地球科学进展 ›› 2015, Vol. 30 ›› Issue (1): 60 -68. doi: 10.11867/j.issn.1001-8166.2015.01.0060

上一篇    下一篇

北大西洋中脊海底多金属硫化物资源预测
方捷 1, 5( ), 孙静雯 2, 徐宏庆 3, 叶锦华 4, 陈建平 5, 任梦依 5, 唐超 5   
  1. 1.中国地质调查局南京地质调查中心, 江苏 南京 210016
    2.南京大学城市规划设计研究院有限公司, 江苏 南京 210008
    3.正德职业技术学院, 江苏 南京 211106
    4.中国地质调查局发展研究中心, 北京 100037
    5.中国地质大学(北京)国土资源与高新技术研究中心, 北京 100083
  • 收稿日期:2014-07-07 修回日期:2014-11-18 出版日期:2015-03-05
  • 基金资助:
    中国大洋协会国际海域资源调查与开发“十二五”课题“多金属硫化物资源评价方法研究”(编号:DY125-11-R-02)资助

Prediction of Seafloors Polymetallic Sulphides Resources in the North Atlantic Ridge Area

Jie Fang 1, 5( ), Jingwen Sun 2, Hongqing Xu 3, Jinhua Ye 4, Jianping Chen 5, Mengyi Ren 5, Tangchao 5   

  1. 1 . Nanjing Center, China Geological Survey, Nanjing 210016, China
    2. Institute of Urban Planning and design, Nanjing University, Nanjing 210008, China
    3. Zhengde Polytechnic College, Department of Electronic Engineering, Nanjing, Jiangsu 11106, China
    4. Development and Research Center, China Geological Survey, Beijing 100037, China
    5. Institute of Land Resources and High Techniques, China University of Geosiences, Beijing 100083, China
  • Received:2014-07-07 Revised:2014-11-18 Online:2015-03-05 Published:2015-01-20

海底热液多金属硫化物是继大洋铁锰结核和富钴结壳之后发现的又一巨大具有开发远景的海底矿产资源, 具有巨大的潜在经济价值和良好的开发前景。通过综合分析国内外海底矿产资源特征, 总结海底多金属硫化物资源的找矿标志, 初步建立了海底多金属硫化物资源的描述性找矿模型, 并开展了北大西洋中脊海底多金属硫化物资源预测工作。证据权预测结果表明海底多金属硫化物的分布与水深地形、地球物理、海底扩张速率、沉积物厚度、海底火山地震等标志有很大的关系。预测结果与已有热液点具有较好的叠合度, 预测方法、预测模型具有可信度及可操作性, 对海底多金属硫化物资源调查和评价具有重要的指导意义。

Seafloor polymetallic sulphides are a huge development prospect of seabed mineral resources after the discovery of the Fe-Mn nodules and Cobalt-rich crusts. Seafloor polymetallic sulphides are produced by seafloor hydrothermal activities, which are high rich in copper, lead, zinc, gold and silver and other metals. Seafloor polymetallic sulphides mainly distribute in the mid-ocean ridge areas which have huge potential economic value and good development prospect. Currently, the main research focuses on the distribution of seafloor hydrothermal, mineralization mechanism, formation mechanism, environmental effect and so on, and the study and prediction of regional sulfide resources at this stage have almost not been carried out. Base on the information collection of the domestic and foreign researches of seabed mineral resources and comprehensive analysis of the characteristics of seabed mineral resources, the seafloor polymetallic sulfides resources ore-controlling factors and prospecting criteria were summarized, and a seafloor polymetallic sulphides descriptive resource prospecting model was initially established. The North Atlantic ridge area was chosen as the first stage to make a study to carry out the seafloor polymetallic sulfides resource forecasting. The predicted results of the weights of evidence method showed that there was a great relationship between the distribution of seafloor polymetallic sulfides resources and the indicators such as the depth of seabed topography, geophysical features, seafloor spreading rate, sediment thickness, submarine volcano seismics. The predicted results had a good superimposed effect with the existing hydrothermal point. Forecasting methods and model are credible and operational. The work of sulfide resource prediction and evaluation has a good guidance.

中图分类号: 

