zn-Pb system, northern Great Xing’an Range, China: Implications for metal source and ore exploration[J]. Acta Petrologica Sinica, 2015, 31(8): 2 417-2 434.
[金露英, 秦克章, 李光明,等. 大兴安岭北段岔路口斑岩Mo-热液脉状Zn-Pb成矿系统硫化物微量元素的分布、起源及其勘探指示[J]. 岩石学报, 2015, 31(8): 2 417-2 434.]
[15] Dupuis C, Beaudoin G.Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J].Mineralium Deposita, 2011, 46(4): 319-335.
[16] Huang X, Qi L, Meng Y.Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J].Acta Geologica Sinica, 2014, 88(1): 176-195.
[17] Beaudoin G.Application of iron-oxide chemistry in mineral exploration[C]∥McClenaghan M B,et al,eds. Application of Indicator Mineral Methods to Mineral Exploration. Geological Survey of Canada, Open File 7553 (also 26th International Applied Geochemistry Symposium, Short Course SC07, November 17, 2013, Rotarua, New Zealand), 2014: 47-49.
[18] Deyell C L, Hedenquist J W.Trace element geochemistry of enargite in the Mankayan district, Philippines[J].Economic Geology, 2011, 106(8): 1 465-1 478.
[19] Fang Weixuan, Li Jianxu.Metallogenic regulations,controlling factors,and evolutions of iron oxide copper and gold deposits in Chile[J].Advances in Earth Science, 2014,29(9): 1 011-1 024.
[方维萱, 李建旭. 智利铁氧化物铜金型矿床成矿规律, 控制因素与成矿演化[J]. 地球科学进展, 2014,29(9): 1 011-1 024.]
[20] Xiong Xin, Xu Wenyi, Jia Liqiong, et al.Reviews of structural settings of porphyry copper deposits in China[J].Advances in Earth Science, 2014,29(2): 250-264.
[熊欣, 徐文艺, 贾丽琼, 等.斑岩铜矿成矿构造背景研究进展[J]. 地球科学进展,2014,29(2): 250-264.]
[21] Jackson S E, Longerich H P, Dunning G R,et al.The application of Laser-Ablation Microprobe-Inductively Coupled Plasma-Mass-Spectrometry(LAM-ICP-MS) to insitu trace-element determinations in minerals[J]. Canadian Mineralogist, 1992, 30: 1 049-1 064.
[22] Lai Ting, Li Hongjuan.Comparison of 93,213,266 nm Femtosecond Laser in LA-ICP-MS application[C]∥The 14th Annual Conference of China Society for Mineralogy, Petrology and Geochemistry,Geological Journal of China Universities, 2013,19(Suppl.): 473.
[赖挺, 李红娟. 93, 213, 266 nm飞秒激光在LA-ICP-MS应用中的比较[C]∥中国矿物岩石地球化学学会第14届学术年会.高校地质学报, 2013, 19(增刊): 473.]
[23] Miliszkiewicz N, Walas S, Tobiasz A.Current approaches to calibration of LA-ICP-MS analysis[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 327-338.
[24] Liu Y, Hu Z, Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.
[25] Durrant F S.Laser ablation inductively coupled plasma mass spectrometry: Achievements, problems, prospects[J].Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1 385-1 403.
[26] Sylvester P J.Matrix effects in laser ablation ICP-MS[C]∥Sylvester P, eds. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues.Mineralogical Association of Canada. Short Course Series,2008,40: 67-78.
[27] Carew M.Controls on Cu-Au Mineralisation and Fe-oxide Metasomatism in the Eastern Fold Belt, NW Queensland, Australia[D].Townsville:James Cook University, 2004.
[28] Klemme S, Günther D, Hametner K,et al.The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon[J]. Chemical Geology, 2006, 234(3/4): 251-263.
[29] Savard D, Barnes S, Raju P S.Accurate LA-ICP-MS calibration for magnetite analysis using multiple reference materials[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): A914.
[30] Raju P S, Barnes S, Savard D,et al.Using magnetite as an indicator mineral, Step 1: Calibration of LA-ICP-MS[C]∥11th International Platinum Symposium(11th IPS). Laurentian University, Sudbury, 2010.
[31] Nadoll P, Koenig A E.LA-ICP-MS of magnetite: Methods and reference materials[J].Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1 872-1 877.
[32] Savard D, Barnes S, Dare S, et al.Improved calibration technique for magnetite analysis by LA-ICP-MS[J]. Mineralogical Magazine, 2012, 76(6): 2 329.
[33] Gao J-F, Zhou M-F, Lightfoot P C,et al.Sulfide saturation and magma emplacement in the formation of the Permian Huangshandong Ni-Cu sulfide deposit, Xinjiang, Northwestern China[J]. Economic Geology, 2013, 108(8): 1 833-1 848.
