地球科学进展 ›› 2015, Vol. 30 ›› Issue (1): 69 -77. doi: 10.11867/j.issn.1001-8166.2015.01.0069

上一篇    下一篇

南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨
陈鹏( ), 施炜 *( )   
  1. 中国地质科学院地质力学研究所, 北京 100081
  • 收稿日期:2014-08-07 修回日期:2014-12-15 出版日期:2015-03-05
  • 通讯作者: 施炜 E-mail:pengchen1208@sina.cn;shiweinmg@163.com
  • 基金资助:
    国家自然科学基金面上项目“川东北双弧构造形成机理”(编号:41172184);中国地质调查局地质调查项目“中央造山带与南北构造带交汇区地壳深部地质调查”(编号:1212011220259)资助

The Mid-Late Jurassic Kinematic Model and Mechanical Mechanism of the Ductile Shear Zones in the South Qinling Structural Belt

Peng Chen( ), Wei Shi( )   

  1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
  • Received:2014-08-07 Revised:2014-12-15 Online:2015-03-05 Published:2015-01-20

南秦岭构造带为商丹缝合线以南的秦岭造山带部分。构造分析与同构造年代学研究证实该构造带内发育2条中—晚侏罗世区域性共轭韧性剪切带, 即ENE向宁陕左旋韧性剪切带和NW向安康右旋韧性剪切带, 其剪切变形年龄分别为169~162 Ma和178~163 Ma。通过对2条韧性剪切带的线理测量分析, 反演其最大主压应力的方位约为NE向, 与2条共轭韧性剪切带的钝角平分线一致, 符合最大有效力矩准则。据此确定中—晚侏罗世秦岭造山带主要受控于NESW向区域性构造挤压作用, 大致以秦岭造山带最狭窄部位(汉南—米仓山杂岩体)为界, 其内部地块受ENE向与NW向共轭韧性剪切系控制, 存在分别向西与向东的构造挤出活动。这一运动学模式可能代表了秦岭造山带中—晚侏罗世的主体变形方式。

The South Qinling structural belt, as a part of the Qinling orogen, is bounded by the Shang-Dan suture to the north. Previous studies show the two regional conjugate ductile shear zones developed in the Mid-Late Jurassic epoch, e.g., Ningshan ductile shear zone characteristic of ENE-striking, sinistral shearing, Ankang ductile shear zone typical of NW-direction, dextral shearing, whose shear deformation age respectively is 169~162 Ma and 178~163 Ma respectively. The lineations collected from the two ductile shear zones suggest the maximum principal stress (σ1) is characterized by the direction of NE trending consistent with their obtuse angle bisector, which is corresponded with maximum effective moment criterion. Thus, our work suggests the blocks delimited by the conjugate ductile shear zones (e.g., ENE-striking and NW-trending) in the interior of the Qinling orogen, dominated by NE-SW compression, pinned by the Hannan-Micangshan massif, laterally extruded in the Mid-Late Jurassic time, which is featured by westward escaping in western Qinling belt and eastward in the eastern Qinling belt. This kinematical model probably marks the dominated activity of the Qinling orogen in the Mid-Late Jurassic time.

中图分类号: 

