地球科学进展 ›› 2009, Vol. 24 ›› Issue (10): 1130 -1137. doi: 10.11867/j.issn.1001-8166.2009.10.1130

研究论文 上一篇    下一篇

活动断层的构造地球化学研究现状
赵军 1,2,郑国东 1,3*,付碧宏 4   
  1. 1.中国科学院油气资源研究重点实验室,甘肃 兰州 730000;    2.中国科学院研究生院,北京 100049;
    3.中国科学院地质与地球物理研究所工程地质力学重点实验室,北京 100029;
    4.中国科学院地质与地球物理研究所岩石圈演化国家重点实验室,北京 100029
  • 收稿日期:2009-04-24 修回日期:2009-07-30 出版日期:2009-10-10
  • 通讯作者: 郑国东(1961-), 男, 山东寿光人, 研究员, 主要从事油气储层地球化学、工程地球化学及环境地球化学研究. E-mail:gdzhuk@hotmail.com
  • 基金资助:

    中国科学院地质与地球物理研究所工程地质力学重点实验室“开放课题”“映秀—北川断裂活动性构造地球化学研究”(编号: 200903); 中国科学院“百人计划”项目 (2007年度择优支持)(编号: 2006060)资助.

Current Development of Tectonic-Geochemical Studies on Active Fault Zones

Zhao Jun 1,2, Zheng Guodong 1,3, Fu Bihong 4   

  1. 1.Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, CAS, Lanzhou 730000, China;
    2.Graduate University of the Chinese Academy of Sciences, Beijing 100029, China;
    3.Key Laboratory of Engineering Geomechanics, Institute of Geology and Geophysics, CAS, Beijing 100029, China;
    4.State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, CAS, Beijing 100029, China
  • Received:2009-04-24 Revised:2009-07-30 Online:2009-10-10 Published:2009-10-10
  • Supported by:

    中国科学院地质与地球物理研究所工程地质力学重点实验室“开放课题”“映秀—北川断裂活动性构造地球化学研究”(编号: 200903); 中国科学院“百人计划”项目 (2007年度择优支持)(编号: 2006060)资助.

      活动断层在形成演化过程中经常伴随很多复杂的构造地球化学作用,并导致诸如应力矿物的生长、断层泥矿物颗粒表面微形貌的形成、气体同位素异常等地质现象的出现,它们都可以用来判识活动断层的活动性、启闭性以及断裂带的三维展布状况,尤其是断裂带的深度等问题。因此,有关活动断裂带的断层泥、流体地球化学以及相关的水—岩相互作用等问题一直吸引众多科学家的密切关注,并在许多领域取得了丰硕的成果。但是,由于构造地质作用的极端复杂性,构造地球化学研究也仍然存在一些需要深入探究的科学问题。

        Various kinds of complicated tectono-geochemical processes always occurred in active fault zones along with their formation and evolution, which showed many abnormal phenomena such as the growth of stress minerals, the formation of surface micro-appearances of mineral particles in the fault gouge and/or rocks, gasous isotopic anomaly and so on. Systematic researches on the abnormal phenomena could be helpful to obtain significant information on the activity, opening and sealing properties and the three-dimensional layout, especially the fault depth etc. in active fault zones. Because active fault zones are normally very complicated with numerous physical-chemical processes, there are still large space and challenges for geochemical researches on fault gouge, fluid geochemistry, and water-rock interactions in the active fault zones.

中图分类号: 

