地球科学进展 ›› 2004, Vol. 19 ›› Issue (1): 17 -025. doi: 10.11867/j.issn.1001-8166.2004.01.0017

研究论文 上一篇    下一篇

海底黑烟囱的识别研究及其科学意义
李江海;牛向龙;冯军   
  1. 北京大学地球与空间科学学院,北京 100871
  • 收稿日期:2003-04-07 修回日期:2003-09-11 出版日期:2004-01-20
  • 通讯作者: 李江海(1965),男,山西太原人,教授,主要从事区域构造学及前寒武纪地质学研究与教学. E-mail:E-mail: jhli@pku.edu.cn
  • 基金资助:

    国家自然科学基金项目“鲁西晚前寒武纪岩墙群形成机制及其区域对比”(编号:40172066);“遵化—辽西太古代蛇绿岩”(编号:40242014)资助

THE IDENTIFICATION OF THE FOSSIL BLACK SMOKER CHIMNEY AND ITS IMPLICATION FOR SCIENTIFIC RESEARCH

LI Jianghai,  NIU Xianglong,FENG Jun   

  1. School of Earth and Space Sciences, Peking University, Beijing 100871,China
  • Received:2003-04-07 Revised:2003-09-11 Online:2004-01-20 Published:2003-02-01

现代海底黑烟囱广泛出现于大洋中脊、弧后盆地、浅海及大陆裂谷等环境,形成巨大规模的块状硫化物,并且在黑烟囱周围发现了化学自养细菌。海底硫化物黑烟囱具有明显的柱状-锥状构造形态,常保留通道构造,矿物同心圈状分带明显。黑烟囱的形成涉及热液流体与海水相互作用,外壁快速沉淀及通道内部硫化物结晶等过程。深部岩浆热源、热液沿裂隙集中流动和持续喷发,有利于形成大规模黑烟囱构造。海底硫化物丘体的钻探及其与地史时期块状硫化物的对比研究表明,它们具有相似的内部构造和矿床分带特征。黑烟囱的生长、垮塌以及丘体内部角砾化、交代、重结晶作用,有助于大规模矿床的形成。最后,在块状硫化物中寻找黑烟囱残片的研究,对于探讨成矿过程与早期生命活动具有重要意义。

The present day black smoker chimneys and mounds have been widely found in the settings of mid-oceanic ridge, backarc basin, shallow sea and continental rift, which result in the formation of massive sulfide deposits at the vent sites. Moreover, these deep vents support chemosynthetic metabolizing bacteria. The modern sulfide chimneys commonly show evident columnar to conical geometry, characterized with the concentric mineralogical zonation around a central conduit. The black smoker chimney is formed when the mineral laden hydrothermal fluid is mixed with the surrounding ocean water.  It begins to grow by the instant precipitation around outer wall, followed by the crystallization of polymetal sulphide on inner wall of conduits. The deeply seated magma as heat source, hydrothermal fluid concentrated within fissures and continuous eruption are favorable to the creation of a giant black smoker chimney. The drilling  in sulphide mounds at the ocean bottom and their comparison with VMS (volcanogenic massive sulfide) indicate that they have similar internal structures and mineral zonation. The sulphide mounds of economic value are built with the accumulation of collapsed chimney and breccias, reworked by replacement and recrystalization. Finally, the identification of chimney structures within VMS is very important for the understanding of the process of minerallization and the origin of life.