图 1 秦岭造山带及周缘构造纲要图(据参考文献 [ 18 ]修改) NQSB.北秦岭构造带;SQSB.南秦岭构造带;SDS.商丹缝合带;MLS.勉略缝合带;DTB.大巴山推覆构造带;DFB.大巴山前陆构造带;LMS.龙门山构造带;TBB.桐柏地块;DBB.大别地块;SXB.随县地块;BKB.碧口地块;WDB.武当地块;HNM.汉南隆起;SNJM.神农架隆起;HLM.黄陵隆起;PLB.平利地块;AKB.安康地块;F1.城口—房县断裂;F2.安康断裂;F3.白河—十堰断裂;F4.宁陕断裂;F5.商丹断裂;F6.洛南—栾川断裂;F7.龙门山断裂;F8.阳平关断裂;F9.南勉略断裂;F10.勉略断裂
Fig. 1 Simplified structural map of the Qinling orogen and adjacent areas (modified from reference [ 18 ]) NQSB. North Qinling Structural Belt;SQSB. South Qinling Structural Belt;SDS. Shangdan Suture;MLS. Mianlue Suture;DTB.Dabashan Thrust Belt;DFB.Dabashan Foreland Belt;LMS.Longmenshan Structural Belt;TBB. Tongbai Block;DBB. Dabie Block;SXB. Suixian Block;HNM. Hannan Massif;SNJM. Shennongjia Massif;HLM. Huangling Massif;PLB. Pingli Block;AKB.Ankang Block;F1. Chengkou-Fangxian Fault;F2. Ankang Fault;F3. Baihe-Shiyan Fault;F4. Ningshan Fault;F5. Shandan Fault;F6. Luonan-Luanchuan Fault;F7. Longmenshan Fault;F8.Yangpingguan Fault;F9.South Mianlue Fault;F10.Mianlue Fault
图2 宁陕断裂带地质构造简图及其韧性剪切变形特征((b), (c), (d)引自参考文献[ 23 ]) (a) 构造要素赤平投影(下半球等角投影);(b) 中上泥盆统云母片岩中发育的不对称褶皱(观测点D390);(c) 云母片岩中发育的透入性拉伸线理(观测点D366);(d) 硅质岩中发育的透入性拉伸线理(观测点D336)
Fig.2 Geological map of the Ningshan fault zone and ductile deformation features ((b), (c), (d) from reference[ 23 ]) (a) Projection of the structural data;(b) Asymmetric fold of mica schist in Mid-Late Devonian;(c) Penetrative stretching foliation of mica schist;(d) Penetrative stretching foliation of siliceous rock
图3 安康韧性剪切带(DSZ-1和DSZ-2)面理和线理分析结果 [ 21 ]
Fig. 3 Plots of the foliation and lineation from the DSZ-1 and DSZ-2 ductile shear zone in the Ankang fault [ 21 ]
图4 安康韧性剪切带剪切变形特征 (a)矿物拉伸线理; (b) 不对称石英碎斑; (c) 云母鱼构造[ 19 ]; (d)σ型旋转碎斑系[ 21 ];Mc.白云母;Kf.钾长石;Qz.石英
Fig.4 Structural features of the Ankang ductile shear zone (a)Mineral stretching lineation; (b) Asymmetric quart porphyroclast; (c) Mica fish[ 19 ]; (d)σrotated porphyroclast[ 21 ];Mc. Muscovite; Kf. Feldspar; Qz. Quartz
图5 秦岭—大别造山带中-晚侏罗世运动学模式
Fig. 7 Kinematic model of the Qinling-Dabie orogen in the Mid-Late Jurassic
[1] Zhang Guowei, Zhang Benren, Yuan Xuecheng, et al.Qinling Orogenic Belt and Continental Dynamics[M]. Beijing: Science Press, 2001.
[张国伟, 张本仁, 袁学诚, 等.秦岭造山带与大陆动力学[M].北京:科学出版社, 2001.]
[2] Huang T K.On the migration of the Tsinling Geosyncline[J].Bulletin of Geological Society of China, 1931, 10(1):53-70.
[3] Li Chunyu.A preliminary study of plate tectonics of China[J].Bulletin of Chinese Academy of Geological Sciences, 1980, 2(1):11-19.
[李春昱. 中国板块构造的轮廓[J].中国地质科学院院报, 1980, 2(1):11-19.]
[4] Zhang Guowei, Meng Qingren, Lai Shaocong.Structure and tectonics of the Qinling orogen[J].Science in China(Series B), 1995, 25(9):994-1 003.
[张国伟, 孟庆任, 赖绍聪.秦岭造山带的结构构造[J].中国科学:B辑, 1995, 25(9):994-1 003.]
[5] Dong Yunpeng, Zhou Meifu, Zhang Guowei, et al. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China:Implications for the tectonic evolution of the Qinling orogenic belt[J].Journal of Asian Earth Sciences, 2008, 32(5):325-335.
[6] Dong Yunpeng, Zhang Guowei, Hauzenberger C, et al. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 2011, 122(1):39-56.