[1] Editorial Board of the Dictionary of Earth Sciences. The Dictionary of Earth Sciences[M]. Beijing: Geological Publishing House, 2006.[地球科学大辞典编委会. 地球科学大辞典[M]. 北京: 地质出版社,2006.]
[2] Committee on Seismogeology, the Seismological Society of China.The Active Faults in China[M]. Beijing: Earthquake Publishing House, 1982.[中国地震学会地震地质专业委员会.中国活动断裂[M]. 北京:地震出版社,1982.]
[3] Lin Aiming, Fu Bihong, Guo Jianming, et al. Co-seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun (China) earthquake[J].Science, 2002, 296: 2 015-2 017.
[4] Seismological Bureau of Xinjiang Uygur Autonomous Region. The Fuyun Earthquake Fault Zone in Xinjiang China[M]. Beijing: Earthquake Publishing House, 1985.[新疆维吾尔自治区地震局.富蕴地震断裂带[M]. 北京: 地震出版社,1985.]
[5] Cheng Guoda, Huang Ruihua. Some problems on tectono-geochemistry[J].Geotectonica et Metallogenia, 1984, 4: 7-18.[陈国达,黄瑞华. 关于构造地球化学的几个问题[J]. 大地构造与成矿学,1984,4: 7-18.]
[6] Tu Guangchi. Tectonics and geochemistry[J].Geotectonica et Metallogenia,1984, 4: 1-6.[涂光炽. 构造与地球化学[J]. 大地构造与成矿学,1984,4: 1-6.]
[7] Deng Qidong, Zhang Peizhen, Ran Yongkang, et al. Basic characteristics of active tectonics of China[J]. Science in China (Series D),2002,32(12):1 020-1 031.[邓起东,张培震,冉勇康,等. 中国活动构造基本特征[J]. 中国科学:D辑,2002,32(12): 1 020-1 031.]
[8] Sheng Junfeng, Shen Xuhui, Chao Zhongquan, et al. The characteristics and significances of quartz micro-appearance in the fault gouges on evaluation of the fault activity[J].Journal of Mineralogy and Petrology,2007, 27(1): 90-96.[申俊峰,申旭辉,曹忠全,等. 断层泥石英微形貌特征在断层活动性研究中的意义[J]. 矿物岩石,2007,27(1):90-96.]
[9] Ben-Zion Y, Sammis C G. Characterization of fault zones[J].Pure and Applied Geophysics,2003, 160: 677-715.
[10] Kim Y S, Peacock D C P, Sanderson D J. Fault damage zones[J].Journal of Structural Geology,2004, 26: 503-517.
[11] Zhang Bingliang, Liu Guifen, Fang Zhongjing, et al. Characteristics of illite minerals in fault gouge from Xiaowan, Yunnan and their geological significance[J].Seismology and Geology,1994, 16(1): 89-96.[张秉良,刘桂芬,方仲景,等. 云南小湾断层泥中伊利石矿物特征及其意义[J]. 地震地质,1994,16(1): 89-96.]
[12] Bos B, Peach C J, Spiers C J. Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution[J].Tectonophysics,2000, 327: 173-194.
[13] Vrolijka P, van Der Pluijm B A. Clay gouge[J].Journal of Structural Geology,1999, 21: 1 039-1 048.
[14] Sibson R H. Fault rocks and fault mechanisms[J].Journal of the Geological Society of London,1977, 133: 190-213.
[15] Shao Shunmei. Present condition and progress of fault gouge research[J].Earthquake Research in Plateau,1994, 6(3): 51-56.[邵顺妹. 断层泥研究的现状和进展[J]. 高原地质,1994,6(3): 51-56.]
[16] Bos B, Spiers C J. Effect of phyllosilicates on fluid-assisted healing of gouge bearing faults[J].Earth and Planetary Science Letters,2000,184: 199-210.
[17] Masuda A, Sugino K, Toyota K. Lead isotopic composition in fault gouges and their parent rocks: Implication for ancient fault activity[J].Applied Geochemistry,1995, 10: 437-446.
[18] Fukuchi T. Direct ESR dating of fault gouge using clay minerals and assessment of fault activity[J]. Engineering Geology,1996, 43: 201-211.
[19] Ma Jin, Moore D E, Summers R,et al. The effect of temperature, pressure and pore pressure on the strength and sliding behavior of the gouges[J].Seismology and Geology,1985, 7(1): 15-24.[马瑾,Moore D E, Summers R,等. 温度压力孔隙压力对断层泥强度及滑动性质的影响[J]. 地震地质,1985,7(1): 15-24.]