[34] Huang X W, Gao J F, Qi L,et al.In-situ LA-ICP-MS trace elements analysis of magnetite: The Fenghuangshan Cu-Fe-Au deposit, Tongling, Eastern China[J]. Ore Geology Reviews, 2016, 72(Part 1): 746-759.
[35] Goldschmidt V M.Geochemistry[J].Soil Science, 1954, 78(2): 156.
[36] Chen Jun, Wang Henian.Geochemistry[M]. Beijing: Science Press, 2004.
[陈俊, 王鹤年. 地球化学[M]. 北京:科学出版社, 2004.]
[37] Nadoll P, Angerer T, Mauk J L,et al.The chemistry of hydrothermal magnetite: A review[J]. Ore Geology Reviews, 2014, 61: 1-32.
[38] Sauerzapf U, Lattard D, Burchard M,et al.The titanomagnetite-ilmenite equilibrium: New experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks[J]. Journal of Petrology, 2008, 49(6): 1 161-1 185.
[39] Hendry D A F, Chivas A R, Reed S J B,et al. Geochemical evidence for magmatic fluids in porphyry copper mineralization[J]. Contributions to Mineralogy and Petrology, 1982, 78(4): 404-412.
[40] Ray G, Webster I.Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, Heffley Lake, south-central British Columbia[J].Exploration and Mining Geology, 2007, 16(3/4): 159-186.
[41] Kamvong T, Zaw K, Siegele R.PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance: A pilot study[C]∥5th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia Congress, 2007: 197-200.
[42] Reguir E P, Chakhmouradian A R, Halden N M,et al.Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania[J]. Canadian Mineralogist, 2008, 46: 879-900.
[43] Nadoll P, Mauk J L.Wustite in a hydrothermal silver-lead-zinc vein, Lucky Friday mine, Coeur d'Alene mining district, USA[J].American Mineralogist, 2011, 96(2/3): 261-267.
[44] Buddington A F, Lindsley D H.Iron-Titanium Oxide Minerals and Synthetic Equivalents[J].Journal of Petrology, 1964, 5(2): 310-357.
[45] Frost B R.Introduction to oxygen fugacity and its petrologic importance[J].Reviews in Mineralogy and Geochemistry, 1991, 25(1): 1-9.
[46] Xu Guofeng, Shao Jielian.Typomorphic characteristics of magnetite and its practical significance[J].Geology and Exploration, 1979,(3): 30-37.
[徐国风, 邵洁莲. 磁铁矿的标型特征及其实际意义[J]. 地质与勘探, 1979, (3): 30-37.]
[47] Lin Shizheng.Discussion on mineral chemistry, origin and evolution of magnetite[J].Chinese Journal of Mineralogy, 1982, (3): 166-174.
[林师整. 磁铁矿矿物化学、成因及演化的探讨[J]. 矿物学报,1982,(3):166-174.]
[48] Chen Guangyuan, Sun Daisheng, Yin Huian.Genetic and Prospecting Mineralogy[M].Chongqing: Chongqing Publishing House, 1987.
[陈光远, 孙岱生, 殷辉安. 成因矿物学与找矿矿物学[M]. 重庆: 重庆出版社, 1987.]
[49] Wang Shunjin.Discussion on the Typomorphic Characteristics of Magnetite[M].Wuhan: China University of Geosciences Press, 1987.
[王顺金. 论磁铁矿的标型特征[M]. 武汉: 中国地质大学出版社, 1987.]
[50] Müller B, Axelsson M D, Öhlander B.Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS[J].GFF, 2003, 125(1): 1-5.
[51] Beaudoin G, Dupuis C.Iron-oxide trace element fingerprinting of mineral deposit types[C]∥Exploring for iron oxide copper-gold deposits: Canada and global analogues.GAC Short Course Notes, 2009: 107-121.
[52] Dare S A S, Barnes S J, Beaudoin G,et al. Trace elements in magnetite as petrogenetic indicators[J]. Mineralium Deposita, 2014, 49(7): 785-796.
[53] Nadoll P, Mauk J L, Hayes T S,et al.Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States[J]. Economic Geology, 2012, 107(6): 1 275-1 292.
[54] Singoyi B, Danyushevsky L, Davidson G,et al.Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique[C]∥SEG 2006: Wealth Creation in the Minerals Industry. Society of Economic Geologists, Keystone, USA,2006: 367-368.
[55] Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G,et al.Principal component analysis of magnetite composition from volcanogenic massive sulfide deposits: Case studies from the Izok Lake (Nunavut, Canada) and Halfmile Lake (New Brunswick, Canada) deposits[J]. Ore Geology Reviews, 2016, 72(Part 1): 60-85.