[7] Meng Qingren, Zhang Guowei.Timing of collision of the North and South China blocks:Controversy and reconciliation[J].Geology, 1999, 27(2):123-126.
[8] Wang Zongqi, Yan Zhen, Wang Tao, et al. New advances in the study on ages of metamorphic strata in the Qinling orogenic belt[J].Acta Geoscientia Sinica, 2009, 30(5):561-570.
[王宗起, 闫臻, 王涛, 等.秦岭造山带主要疑难地层时代研究的新进展[J].地球学报, 2009, 30(5):561-570.]
[9] Lu Xinxiang.Qinling granite reveals the evolution of tectonic process—The study progress in Qinling granite[J]. Advances in Earth Science, 1998, 13(2):213-214.
[卢欣祥. 秦岭花岗岩揭示的秦岭构造演化过程——秦岭花岗岩研究进展[J].地球科学进展, 1998, 13(2):213-214.]
[10] Li Sanzhong, Kusky T M, Wang Lu, et al. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: Insights from the Mianlue suture[J].Gondwana Research, 2007, 12(1):121-143.
[11] Li Sanzhong, Kusky T M, Zhao Guochun, et al. Thermochronological constraints on two-stage extrusion of HP/UHP terranes in the Dabie-Sulu orogen, east-central China[J].Tectonophysics, 2011, 504:25-42.
[12] He Jiankun, Lu Huafu, Zhu Bin.East Qinling Mountains orogenic belt at the southern margin of the northern Dabashan tectonic inversion and its dynamics[J].Geoscience, 1999, 34(2):139-153.
[何建坤, 卢华复, 朱斌.东秦岭造山带南缘北大巴山构造反转及其动力学[J].地质科学, 1999, 34(2):139-153.]
[13] Liu Shugen, Li Zhiwu, Liu Shun, et al.The Formation and Evolution of Dabashan Foreland Basin-Thrust Belt[M].Beijng:Geological Publishing House, 2006.
[刘树根, 李智武, 刘顺, 等.大巴山前陆盆地—冲断带的形成演化[M].北京:地质出版社, 2006.]
[14] Wang Erqi, Meng Qingren, Chen Zhi, et al. With Indosinian sinistral strike slip movement of Longmen Mountain Fault and its tectonic origin[J].Earth Science Frontiers, 2001, 8(2):375-384.
[王二七, 孟庆任, 陈智, 等.龙门山断裂带印支期左旋走滑运动及其大地构造成因[J].地学前缘, 2001, 8(2):375-384.]
[15] Dong Shuwen, Hu Jianmin, Shi Wei, et al. Jurassic superposed folds and Jurassic Daba Mountain foreland[J]. Acta Geoscientia Sinica, 2006, 27(5):403-410.
[董树文, 胡健民, 施炜, 等.大巴山侏罗纪叠加褶皱与侏罗纪前陆[J].地球学报, 2006, 27(5):403-410.]
[16] Dong Shuwen, Shi Wei, Zhang Yueqiao, et al. The tectonic stress field in the Dabashan Orogen resulting from Late mesozoic intra-continental orogeny[J].Acta Geoscientia Sinica, 2010, 31(6):769-780.
[董树文, 施炜, 张岳桥, 等.大巴山晚中生代陆内造山构造应力场[J].地球学报, 2010, 31(6):769-780.]
[17] Zhang Yueqiao, Shi Wei, Li Jianhua, et al. The Dabashan foreland arc structure belt formation mechanism analysis[J].Journal of Geology, 2010, 84(9):1 300-1 315.
[张岳桥, 施炜, 李建华, 等.大巴山前陆弧形构造带形成机理分析[J].地质学报, 2010, 84(9):1 300-1 315.]
[18] Hu Jianmin, Chen Hong, Qu Hongjie, et al. Mesozoic deformations of the Dabashan in the southern Qinling orogen, Central China[J].Journal of Asian Earth Sciences, 2012, 47:171-184.
[19] Shi Wei, Zhang Yueqiao, Dong Shuwen, et al. Intra-continental Dabashan orocline, southwestern Qinling, Central China[J].Journal of Asian Earth Sciences, 2012, 46:20-38.
[20] Shi Wei, Li Jianhua, Tian Mi, et al. The tectonic evolution of the Dabashan orocline, Central China:Insights from superposed folds in the eastern Dabashan foreland[J].Geoscience Frontiers, 2013, 4:729-741.