[20] Ma Shengli, Ma Jin. Rheology of rocks and fault models[J].Progress in Geophysics,1995, 10(3):21-42.[马胜利,马瑾. 岩石的流变性质与断层模型[J]. 地球物理学进展,1995,10(3): 21-42.]
[21] Zhang Bingliang, Fang Zhongjing, Li Jianguo, et al. Activities of faults as determined from the microstructural features of the clay gouge[J].Journal of Geomechanics,1996, 2(2): 41-46.[张秉良,方仲景,李建国,等. 根据断层泥的微观特征探讨断层的活动性[J]. 地质力学学报,1996,2(2): 41-46.]
[22] Yu Weixian, Wang Bin, Mao Yan, et al. The SEM characteristics of the surface of quartz grains in the gouge of Chenghai fault and evaluation of its activity[J].Earthquake Research in China,2004, 20(4): 347-352.[俞维贤,王彬,毛燕,等. 程海断裂带断层泥中石英碎砾表面SEM特征及断层活动状态的分析[J]. 中国地震,2004,20(4): 347-352.]
[23] Wang Mingwu, Zhang Yangsong, Li Li, et al. Application of fault dating by the surface textures of quartz grains from fault gouges to the assessment of fault activity in the foundation area of a bridge[J].Journal of Hefei University of Technology(Natural Science), 2002, 25(3): 335-339.[汪明武,章杨松,李丽,等. 应用断层泥石英形貌测龄评价桥基断裂活动性[J]. 合肥工业大学学报:自然科学版,2002,25(3): 335-339.]
[24] Lin Chuanyong, Shi Lanbin, Liu Xingsong, et al. Significance of fault gouge in the study of recent activity of fault in bedrock area[J].Earthquake Research in China, 1995, 11(1): 26-32.[林传勇,史兰斌,刘行松,等. 断层泥在基岩区断层新活动研究中的意义[J]. 中国地震,1995,11(1): 26-32.]
[25] Zhang Bingliang, Fang Zhongjing, Duan Ruitao, et al. Microstructural features of gouges and their implication in Chenggezhuang fault[J].North China Earthquake Sciences, 1996, 14(4): 31-38.[张秉良,方仲景,段瑞涛,等. 程各庄断裂断层泥显微结构特征及其断裂活动性探讨[J]. 华北地震科学,1996,14(4): 31-38.]
[26] Kanaori Y. Further studies on the use of quartz grain from fault gouges establish the age of faulting[J]. Engineering Geology,1985, 2(122): 175-194.
[27] Shand S J. The pseudotachylyte of Parijs (Orange Free State) and its relation to “trap-shotten gneiss” and “flinty crush-rock”[J].Geological Society of London Quarterly Journal,1916,14: 999-1 006.
[28] Magloughlin J F, Spray J G. Frictional melting processes and products in geological materials: Introduction and discussion[J].Tectonophysics,1992, 204: 197-206.
[29] Liu Jianmin, Dong Shuwen. Advance and the status quo of the research on pseudotachylites[J].Geological Review,2001, 47(1): 64-69.[刘建民,董树文. 假玄武玻璃的研究进展与现状[J]. 地质论评,2001,47(1): 64-69.]
[30] Lin Aiming, Sun Zhiming, Yang Zhenyu. Pseudotachylytes generated in the Dahezhen brittle-ductile shear zone in the Tongbei-Dabie orogenic belt, China and their significance for seismo-tectonics[J].Acta Geologica Sinica,2002, 76(3): 373-378.[林爱明, 孙知明, 杨振宇. 桐柏—大别造山带内与脆性—韧性剪切带共生的假玄武玻璃的发现及意义[J]. 地质学报,2002,76(3): 373-378.]
[31] Sibson R H. Generation of pseudotachylite by ancient seismic faulting[J].Geophysical Journal Royal Astronomical Society,1975, 43: 775-794.
[32] McKenzie D, Brune J N. Malting on fault planes during large earthquakes[J].Royal Astronomical Society Geophca1 Journal, 1972, 89: 65-78.
[33] Spray J G. Pseudotachylyte controversy: Fact or friction?[J].Geology,1995, 23(12): 1 119-1 122.
[34] Hickman S, Sibson R, Bruhn R. Introduction to special section: Mechanical involvement of fluids in faulting[J].Journal of Geophysical Research,1995,100:12 831-12 840.
[35] Kennedy B M, Kharaka Y K, Evans W C, et al. Mantle fluids in the San Andreas Fault System, California[J]. Science,1997, 278(14):1 278-1 281.