[56] Duran C J, Barnes S J, Corkery J T.Trace element distribution in primary sulfides and Fe-Ti oxides from the sulfide-rich pods of the Lac des Iles Pd deposits, Western Ontario, Canada: Constraints on processes controlling the composition of the ore and the use of pentlandite compositions in exploration[J].Journal of Geochemical Exploration, 2016, 166: 45-63.
[57] Liu P P, Zhou M F, Chen W T,et al.In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China[J]. Ore Geology Reviews, 2015, 65(Part 4): 853-871.
[58] Canil D, Grondahl C, Lacourse T,et al.Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia, Canada[J]. Ore Geology Reviews, 2016, 72(Part 1): 1 116-1 128.
[59] Zhao W W, Zhou M-F.In-situ LA-ICP-MS trace elemental analyses of magnetite: The Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China[J].Ore Geology Reviews, 2015, 65(Part 4): 872-883.
[60] Dare S A S, Barnes S-J, Beaudoin G. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS[J].Mineralium Deposita, 2015, 50(5): 607-617.
[61] Chen W T, Zhou M F, Gao J F,et al.Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China[J]. Mineralium Deposita, 2015, 50(7): 795-809.
[62] Angerer T, Hagemann S G, Danyushevsky L V.Geochemical Evolution of the Banded Iron Formation-Hosted High-Grade Iron Ore System in the Koolyanobbing Greenstone Belt, Western Australia[J].Economic Geology, 2012, 107(4): 599-644.
[63] Chung D, Zhou M F, Gao J F,et al.In-situ LA-ICP-MS trace elemental analyses of magnetite: The late Palaeoproterozoic Sokoman Iron Formation in the Labrador Trough, Canada[J]. Ore Geology Reviews, 2015, 65(Part 4): 917-928.
[64] Dare S A S, Barnes S J, Beaudoin G. Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: Implications for provenance discrimination[J].Geochimica et Cosmochimica Acta, 2012, 88: 27-50.
[65] Ryabchikov I D, Kogarko L N.Magnetite compositions and oxygen fugacities of the Khibina magmatic system[J].Lithos, 2006, 91(1/4): 35-45.
[66] Rudnick R L, Gao S.3.01-Composition of the Continental Crust A2[C]∥Holland H D, Turekian K K, eds.Treatise on Geochemistry. Oxford, Pergamon, 2003: 1-64.
[67] Nielsen R L, Beard J S.Magnetite-melt HFSE partitioning[J].Chemical Geology, 2000, 164(1/2): 21-34.
[68] Toplis M J, Corgne A.An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium[J].Contributions to Mineralogy and Petrology, 2002, 144(1): 22-37.
[69] Mahood G, Hildreth W.Large partition-coefficients for trace-elements in high-silica rhyolites[J].Geochimica et Cosmochimica Acta, 1983, 47(1): 11-30.
[70] Nadoll P, Mauk J L, Leveille R A,et al.Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States[J]. Mineralium Deposita, 2015, 50(4): 493-515.
[71] Rusk B, Oliver N, Brown A,et al.Barren magnetite breccias in the Cloncurry region, Australia: Comparisons to IOCG deposits[C]∥Smart Science for Exploration and Mining: Proceedings 10th Biennial Meeting of the SGA. Townsville, Australia,2009: 656-658.
[72] Rusk B G, Reed M H, Dilles J H.Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana[J].Economic Geology, 2008, 103(2): 307-334.
[73] Baker T, Van Achterberg E, Ryan C G,et al.Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 2004, 32(2): 117-120.
[74] Yardley B W D. 100th anniversary special paper: Metal concentrations in crustal fluids and their relationship to ore formation[J].Economic Geology, 2005, 100(4): 613-632.
[75] Ulrich T, Gunther D, Heinrich C A.Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J].Nature, 1999, 399(6 737): 676-679.
[76] Audetat A, Pettke T, Heinrich C A,et al.The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions[J]. Economic Geology, 2008, 103(5): 877-908.
[77] McQueen K, Cross A. Magnetite as a Geochemical Sampling Medium: Application to Skarn Deposits[C]. Brisbane, Geological Society of Australia, 1998: 194-199.
[78] Simon A C, Candela P A, Piccoli P M,et al.The effect of crystal-melt partitioning on the budgets of Cu, An, and Ag[J]. American Mineralogist, 2008, 93(8/9): 1 437-1 448.
[79] Carew M, Mark G, Oliver N,et al.Trace element geochemistry of magnetite and pyrite in Fe oxide (±Cu-Au) mineralised systems: Insights into the geochemistry of ore-forming fluids[J]. Geochimica et Cosmochimica Acta, 2006, 70(18): A83.
[80] Heinrich C A.The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study[J].Mineralium Deposita, 2005, 39(8): 864-889.