图1 热液循环模式示意图 [ 18 ]
Fig.1 Schematic diagram of hydrothermal circulation model [ 18 ]
表1 海底多金属硫化物资源描述性找矿模型
Table 1 descriptive model of Seafloor polymetallic sulfide resources
图2 研究区
Fig.2 The study area
表2 研究区找矿预测模型
Table 2 Prospecting prediction model of the study area
表3 预测因子权值表
Table 3 Predictors of weight table
图3 后验概率及预测远景区
Fig.3 The posterior probability and forecast prospects
[1] Liu Xinming, Lin Rongcheng, Huang Dingyong.Research progress of the chemosynthetic symbioses in the deep-sea hydrothermal vent[J].Advances in Earth Science, 2013, 28(7):794-801.
[刘昕明, 林荣澄, 黄丁勇. 深海热液口化能合成共生作用的研究进展[J].地球科学进展, 2013, 28(7):794-801.]
[2] Li Jun.Evaluation of the resource potential of modern seafloor hydrothermal massive sulfide deposits[J]. Marine Geology Letters, 2007, 23(6):23-30.
[李军. 现代海底热液块状硫化物矿床的资源潜力评价[J].海洋地质动态, 2007, 23(6):23-30.]
[3] Rona P A.Criteria for recognition of hydrothermal mineral deposits in oceanic crust[J]. Economic Geology, 1978, 73:135-160.
[4] Rona P A.Hydrothermal mineralization at oceanic ridges[J]. Canadian Mineralogist, 1988, 26: 431-465.
[5] Rona P A, Scott S D.A special issue on sea-floor hydrothermal mineralization: New perspectives[J]. Economic Geology, 1993, 88(8):1 935-1 976.
[6] Baker E T, German C R.On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M, eds. Mid-ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. Geophysical Monograph Series. Washington DC: American Geophysical Union, 2004:245-266.
[7] Herzig P M, Hanning M D.Polymetallic massive sulfides at the modern seafloor: A review[J]. Ore Geology Reviews, 1995, 10:95-115.
[8] Wu Shiying.World Seafloor Hydrothermal Sulfide Resource[M]. Beijing: Ocean Press, 2000:1-5.
[吴世迎. 世界海底热液硫化物资源[M].北京:海洋出版社, 2000:1-5.]
[9] Luan Xiwu.Distribution and tectonic environments of the hydrothermal fields[J].Advances in Earth Science, 2004, 19(6):931-938.
[栾锡武. 现代海底热液活动区的分布与构造环境分析[J].地球科学进展, 2004, 19(6):931-938.]
[10] Ji Min, Zhai Shikui.The analysis of the topographical environment characteristics of the typical modern marine hydrothermal activity regions[J].Acta Oceanologica Sinica, 2005, 27(6):46-55.
[季敏, 翟世奎. 现代海底典型热液活动区地形环境特征分析[J].海洋学报, 2005, 27(6):46-55.]
[11] Xia Jianxin, Li Chang.Deep-sea hydrothermal activity: A hot research topic[J].Journal of Geomechanics, 2007, 6(2):179-190.
[夏建新, 李畅.深海底热液活动研究热点[J].地质力学学报, 2007, 6(2):179-190.]
[12] Rona P A.TAG hydrothermal field: Mid-Atlantic ridge crest at latitude 26°N[J].Journal of the Geological Society, 1980, 137:385-402.
[13] Von Damm K L. Seafloor hydrothermal activity: Black smoker chemistry and chimneys[J]. Annual Review of Earth and Planetary Sciences, 1990, 18: 173.
[14] Rouxel O, Fouquet Y, Ludden J N.Subsurface processes at the Lucky Strike hydrothermal field, Mid-Atlantic Ridge: Evidence from sulfur, selenium, and iron isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68(10):2 295-2 311.
[15] Cathles L M.A capless 350 degrees C flow zone model to explain megaplumes, salinity variations, and high-temperature veins in ridge axis hydrothermal systems[J]. Economic Geology, 1993, 88(8): 1 977-1 988.
[16] Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge[J]. Nature, 1986, 321:33-37.
[17] Jiao Xin, Liu Yiqun, Zhou Dingwu, et al. Progress of research on “white smoke type” exhalative hydrothermal rocks[J].Advances in Earth Science, 2013, 28(2):221-232.
[焦鑫, 柳益群, 周鼎武, 等. “白烟型”热液喷流岩研究进展[J]. 地球科学进展, 2013, 28(2):221-232.]
[18] Liu Weiyong, Zheng Lianfu, Tao Chunhui, et al. On the feature of seafloor hydrothermal systems’ evolutionary and its mineralization in Mid-Ocean Ridge[J].Journal of Marine Sciences, 2011, 29(1): 25-33.