中图分类号: 

[1]Scott S. Minerals on land, minerals in the sea[J]. Geotimes, 2002, 47:1-8.
[2] Rona P A, Scott S D. A special issue on seafloor hydrothermal mineralization: New perspectives, preface[J]. Economic Geology,1993,88: 1 935-1 975.
[3] Rona P A, Hannington M D, Raman C V, et al. Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field,MidAtlantic ridge[J]. Economic Geology,1993,88:1 989-2 017.
[4] Wu Shiying(吴世迎).The Hydrothermal Sulphide Resource at Sea Floor of the World[M]. Beijing:Oceanic Press,2000.1-290(in Chinese).
[5] Zhang Yun(张昀). Biological Evolution[M]. Beijing: Beijing University Press,1998.41-86(in Chinese).
[6] Rona P A. Mineral deposits from seafloor hot spring[J]. Scientific American,1986,254:84-92.
[7] Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans?[A]. In: Cann J R, Elderfield H, Laughton A,eds. Mid Ocean Ridges: Dynamics of Processes Associated with Creation of New Ocean Crust[C]. Cambridge: Cambridge University Press, 1999.211-224.
[8] Fouquet Y, Stackelberg U, Charlou J L, et al. Hydrothermal activity in the Lau backarc basin: Sulfides and water chemistry[J]. Geology, 1991,19: 303-306.
[9] Fouquet Y, Stackelberg U, Charlou J L, et al. Metallogenesis in backarc environments: The Lau Basin example[J]. Economic Geology, 1993,88: 2 154-2 181.
[10] Fouquet Y, Wafik A, Cambon P,et al.Tectonic setting and mineralogical and geopchemical zonation in the Snake pit sulfide deposit(MidAtlantic ridge at 23°N)[J].Economic Geology, 1993,88: 2 018-2 036.
[11] Halbach P, Blum N, Munch U, et al. Formation and decay of a modern massive sulfide deposit in the Indian Ocean[J]. Mineralium Deposita, 1998,33: 302-309.
[12] Halbach P, Pracejus B. Geology and Minerallogy of massive sulfide ores from the central Okinawa trough, Japan[J].Economic Geology, 1993,88: 2 210-2 225.
[13] Bendel V, Fouquet Y, Auzende J, et al. The White Lady hydrothermal field, North Fiji backarc basin,Southwest Pacific[J].Economic Geology, 1993,88: 2 237-2 249.
[14] Goodfellow W G, Franklin J M.Geology, mineralogy and chemistry of sedimenthosted clastic massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge[J]. Economic Geology, 1993, 88:2 037-2 068.
[15] Zierenberg R A, Koski R A, Morton J L, et al. Genesis of  massive sulfide deposits on a sedimentcovered spreading center,Escanaba Trough, southern Gorda Ridge[J]. Economic Geology, 1993, 88:2 069-2 098.
[16] Crane K. Hydrothermal vents in Lake Baikal[J]. Nature, 1991,350: 281.
[17] Shanks W C, Callender E. Thermal springs in Lake Baikal[J].Geology, 1992,20: 495-497.
[18] Tiercelin J, Pflumio C, Castrec M, et al. Hydrothermal  vents in lake Tanganyika,East African rift system[J]. Geology, 1993,21: 499-502.
[19] Lalou C, Reyss J L, Brichet E.Age of subbottom sulfides samples at the TAG active mound[A]. In:  Herzig P M, Humphris S E, Miller D J, eds.  Proceedings of The Ocean Drilling Program[C]. Scientific Results, 1998,158:111-117.
[20] Herzig P M, Hannington M D, Fouquet Y, et al. Goldrich polymetallic sulphides from the Lau backarc and implications for the geochemistry of gold in seafloor hydrothermal systems of the southwest Pacific[J]. Economic Geology, 1993,88: 2 182-2 209.
[21] Tunnicliffe V, Fowler C M R, Mcarthur A G. Plate tectonic history and hot vent biogeography[A].  In: Macleod C J, Tyler P A, Walker C L, eds. Tectonic, Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C].Geological Society, London Special Publication, 1996,118: 225-238.
[22] Rona P A.Marine minerals for the 21st centry[J]. Episodes,2002,25: 2-12.
[23] Von Damm K L. Lost city found[J]. Nature, 2001,412: 127-128.
[24] Kelley D S, Karson J A, Blackman D K, et al. An offaxis hydrothermal vent field near the midatlantic Ridge at 30°N[J]. Nature, 2001,412:145-149.
[25] Hannington M D, Galley A G, Herzig P M, et al.Comparison of the TAG mound and stockwork complex with Cyprustype massive sulfide deposits[A]. In: Herzig P M, Humphris S E,  Miller D J, eds.  Proceedings of The Ocean Drilling Program[C]. Scientific Results,1998,158:389-415.
[26] James R H, Duckworth R C, Palmer M R, et al. Drillling of sedimenthosted massive sulphide deposits at the middle valley and Escanaba trough spreading centers:ODP leg 169[A]. In: Mills R A, Harrison K, eds.Modern Ocean Floor Processes and the Geological Record[C]. Geological Society, London, Special Publication, 1998,148:177-199.