[81] Bhattacharya H N, Chakraborty I, Ghosh K K.Geochemistry of some banded iron-formations of the Archean supracrustals, Jharkhand-Orissa region, India[J].Journal of Earth System Science, 2007, 116(3): 245-259.
[82] Nielsen R L, Forsythe L M, Gallahan W E,et al.Major-element and trace-element magnetite-melt equilibria[J]. Chemical Geology, 1994, 117(1/4): 167-191.
[83] Otake T, Wesolowski D J, Anovitz L M,et al.Mechanisms of iron oxide transformations in hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2010, 74(21): 6 141-6 156.
[84] Larocque A C L, Stimac J A, McMahon G,et al. Ion-microprobe analysis of Fe-Ti oxides: Optimization for the determination of invisible gold[J]. Economic Geology, 2002, 97(1): 159-164.
[85] Jenner F E, O’Neill H S C, Arculus R J,et al. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu[J]. Journal of Petrology, 2010, 51(12): 2 445-2 464.
[86] Hu H, Lentz D, Li J W,et al.Reequilibration processes in magnetite from iron skarn deposits[J]. Economic Geology, 2015, 110(1): 1-8.
[87] Chen Huayong, Han Jinsheng.Study of Magnetite: Problems and Future[J].Bulletin of Mineralogy Petrology and Geochemistry, 2015, 34(4): 724-730.
[陈华勇, 韩金生. 磁铁矿单矿物研究现状, 存在问题和研究方向[J]. 矿物岩石地球化学通报, 2015, 34(4): 724-730.]
[88] Grigsby J D.Detrital magnetite as a provenance indicator[J].Journal of Sedimentary Research, 1990, 60(6): 940-951.
[89] Razjigaeva N G, Naumova V V.Trace element composition of detrital magnetite from coastal sediments of northwestern Japan Sea for provenance study[J].Journal of Sedimentary Research, 1992, 62(5): 802-809.
[90] Rusk B G, Oliver N, Zhang D,et al.Compostions of magnetite and sulfides from barren and mineralized IOCG deposits in the Eastern succession of the Mt Isalier, Australia[C]∥Geological Society of America Abstracts with Programs: GSA Annual Meeting. Portland, 2009, 41(7): 84.
[1] 康健,陈列锰,宋谢炎,戴智慧,郑文勤. 金川超大型 Ni-Cu-( PGE)矿床橄榄石微量元素特征及地质意义[J]. 地球科学进展, 2019, 34(4): 382-398.
[2] 林祖苇,赵新福,熊乐,朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示[J]. 地球科学进展, 2019, 34(4): 399-413.
[3] 张鹏, 袁洪林, 徐建, 高莲凤, 张振国, 杨策, Ce Yang. 印尼海区浮游有孔虫壳体Mg/Ca值的LA-ICP-MS原位微区分析[J]. 地球科学进展, 2016, 31(5): 494-502.
[4] 黄从俊, 李泽琴. 拉拉IOCG矿床萤石的微量元素地球化学特征及其指示意义[J]. 地球科学进展, 2015, 30(9): 1063-1073.
[5] 曹 剑,吴 明,王绪龙,胡文瑄,向宝力,孙平安,施春华,鲍海娟. 油源对比微量元素地球化学研究进展[J]. 地球科学进展, 2012, 27(9): 925-937.
[6] 黄建国,李虎杰,李文杰,董 磊. 贵州戈塘金矿萤石微量元素特征及钐—钕测年[J]. 地球科学进展, 2012, 27(10): 1087-1093.
[7] 陈莹,庄国顺,郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010, 25(7): 682-690.
[8] 余吉远,李向民,马中平,孙吉明,王建强. 青海省祁连县清水沟-白柳沟矿田含矿火山岩系年代学研究[J]. 地球科学进展, 2010, 25(1): 55-60.
[9] 胡耀武,Michael P.Richards,刘武,王昌燧. 骨化学分析在古人类食物结构演化研究中的应用[J]. 地球科学进展, 2008, 23(3): 228-235.
[10] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
[11] 腾格尔;刘文汇;徐永昌;陈践发. 无机地球化学参数与有效烃源岩发育环境的相关研究[J]. 地球科学进展, 2005, 20(2): 193-200.
[12] 王将克;邹和平;郑卓. 农业生物地球化学———新兴的边缘学科[J]. 地球科学进展, 2004, 19(5): 852-859.
[13] 陈晋阳;郑海飞;曾贻善. 微量元素在幔源矿物与热液之间分配系数的研究进展[J]. 地球科学进展, 2004, 19(2): 224-229.
[14] 李江海;牛向龙;冯军. 海底黑烟囱的识别研究及其科学意义[J]. 地球科学进展, 2004, 19(1): 17-025.
[15] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
阅读次数
全文


摘要