[36] Quattrocchi F, Pik R, Pizzino L, et al. Geochemical changes at the Bagni di Triponzo thermal spring, during the Umbria-Marche 1997-98 seismic sequence[J].Journal of Seismology,2000, 4: 567-587.
[37] Pizzino L, Burrato P, Quattrocchi F, et al. Geochemical signatures of large active faults: The example of the 5 February 1783, Calabrian earthquake (southern Italy)[J].Journal of Seismology,2004, 8: 363-380.
[38] Meng Guangkui, He Kaiming, Ban Tie,et al. Study on activity and segmentation of active fault using measurements of radon and mercury gases[J].Earthquake Research in China,1997, 13(1): 43-51.[孟广魁,何开明,班铁,等. 氡、汞测量用于断裂活动性和分段的研究[J]. 中国地震,1997,13(1): 43-51.]
[39] Zhou Xiaocheng, Guo Wensheng, Du Jianguo,et al. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J].Earthquake,2007, 27(1): 70-76.[周晓成,郭文生,杜建国,等.呼和浩特地区隐伏断层土壤气氡、汞地球化学特征[J]. 地震,2007,27(1): 70-76.]
[40] Quattrocchi F, Guerra M, Pizzino L,et al. Radon and Helium as pathfinders of fault system and groundwater evolution in different Italian areas[J].Il Nuovo Cimento,1999, 22C(3/4): 309-316.
[41] Quattrocchi F, Favara R, Capasso G, et al. Thermal anomalies and fluid geochemistry framework in occurrence of the 2000-2001 Nizza-Monferrato seismic sequence (Northern Italy): Episodic changes in the fault zone heat flow or chemical mixing phenomena?[J].Natural Hazards and Earth System Sciences,2003, 3:269-277.[42] Tang Zhongxing, Cao Yongjian, Li Junying. Puzzy recognition of the anomalous index of hydrochemical precursors before strong and moderately strong earthquakes in North China[J].Earthquake,1994, S1: 90-101.[唐仲兴,曹永健,李君英. 华北强震、中强震水文地球化学前兆异常标志的模糊识别[J].地震,1994,S1: 90-101.]
[43] Che Yongtai, Zhang Dawei, Yu Jinzi, et al. Reflective capacity of soil gas in fault zone to earthquake and short-term prediction[J].Earthquake Research in China,1995, 11(4): 374-380.[车用太,张大维,鱼金子,等. 断层带土壤气的映震效能与地震短临预报[J]. 中国地震,1995,11(4): 374-380.]
[44] Wang Jihua, Wang Liang, Sun Fengmin, et al. The dynamic characteristics of fault gases and its relation to seismic activity[J].Earthquake, 1994, 14(3): 58-63.[王基华, 王亮, 孙风民,等. 断层气动态变化特征及其与地震活动的关系[J]. 地震,1994,14(3): 58-63.]
[45] Du Jianguo, Kang Chunli. A brief review on study of earthquake-Caused change of underground fluid[J]. Earthquake,2000,20(suppl.): 107-114.[杜建国, 康春丽. 地震地下流体发展概述[J]. 地震,2000,20(增刊): 107-114.]
[46] Yang Liming, Wang Lanmin. Scientific summarization of shout term predict to Minle-Shandan Ms 6.1 earthquake[J].Northwestern Seismological Journal,2004, 26(1): 1-9.[杨立明,王兰民.民乐—山丹6.1级地震短期预报的科学总结[J]. 西北地震学报,2004,26(1): 1-9.]
[47] Zhang Xinji, Wang Changling, Zhang Hui. Hydrochemical characteristics in the northwest china region and earthquake prediction[J].Earthquake, 1994,S1: 81-89.[张新基,王长岭,张慧. 西北地区水化特征及地震预测研究[J]. 地震,1994,S1: 81-89.]
[48] Che Yongtai, Yu Jinzi, Liu Wuzhou. Dynamic monitoring of degassing of the crust and prediction of the ZhangBei-ShangYi earthquake of magnitude 6.2[J].Geological Review,1999, 45(1): 59-65.[车用太,鱼金子,刘五洲. 地壳放气动态监测与张北—尚义Ms 6.2级地震预报[J]. 地质论评,1999,45(1): 59-65.]
[49] Li Shengqiang, Sun Qing, Luo Liqiang, et al. Relationship between earthquake and the gas geochemical anomalies in the 0~2 000 m mud of Chinese continental scientific drilling hole[J].Acta Petrologica Sinica,2006, 22(7): 2 095-2 102.[李圣强,孙青,罗立强,等. 中国大陆科学钻探主孔0~2 000 m流体地球化学异常与地震的关系[J]. 岩石学报,2006,22(7): 2 095-2 102.]