[刘为勇, 郑连福, 陶春辉, 等.大洋中脊海底热液系统的演化特征及其成矿意义[J]. 海洋学研究, 2011, 29(1): 25-33.]
[19] Hedenquist J W, Lowenstern J B.The role of magmas in the formation of hydrothermal ore deposits[J].Nature, 1994, 370(6 490):519-527.
[20] Zeng Zhigang, Zhai Shikui.Os isotopic compositions of seafloor massive sulfide from the TAG hydrothermal field in the Mid-Atlantic Ridge[J].Acta Sedimentologica Sinica, 2002, 20(3): 394-398.
[曾志刚, 翟世奎. 大西洋洋中脊 TAG 热液区中块状硫化物的 Os 同位素研究[J].沉积学报, 2002, 20(3): 394-398.]
[21] Zheng Yanpeng, Li Guanbao.Regional geological backgroud conditions and ore-controlling factors of submarine polymetallic sulfide[J]. Acta Mineralogica Sinica, 2007, (Suppl.):375-376.
[郑彦鹏, 李官保.海底多金属硫化物形成的区域地质背景条件与控矿因素[J].矿物学报, 2007, (增刊): 375-376.]
[22] Jing Chunlei.Analysis on the Regional Geological Background and Ore-controlling Factors of Submarine Hydrothermal Sulfide[D].Qingdao: First Institute of Oceanography, State Oceanic Administration, 2012.
[景春雷. 海底热液多金属硫化物成矿区域地质背景与控矿因素分析[D].青岛:国家海洋局第一海洋研究所, 2012.]
[23] Liu Yonggang, Du Dewen, Li Zhongshan, et al. Estimation of polymetallic nodule distribution and resource quantily in the CC zone and its adjacent areas of Pacific Ocean[J].Advances in Marine Science, 2009, 27(3): 342-350.
[刘永刚, 杜德文, 李钟山, 等.太平洋CC区及周边多金属结核分布及资源量预测[J].海洋科学进展, 2009, 27(3): 342-350.]
[24] Zeng Zhigang, Jiang Fuqing, Zhai Shikui, et al. Lead isotopic compositions of massive sulfides from the Jade hydrothermal field in the Okinawa Trough and its geological implications[J].Geochimica, 2000, 29(3):239-245.
[曾志刚, 蒋富清, 翟世奎, 等.冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及其地质意义[J].地球化学, 2000, 29(3):239-245.]
[25] Xiao Keyan.The new development of minerogenetic regulation and predecition—The comprehensive information methods[J].Advances in Earth Science, 1994, 9(2):18-23.
[肖克炎. 应用综合信息法研究成矿规律及成矿预测的新进展[J].地球科学进展, 1994, 9(2):18-23.]
[26] Xu Shanfa.Application of evidence weight method in the copper-gold mineral resources prediction in the north section of the Sanjiang region[J].Geology and Exploration, 2006, 3(2):54-59.
[徐善法. 证据权法在三江北段铜金矿床成矿预测中的应用[J].地质与勘探, 2006, 3(2):54-59.]
[27] Liu Chunxue, Qin Dexian, Dang Yutao, et al. Synthesis information based mineral resource prediction of Gaosong Field in Gejiu Tin Deposit[J].Advances in Earth Science, 2003, 18(6): 921-927.
[刘春学, 秦德先, 党玉涛, 等.个旧锡矿高松矿田综合信息矿产预测[J].地球科学进展, 2003, 18(6):921-927.]
[28] Rona P A, Klinkhammer G, Nelsen T A, et al. Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge[J]. Nature, 1986, 321:33-37.
[29] Rona P A.TAG hydrothermal field:Mid-Atlantic Ridge crest at latitude 26°N[J]. Journal of the Geological Society, 1980, 137:385-402.
[30] Tang Yong, He Zhuan, Wu Zhaocai, et al. The geophysical characteristics of hydrothermal plumes at the Logatchev vent field, Mid-Atlantic Ridge[J]. Acta Oceanologica Sinica, 2012, 34(1): 120-126.
[唐勇, 和转, 吴招才, 等.大西洋中脊Logatchev热液区的地球物理场研究[J].海洋学报, 2012, 34(1):120-126.]
[31] Jiang Shaoyong, Yang Tao, Li Liang, et al. Lead and sulfur isotopic compositions of sulfides from the TAG hydrothermal field, Mid-Atlantic Ridge[J]. Acta Petrologica Sinica, 2006, 22(10):2597-2602.
[蒋少涌, 杨涛, 李亮, 等.大西洋洋中脊TAG热液区硫化物铅和硫同位素研究[J].岩石学报, 2006, 22(10):2597-2602.]
[1] 陈顺,彭晓彤,周怀阳,李江涛,吴自军. 深海热液环境中的铁氧化菌及其矿化[J]. 地球科学进展, 2010, 25(7): 746-752.
[2] 李江涛,周怀阳,彭晓彤,吴自军. 海底热液活动区地微生物学研究中的分子生物学技术[J]. 地球科学进展, 2009, 24(9): 1015-1023.
[3] 翟世奎,李怀明,于增慧,于新生. 现代海底热液活动调查研究技术进展[J]. 地球科学进展, 2007, 22(8): 769-776.
[4] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
[5] 栾锡武. 现代海底热液活动区的分布与构造环境分析[J]. 地球科学进展, 2004, 19(6): 931-938.
[6] 曾志刚,秦蕴珊. 大洋钻探对海底热液活动研究的贡献[J]. 地球科学进展, 2003, 18(5): 764-772.
[7] 李粹中. 海底热液成矿活动研究的进展、热点及展望[J]. 地球科学进展, 1994, 9(1): 14-19.
阅读次数
全文


摘要