[21] Li Jianhua, Zhang Yueqiao, Dong Shuwen, et al. Structural and geochronological constraints on the Mesozoic tectonic evolution of the North Dabashan zone, South Qinling, Central China[J].Journal of Asian Earth Sciences, 2013, 64:99-114.
[22] Hu Jianmin, Shi Wei, Qu Hongjie, et al. The deformation of Mesozoic tectonic belt Dabashan curvilinear structural Qinling Mountains orogenic belt[J].Earth Science Frontiers, 2009, 16(3):49-68.
[胡健民, 施炜, 渠洪杰, 等.秦岭造山带大巴山弧形构造带中生代构造变形[J].地学前缘, 2009, 16(3):49-68.]
[23] Hu Jianmin, Meng Qingren, Chen Hong, et al. The tectonic evolution of Qinling Mountains orogenic belt and its significance in Ningshan fault belt[J].Acta Petrologica Sinica, 2011, 27(3):657-671.
[胡健民, 孟庆任, 陈虹, 等.秦岭造山带内宁陕断裂带构造演化及其意义[J].岩石学报, 2011, 27(3):657-671.]
[24] Meng Qingren, Zhang Guowei.Geologic framework and tectonic evolution of the Qinling orogen, Central China[J].Tectonophysics, 2000, 323(3):183-196.
[25] Bureau of Geology and Mineral Resources of Shannxi Province.Regional Geology of Shannxi Province[M]. Beijing: Geological Publishing House, 1989.
[陕西省地质矿产局. 陕西省地质志[M].北京:地质出版社, 1989.]
[26] Yin An.Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth-Science Reviews, 2006, 76(1):1-131.
[27] Chen Hanlin, Chen Shenqiang, Lin Xiubin.A review of the Cenozoic Tectonic evolution of Pamir syntax[J].Advances in Earth Science, 2014, 29(8):890-902.
[陈汉林, 陈沈强, 林秀斌.帕米尔弧形构造带新生代构造演化研究进展[J].地球科学进展, 2014, 29(8):890-902.]
[28] Shi Wei, Dong Shuwen, Hu Jianmin, et al. Western Dabashan foreland superimposed tectonic deformation analysis and the characteristics of tectonic stress field[J]. Acta Geologica Sinica, 2008, 81(10):1 314-1 327.
[施炜, 董树文, 胡健民, 等.大巴山前陆西段叠加构造变形分析及其构造应力场特征[J].地质学报, 2008, 81(10):1 314-1 327.]
[29] Bao Hanyong, Guo Zhanfeng, Zhang Luolei, et al. Tectonic dynamics of eastern China since the formation of the Pacifc plate[J].Advances in Earth Science, 2013, 28(3):337-346.
[包汉勇, 郭战峰, 张罗磊, 等.太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3):337-346.]
[30] Zheng Yadong, Wang Tao, Ma Mingbo, et al. Maximum effective moment criterion and the origin of low-angle normal faults[J].Journal of Structural Geology, 2004, 26(2):271-285.
[31] Zheng Yadong, Wang Tao, Wang Xinshe.The maximum effective moment criterion and the related geological tectonics[J]. Earth Science Frontiers, 2007, 14(4):49-60.
[郑亚东, 王涛, 王新社.最大有效力矩准则及相关地质构造[J].地学前缘, 2007, 14(4):49-60.]
[32] Watterson J.The future of failure: Stress or strain?[J]. Journal of Structural Geology, 1999, 21(8):939-948.
[33] Park R G.Shear-zone deformation and bulk strain in granite-greenstone terrain of the western superior province, Canada[J].Precambrian Research, 1981, 14(1):31-47.
[34] Zhang Zhongpei, Wang Qingchen.The summary and comment on fault-slip analysis and palaeostress reconstruction[J].Advances in Earth Science, 2004, 19(4):605-613.
[张仲培, 王清晨.断层滑动分析与古应力恢复研究综述[J].地球科学进展, 2004, 19(4):605-613.]