[50] Sun Qing, Li Shengqiang, Luo Liqiang, et al. The gas anomalies in the CCSD borehole associated with two distant strong earthquakes: The 2001 West Pass of Kunlun Mountains earthquake(Ms 8.1) and the 2004 Sumatra-Andeman earthquake(Ms 9.3)[J].Acta Petrologica Sinica, 2005, 21(5): 1 501-1 507.[孙青,李圣强,罗立强,等. 中国大陆科学钻探主孔流体地球化学异常与远强震的关系[J]. 岩石学报,2005,21(5): 1 501-1 507.]
[51] Kennedy B M, Kharaka Y K, Evans W C, et al. Mantle fluids in the San Andreas Fault System, California[J]. Science,1997, 278(14): 1 278-1 281.
[52] Tao Mingxin, Xu Yongchang, Shi Baoguang, et al. Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China[J].Science in China (Series D),2005, 35(5): 441-451.[陶明信,徐永昌,史宝光,等. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J].中国科学:D辑,2005,35(5): 441-451.]
[53] Tao Mingxin, Xu Yongchang, Chen Fayuan. The geochemical characteristics on the spatial variation of the concentration of CO2 and δ13C in Mijiao Coal Field[J].Chinese Science Bulletin, 1995, 36(12): 921-923.[陶明信, 徐永昌, 陈发源. 窑街煤田CO2气浓度与δ13C值空间变化的构造地球化学特征[J].科学通报,1995,36(12): 921-923.][54] Wintsch K P, Christoffersen R, Kronenberg A K. Fluid-rock reaction of fault zones[J].Journal of Geophysical Research,1995, 100: 13 021-13 032.
[55] Xie Xinong, Li Sitian. Fluid flow and dynamic model in fault zones[J].Earth Science Frontiers,1996, 3(3/4): 145-151.[解习农,李思田. 断裂带流体作用及动力学模型[J]. 地学前缘,1996,3(3/4):145-151.]
[56] Shea W T Jr, Kronenberg A K. Strength and anisotropy of foliated rocks with varied mica contents[J].Journal of Structural geology,1993, 15(9/10):1 097-1 121.
[57] Zheng G D, Fu B H, Takahashi Y, et al. Iron speciation in fault gouge from the Ushikubi fault zone central Japan[J].Hyperfine Interactions,2008, 186(1/3): 39-52.
[58] Gudmundsson A. Active fault zones and groundwater flow[J].Geophysical Research Letters, 2000, 27:2 993-2 996.
[59] Gudmundsson A, Berg S S, Lyslo K B, et al. Fracture networks and fluid transport in active faults[J].Journal of Structural Geology,2001, 23: 343-353.
[60] Yang Weimin, Huang Wenhui. The characteristics of tectonic geochemistry of the fault zones on the southern and northern edges of Huainan coalfield, Anhui province[J].Geoscience,2002, 16(3): 251-256.[杨为民,黄文辉. 安徽淮南煤田南北缘断裂带构造地球化学特征[J]. 现代地质,2002,16(3): 251-256.]
[61] Zhang Xijuan, Zeng Qingli, Ma Yinsheng. Fluid involvement in active fault zone[J].Northwestern Seismological Journal,2006, 28(3): 274-279.[张西娟,曾庆利,马寅生. 断裂带中的流体活动及其作用[J]. 西北地震学报,2006,28(3):274-279.]
[62] Tatsuo M, Kentaro O, Ryuji I. Fracture-zone conditions on a recently active fault: Insights from mineralogical and geochemical analyses of the Hirabayashi NIED drill core on the Nojima fault, southwest Japan, which ruptured in the 1995 Kobe earthquake[J].Tectonophysics,2004, 378: 143-163.
[63] Toro G D, Goldsby D L, Tullis TE. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates[J].Nature,2004, 427: 436-439.

[1] 倪师军,滕彦国,张成江,吴香尧. 成矿流体活动的地球化学示踪研究综述[J]. 地球科学进展, 1999, 14(4): 346-352.
[2] 张德会. 流体的沸腾和混合在热液成矿中的意义[J]. 地球科学进展, 1997, 12(6): 546-552.
[3] 侯渭,谢鸿森. 地球壳幔的初期演化——试论熔融、冲击成坑和早期水岩相互作用的意义[J]. 地球科学进展, 1997, 12(2): 180-187.
[4] 孙岩; 戴春森. 论构造地球化学研究[J]. 地球科学进展, 1993, 8(3): 1-6.
阅读次数
全文


摘要