[27] You C F, Bickle M J. Evolution of an active seafloor massive sulphide deposit[J]. Nature, 1998,394: 668-671.
[28] Zierenberg R A, Fouquet Y, Miller D J, et al. The  deep structure of a seafloor hydrothermal deposit[J]. Nature, 1998,392: 485-488.
[29] Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: A vertical section through the TAG mound[A]. In: Herzig P M, Humphris S E, Miller D J, eds.Proceedings of the Ocean Drilling Program[C]. Scientific Results, 1998,158: 5-26.
[30] Humphris S E, Tivey M K.A synthesis of geological and geochemical investigations of the TAG hydrothermal field: Insights into fluidflow and mixing processes in a hydrothermal system[A].In: Dilek Y, Moores E, Elthon D,eds. Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program[C]. Geological Society of America Special Paper, 2000,34: 213-235.
[31] Humphris S E, Herzig P M, Miller D J. The internal structure of an active seafloor massive sulphide deposit[J].Nature,1995,377: 713-716.
[32] Brown D, McClay K R. Data report: Sulfide textures in the active TAG massive sulfide deposit,260N, midAtlantic ridge[A]. In: Herzig P M, Humphris S E, Miller D J, eds.Proceedings of the Ocean Drilling Program[C]. Scientific Results, 1998,158:193-200.
[33] Nisbet E G, Fowler M R. The hydrothermal imprint on life:  Did heatshock proteins, metalloproteins and photosynthesis begin around hydrothermal vents? [A]. In: Macleod C J, Tyler P A, Walker C L,eds. Tectonic,Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C]. Geological Society,London, Special Publication,1996,118:239-251.
[34] Russell M J. The generation at hot springs of sedimentary ore deposits, microbialiates and life[J]. Ore Geology Reviews, 1996,10: 199-214.
[35] Haymon  R M, Koski R A, Abrams M J.Hydrothermal discharge zones beneath massive sulfide deposits mapped in the Oman ophiolite[J].Geology, 1989,17: 531-535.
[36] Gibson H L, Morton R I, Hudak G.Submarine volcanic process, deposits and environments favorable for the location of volcanicassociated massive sulfide deposits[A]. In: Barrie C T,Hannington M D,eds. Volcanicassociated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings[C]. Reviews in Economic Geology,1999,8: 13-51.
[37] Sawkins F J. Intergrated tectonicgenetic model for volcanichosted massive sulfide deposits[J].Geology, 1990,18: 1 061-1 064.
[38] Zaykov V V, Maslennikov V V, Zaykov E V,et al. Hydrothermal activity and segmentataion in the MagnitogorskWest Mugodjarian zone on the margins of the Urals palaeoocean[A]. In: Macleod C J, Tyler P A C L, eds.Tectonic,Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C]. Geological Society Special Publication, 1996,118: 199-210.
[39] Boyle J F, Robertson A H F. Evolving metallogenesis  at the Troodos spreading axis[A]. In: Gass I G, Lippard S J , Shelton A W, eds. Ophiolites and Oceanic Lithosphere[C]. Blackwell Scientific Publications,Oxfords: Geological Society, London,Special Publication, 1984,113: 169-181.
[40] Larter R C L, Boyce A J, Russell M J. Hydrothermal pyrite chimneys from the Ballynoe Baryte Deposit, Silvermines,county Tipperary,Ireland[J]. Mineral Deposita, 1981,16: 309318.
[41] Li Jianghai(李江海),  Feng Jun(冯军), Niu Xianglong(牛向龙), et al. The  preliminary report on the discovery of black smoker chimney within the Mesoproterozoic  sulphide deposit of North China[J].Acta Petrologica Sinica(岩石学报),2003,19:167-168(in Chinese).
[42] Boyce A J, Coleman M L, Russell M J. Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland[J].Nature, 1983, 306:545-550. 
[43] Herrington R J, Maslennikov V V, Spiro B, et al. Ancient vent chimney structures in the Silurian massive sulphides of the Urals[A]. In: Mills R A, Harrision K, eds. Modern Ocean Floor Processes and the Geological Record[C].Geological Society, London, Special Publications, 1998,148:241-257.
[44] Vearncombe S, Barley M E, Groves D I,et al.  3.26Ga black smokertype mineralization in the Strelley belt, Pilbara craton, Western Australia[J]. Journal of the Geological Society, London,1995, 152: 587-590.
[45] Little C T S, Cann J R, Herrington R J, et al. Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus[J]. Geology, 1999,27:1 027-1 030.
[46] Little C T S, Herrington R J, Maslennikov V V, et al.The fossil record of hydrothermal vent communities[A]. In: Mills R A, Harrison K, eds. Modern Ocean Floor Processes and the Geological Record[C]. Geological Society, London, Special Publication, 1998,148:259-270.