[35] Wu Hongling, Shi Wei, Dong Shuwen, et al. A numerical simulating study of mechanical characteristic of superposed deformation in Daba Mountain foreland[J]. Earth Science Frontiers, 2009, 16(3):190-196.
[武红岭, 施炜, 董树文, 等.大巴山前陆叠加构造力学特征的模拟研究[J].地学前缘, 2009, 16(3):190-196.]
[36] Dong Yunpeng, Zha Xianfeng, Fu Mingqing, et al. Characteristics of the Dabashan fold-thrust nappe structure at the southern margin of the Qinling, China[J].Geological Bulletin of China, 2008, 27(9):1 493-1 508.
[董云鹏, 查显峰, 付明庆, 等.秦岭南缘大巴山褶皱—冲断推覆构造的特征[J].地质通报, 2008, 27(9):1 493-1 508.]
[37] Li Wei, Dong Yunpeng, Guo Anlin, et al. Sedimentary fill history of the Huicheng Basin in the West Qinling Mountains and associated constraints on Mesozoic intracontinental tectonic evolution[J].Science in China(Series D), 2013, 43(5):730-744.
[李玮, 董云鹏, 郭安林, 等.西秦岭徽成盆地沉积充填过程及其对中生代陆内构造演化的制约[J].中国科学:D辑, 2013, 43(5):730-744.]
[38] Li Sanzhong, Kusky T M, Zhao Guochun, et al. Two-stage Triassic exhumation of HP-UHP terranes in the Dabie orogen of China:Constraints fromstructural geology[J].Tectonophysics, 2010, 490:267-293.
[39] Dong Shuwen, Gao Rui, Yin An, et al. What drove continued continent-continent convergence after ocean closure? Insights from high-resolution seismic-reflection profiling across the Daba Shan in central China[J].Geology, 2013, 41(6):671-674.
[40] Chen Hong, Hu Jianmin, Wu Guoli, et al.Study on the intracontinental deformation of the Mian-Lue suture belt, Western Qinling[J]. Acta Petrologica Sinica, 26(4):1 277-1 288.
[陈虹, 胡健民, 武国利, 等.西秦岭勉略带陆内构造变形研究[J].岩石学报, 2010, 26(4):1 277-1 288.]
[41] Ratschbacher L, Hacker B R, Webb L E, et al. Exhumation of the ultrahigh-pressure continental crust in east central China:Cretaceous and Cenozoic unroofing and the Tan-Lu fault[J].Journal of Geophysical Research: Solid Earth, 2000, 105(B6):13 303-13 338.
[42] Cui Jianjun, Liu Xiaochun, Dong Shuwen, et al. U-Pb and 40Ar/39Ar geochronology of the Tongbai complex, East China:Constrains on the Late Mesozoic orogeny and the exhumation of the HP/UHP rocks[J].Journal of Asian Earth Sciences, 2012, 47:155-170.
[1] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[2] 张佳伟,李汉敖,张会平,徐心悦. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 2020, 35(8): 848-862.
[3] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[4] 邓辉,李果营,杨海风,温宏雷,张参. 走滑应变椭圆模型的改进及应用举例[J]. 地球科学进展, 2019, 34(8): 868-878.
[5] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[6] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
[7] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[8] 姜高磊, 张克信, 徐亚东. 青藏高原古高程定量恢复研究进展[J]. 地球科学进展, 2015, 30(3): 334-345.
[9] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.
[10] 陈志耕. 软流层的地球膨胀成因及其形成时间[J]. 地球科学进展, 2013, 28(7): 834-846.
[11] 雷宝华. 生长断层活动强度定量研究的主要方法评述[J]. 地球科学进展, 2012, 27(9): 947-956.
[12] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[13] 陈凌,程骋,危自根. 华北克拉通边界带区域深部结构的特征差异性及其构造意义[J]. 地球科学进展, 2010, 25(6): 571-581.
[14] 李大鹏,陈岳龙,靳野. 板块俯冲带研究中的数值实验[J]. 地球科学进展, 2010, 25(6): 582-596.
[15] 赵军,郑国东,付碧宏. 活动断层的构造地球化学研究现状[J]. 地球科学进展, 2009, 24(10): 1130-1137.
阅读次数
全文


摘要