[1] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[2] 陈启林, 黄成刚. 沉积岩中溶蚀作用对储集层的改造研究进展 *[J]. 地球科学进展, 2018, 33(11): 1112-1129.
[3] 张亮, 秦蕴珊. 深海热液生态系统特征及其对极端微生物的影响[J]. 地球科学进展, 2017, 32(7): 696-706.
[4] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[5] 王云峰, 杨红梅. 金属硫化物矿床的成矿热液硫同位素示踪[J]. 地球科学进展, 2016, 31(6): 595-602.
[6] 方捷, 孙静雯, 徐宏庆, 叶锦华, 陈建平, 任梦依, 唐超. 北大西洋中脊海底多金属硫化物资源预测[J]. 地球科学进展, 2015, 30(1): 60-68.
[7] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[8] 刘昕明,林荣澄,黄丁勇. 深海热液口化能合成共生作用的研究进展[J]. 地球科学进展, 2013, 28(7): 794-801.
[9] 潘安阳, 杨群慧, 周怀阳, 王虎, 季福武. 深海溶解态锰和铁的原位分析技术研究进展[J]. 地球科学进展, 2013, 28(4): 420-428.
[10] 焦 鑫,柳益群,周鼎武,汪双双,南 云,周宁超,杨焱钧. “白烟型”热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2): 221-232.
[11] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[12] 胡庆成,吕新彪,高奇,刘洪,朱江,杨恩林. 热液金矿金的溶解和迁移研究进展[J]. 地球科学进展, 2012, 27(8): 847-856.
[13] 方维萱. 论铁氧化物铜金型(IOCG)矿床地球化学岩相学填图新技术研发[J]. 地球科学进展, 2012, 27(10): 1178-1184.
[14] 杨守业,王权. 冲绳海槽中部热液活动与IODP 331航次初步成果[J]. 地球科学进展, 2011, 26(12): 1282-1289.
[15] 陈顺,彭晓彤,周怀阳,李江涛,吴自军. 深海热液环境中的铁氧化菌及其矿化[J]. 地球科学进展, 2010, 25(7): 746-752.
阅读次数
全文


摘要