[1] Turcotte D L, Schubert G. Geodynamics [M]. Cambridge: Cambridge University Press, 2002. [2] Tackley P J. Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, 1. Pseudoplastic yielding [J]. Geochemistry Geophysics Geosystems,2000, 1(8): 1 026. [3] Mishin Y A, Gerya T V, Burg J, et al. Dynamics of double subduction: Numerical modeling [J].Physics of the Earth and Planetary Interiors,2008, 171(1/4): 280-295. [4] Morra G, Chatelain P, Tackley P, et al. Earth curvature effects on subduction morphology : Modeling subduction in a spherical setting [J]. Acta Geotechnica, 2008,doi: 10.1007/s11440-008-0060-5. [5] Gorczyk W, Willner A P, Gerya T V, et al. Physical controls of magmatic productivity at Pacifi c-type convergent margins: Numerical modeling[J].Physics of the Earth and Planetary Interiors, 2007, 163: 209-232. [6] Nikolaeva K, Gerya T V, Connolly J A D. Numerical modeling of crustal growth in intraoceanic volcanic arc [J]. Physics of the Earth and Planetary Interiors, 2008, 171(1/4): 336-356. [7] Rene M, Holtz F, Luo C, et al. Biotite stability in peraluminous granitic melts: Compositional dependence and application to the generation of two-mica granites in the South Bohemian botholith (Bohemian Massif, Czech Republic) [J]. Lithos,2008, 102: 538-553. [8] Hermann J, Spandler C, Hack A, et al. 2006. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones [J].Lithos,92: 399-417. [9] Schmidt M W, Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation [J].Earth and Planetary Science Letters,1998, 163: 361-379. [10] Peacock S M,Rushmer T, Thompson A B. Partial melting of subducting oceanic crust [J].Earth and Planetary Science Letters,1994, 121: 227-244. [11] Macpherson C G, Dreher S T, Thirlwall M F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines [J].Earth and Planetary Science Letters,2006, 243: 581-593. [12] Armstrong R L. Isotopic and chemical constraints on modelis of magma genesis in volcanic arcs [J].Earth and Planetary Science Letters,1971, 12: 137-142.[13] Tera F, Brown L, Morris J, et al. Sediment incorporation in islandarc magmas: Inferences from 10Be [J].Geochimica et Cosmochimica Acta,1986, 50: 535-550. [14] Rosner M, Erzinger J, Franz G, et al. Slab-derived boron isotope signatures in arc volcanic rocks from the Central Andes and evidence for boron isotope fractionation during progressive slab dehydration [J].Geochemistry Geophysics Geosystems, 2003, 4(8), doi:10. 1029/2002GC000438. [15] Kelemen P B, Johnson K T M, Kinzler R J, et al. High-field-strength element depletions in arc basalts due to mantle-magma interaction[J].Nature,1990, 345: 521-524. [16] Kelemen P B, Rilling J L, Parmentier E M, et al. Thermal structure due to solid-state flow in the mantle wedge beneath arcs [J]. AGU Monograph,2003, 138: 293-311. [17] Tatsumi Y, Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase from a subducted lithosphere and origin of arc magmas: Evidence from high-pressure experiments and natural rocks [J]. Journal of Volcanology and Geothermal Research,1986, 29: 293-309. [18] Enns A, Becker T W, Schmeling H. The dynamics of subduction and trench migration for viscosity stratification[J].Geophysical Journal International,2005, 160(2): 761-775. [19] Schmeling H, Babeyko A Y, Enns A, et al. A benchmark comparison of spontaneous subduction models—Towards a free surface [J].Physics of the Earth and Planetary Interiors,2008, 171(1/4): 198-223. [20] Kaus B J P, Becker T W. A Numerical Study on the Effect of Surface Boundary Condition and Rheology on Slab Dynamic[M].Florence: GeoMod2008, 2008.[21] Morra G, Chatelain P, Tackley P, et al. Large scale three-dimensional boundary element simulation of subduction[J].Computational Science-ICCS,2007, 4489: 1 122-1 129. [22] Capitanio F A, Morra G, Goes S. Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation[J].Earth and Planetary Science Letters,2007, 262: 284-297. [23] Stegman D R, Freeman J, Schellart W P, et al. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback[J].Geochemistry Geophysics Geosystems,2006, 7, Q03012, doi:10.1029/2005GC001056. [24] Schellart W P. Kinematics of subduction and subduction-induced flow in the upper mantle [J]. Journal of Geophysical Research, 2004, 109, B07401, doi: 10.1029/2004JB002970. [25] Funiciello F, Faccenna C, Giardini D, et al. Dynamics of retreating slabs: 2. Insights from 3-D laboratory experiments [J]. Journal of Geophysical Research, 2003, 108(B4): 2207, doi:10.1029/2001JB000896. [26] Funiciello F, Faccenna C, Giardini D. Role of lateral mantle flow in the evolution of subduction systems: Insights from laboratory experiments[J].Geophysical Journal International, 2004, 157: 1393-1406. doi:10.1111/j.1365-246X.2004.02313.x. [27] Funiciello F, Moroni M, Piromallo C, et al. Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking [J]. Journal of Geophysical Research, 2006, 111, B03402, doi:10.1029/2005JB003792. [28] Gurnis M, Hager B H. Controls of the structure of subducted slabs [J]. Nature,1988, 335: 317-321. [29] Guillou-Frottier L, Buttles J, Olson P. Laboratory experiments on the structure of subducted lithosphere[J]. Earth and Planetary Science Letters,1995, 133: 19-34. [30] Griffiths R W, Hackney R I, van der Hilst R D. A laboratory investigation of effects of trench migration on the descent of subducted slabs[J].Earth and Planetary Science Letters,1995, 133: 1-17. [31] Moresi L, Gurnis M. Constraints on the lateral strength of slabs from three-dimensional dynamic flow models[J]. Earth and Planetary Science Letters,1996, 138: 15-28. [32] Houseman G A, Gubbins D. Deformation of subducted oceanic lithosphere[J].Geophysical Journal International,1997, 131: 535-551. [33] Conrad C P,Hager B H. Effects of plate bending and fault strength at subduction zones on plate dynamics[J].Journal of Geophysical Research,1999, 104: 17551-17 571. [34] van Hunen J, van den Berg A P, Vlaar N J. A thermo-mechanical model of horizontal subduction below an overriding plate[J].Earth and Planetary Science Letters,2000, 182: 157-169. [35] Pysklywec R N, Ishii M. Time dependent subduction dynamics driven by the instability of stagnant slabs in the transition zone[J].Physics of the Earth and Planetary Interiors,2005, 149: 115-132. [36] Ernst R E, Buchan K L, Campbell I H. Frontiers in large igneous province research [J]. Lithos, 2005, 7: 271-297. [37] Billen M, Gurnis M, Simons M. Multiscale dynamics of the Tonga-Kermadec subduction zone[J].Geophysical Journal International, 2003, 153: 359-388. [38] Bellahsen N, Faccenna C, Funiciello F. Dynamics of subduction and plate motion in laboratory experiments: Insights into the plate tectonics'' behavior of the Earth[J].Journal of Geophysical Research,2005, 110, B01401, doi:10.1029/2004JB002999. [39] Kincaid C, Griffiths R W. Laboratory models of the thermal evolution of the mantle during rollback subduction[J].Nature,2003, 425: 58-62. [40] Kincaid C, Griffiths R W. Variability in flow and temperatures within mantle subduction zones [J].Geochemistry Geophysics Geosystems,2004, 5, Q06002, doi:10.1029/2003GC000666. [41] Schellart W P, Freeman J, Stegman D R, et al. Evolution and diversity of subduction zones controlled by slab width [J]. Nature, 2007, 446: 308-311. doi:10.1038/nature05615. [42] Ueda K, Gerya T, Sobolev S V. Subduction initiation by thermal-chemical plumes: Numerical studies[J].Physics of the Earth and Planetary Interiors,2008, 171(1/4): 296-312. [43] Cloetingh S,Wortel R, Vlaar N J. On the initiation of subduction zones[J].Pure and Applied Geophysics,1989, 129: 7-25. [44] Ogawa M. Perturbation analysis of convective instability of oceanic lithosphere and initiation of subduction[J]. Journal of Geophysical Research, 1990, 95: 409-420. [45] Mueller S, Phillips R J. On the initiation of subduction [J].Journal of Geophysical Research,1991, 96: 651-665. [46] Sandwell D T, Schubert G. Evidence for retrograde lithospheric subduction of Venus [J].Science,1992, 257: 770-776. [47] Kemp D V, Stevenson D J. A tensile, flexural model for the initiation of subduction[J]. Geophysical Journal International,1996, 125: 73-94. [48] Toth J, Gurnis M. Dynamics of subduction initiation at pre-existing fault zones[J].Journal of Geophysical Research,1998, 103: 18 053-18 067. [49] Regenauer-Lieb K, Yuen D A, Branlund J. The initiation of subduction: Criticality by addition of water? [J].Science,2001, 294: 578-580. [50] Solomatov V S. Initiation of subduction by small-scale convection[J]. Journal of Geophysical Research,2004, 109: B05408. [51] Fowler A C. Boundary layer theory and subduction[J]. Journal of Geophysical Research, 1993, 98: 21 997-22 005. [52] Hall C E, Gurnis M, Sdrolias M, et al. Catastrophic initiation of subduction following forced convergence across fracture zones [J]. Earth and Planetary Science Letters, 2003, 212: 15-30. [53] Gurnis M, Hall C, Lavier L. Evolving force balance during incipient subduction[J].Geochemistry Geophysics Geosystems, 2004, 5, Q07001, doi:10.1029/2003GC000681. [54] Korenaga. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? [J].Journal of Geophysical Research, 2007, 112: B05408. [55] Regenauer Lieb K, Yuen David A. Fastmechanisms for the formation of new plate boundaries [J]. Tectonophysics,2000, 322(1/2): 53-67. [56] Branlund J M, Regenauer Lieb K, Yuen D A. Weak zone formation for initiating subduction from thermo-mechanical feedback of low-temperature plasticity [J]. Earth and Planetary Science Letters, 2001, 190: 237-250. [57] Han L, Gurnis M. How valid are dynamic models of subduction and convection when platemotions are prescribed? [J].Physics of the Earth and Planetary Interiors,1999, 110: 235-246. [58] Mart Y, Aharonov E, Mulugeta G, et al. Analogue modelling of the initiation of subduction[J].Geophysical Journal International,2005, 160: 1 081-1 091. [59] Lenardic A,Kaula W M. Self-lubricated mantle convection: Two-dimensional models[J].Geophysics Research Letters,1994, 21: 1 707-1 710. [60] Gerya T V, Connolly J A D, Yue D A. Why is terrestrial subduction one-sided? [J].Geology, 2008, 36(1): 43-46. [61] Van der Lee S, Regenauer-Lieb K, Yuen D A. The role of water in connecting past and future episodes of subduction[J].Earth and Planetary Science Letters,2008, doi:10.1016/j.epsl.2008.04.041. [62] Brown M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean[J].Geology,2006, 34: 961-964. [63] Brown M. Metamorphic conditions in orogenic belts: A record of secular change [J]. International Geology Review,2007, 49: 193-234. [64] Zhao D P. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics[J].Physics of the Earth and Planetary Interiors, 2004, 146: 3-34. [65] King S D. Subduction zones: Observations and geodynamic models [J]. Physics of the Earth and Planetary Interiors,2001, 127: 9-24. [66] Hassani R, Jongmans D, Chery J. Study of plate deformation and stress in subduction processes using two-dimensional numerical models[J].Journal of Geophysical Research,1997, 102: 17 951-17 965. [67] Sobolev S V, Babeyko A Y. What drives orogeny in the Andes? [J].Geology,2005, 33: 617-620. [68] Tagawa M, Nakakuki T, Kameyama M, et al. The role of history-dependent rheology in plate boundary lubrication for generating one-sided subduction[J]. Pure and Applied Geophysics,2007, 164: 879-907. [69] Burg J-P. Two orogenic systems and a transform-transfer Fault in the Himalayas: Evidence and consequences[J].Earth Science Frontiers, 2006, 13: 27-46.[70] Burg J-P, Jagoutz O, Dawood H, et al. Precollision tilt of crustal blocks in rifted island arcs: Structural evidence from the Kohistan Arc[J].Tectonics, 2006, 25, TC5005. doi: 10.1029/2005TC001835. [71] Hall R. Cenozoic plate tectonic reconstructions of SE Asia[J].Geological Society, London Special Publications,1997, 126: 11-23. [72] Zhang Guibin, Gao Rui, Xiao Xuchang.Modelling of the evolution of Collision Mountain Range across the contact zone between west Kunlun and Tarim[J].Acta Geoscientia Sinics, 2001, 22(6):541-546.[张贵宾,高锐,肖序常. 横过西昆仑和塔里木结合带的山隆盆降机制动力学模拟[J]. 地球学报, 2001, 22(6):541-546.] [73] Widiyantoro S, Kennett B L N, van der Hilst R D. Seismic tomography with P and S data reveals lateral variations in the rigidity of deep slabs[J]. Earth and Planetary Science Letters,1999, 173: 91-100. [74] Boutelier D, Chemenda A, Burg J-P. Subduction versus accretion of intraoceanic volcanic arcs: Insight from thermo-mechanical analogue experiments[J]. Earth and Planetary Science Letters, 2003, 212: 31-45. [75] Dewey J F. Episodicity, sequence, and style at convergent plate boundaries [C]// Strangway D W, eds. The Continental Crust and Its Mineral Deposits. Geological Association of Canada, Special Paper, 1980. [76] Garfunkel Z, Anderson C A, Schubert G. Mantle circulation and the lateral migration of subducted slabs [J]. Journal of Geophysical Research,1986, 91: 7 205-7 223. [77] Kincaid C, Olson P. An experimental study of subduction and slab migration[J].Journal of Geophysical Research,1987, 92: 13 832-13 840. [78] Lonergan L, White N. Origin of the Betic-Rif mountain belt[J]. Tectonics, 1997, 16: 504-522. [79] Schellart W P, Lister G S. Tectonic models for the formation of arc-shaped convergent zones and backarc basins[C]//Sussman A J, Weil A B, eds. Orogenic Curvature: Integrating Paleomagnetic and Structural Analyses. Geological Society of America, Special Paper, 2004, 383: 237-258. [80] Jacoby W R. Paraffin model experiment of plate tectonics [J]. Tectonophysics,1976, 35: 103-113. [81] Schellart W P. Influence of the subducting plate velocity on the geometry of the slab and migration of the subduction hinge[J].Earth and Planetary Science Letters,2005, 231: 197-219. [82] Schellart W P. Kinematics and flow pattern in deep mantle and upper mantle subduction models: Influence of the mantle depth and slab to mantle viscosity ratio[J].Geochemistry, Geophysics, Geosystems,2008, 9(2), Q03014, doi:10.1029/2007GC001 656. [83] Gerya T V, Stockhert B, Perchuk A L. Exhumation of highpressure metamorphic rocks in a subduction channel: A numerical simulation[J].Tectonics, 2002, 21(6): 1 056. [84] Gerya T V, Connolly J A D, Yuen D A, et al. Seismic implications of mantle wedge plumes[J].Physics of the Earth and Planetary Interiors, 2006, 156: 59-74.[85] Gutscher M A, Kukowski N, Malavieille J, et al. Material transfer in accretionary wedges from analysis of a systematic series of analog experiments[J]. Journal of Structural Geology,1998, 20: 407-416. [86] Kukowski N, Lallemand S E, Malavieille J, et al. Mechanical decoupling and basal duplex formation observed in sandbox experiments with application to the Western Mediterranean Ridge accretionary complex[J]. Marine Geology, 2002, 186: 29-42. [87] Fluck P, Hyndman R D, Lowe C. Effective elastic thickness T-e of the lithosphere in western Canada[J].Journal of Geophysical Research,2003, 108(B9), ETG7-1, doi: 10.1029/2002JB 002201. [88] Zhao D P. Seismological structure of subduction zones and its implications for arc magmatism and dynamics [J].Physics of the Earth and Planetary Interiors,2001, 127: 197-214. [89] Arcay D, Trie E, Doin M P. Numerical simulations of subduction zones: Effect of slab dehydration on the mantle wedge dynamics[J].Physics of the Earth and Planetary Interiors,2005, 149: 133-153. [90] Poli S, Schmidt M W. H2O transport and release in subduction zones: Experimental constraints on basaltic and andesitic systems[J]. Journal of Geophysical Research,1995, 100: 22 299-22 314. [91] Ito E, Stern R J. Oxygen-isotopic and strontium-isotopic investigations of subduction zone volcanism-The case of the volcano arc and the Marianas islandarc [J]. Earth and Planetary Science Letters,1986, 76: 312-320. [92] Schiano P, Clocchiatti R, Bourdon B, et al. The composition of melt inclusions in minerals at the garnet spinel transition zone [J].Earth and Planetary Science Letters,2000, 174: 375-383. [93] Stern R J. Subduction zones[J]. Reviews of Geophysics,2002, 40(4): 1 012. [94] van Keken P E, Kiefer B, Peacock S M. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle [J]. Geochemistry, Geophysics, Geosystems,2002, 3: 1 056. [95] Gorczyk W, Gerya T V, Connolly J A D, et al. Growth and mixing dynamics of mantle wedge plume[J].Geology,2007, 35(7): 587-590. [96] Castro A, Gerya T V. Magmatic implication of mantle wedge plumes: Experimental study[J].Lithos,2008, 103(1/2): 138-148. [97] Takahashi E, Kushiro I. Melting of a dry peridotite at highpressures and basalt magma genesis[J].American Mineralogist,1983, 68: 859-879. [98] Rose E F, Shimizu N, Layne G D, et al. Melt production beneath Mt. Shasta from boron data in primitive melt inclusions [J]. Science, 2001, 293: 281-283. [99] Iwamori H, Richardson C, Maruyama S. Numerical modeling of thermal structure, circulation of H2O, and magmatism and metamorphism in subduction zones: Implications for evolution of arcs[J].Gondwana Research,2007, 11: 109-119. [100] Rupke L H, Morgan J P, Hort M,et al. Serpentine and the subduction zone water cycle[J].Earth and Planetary Science Letters,2004, 223: 17-34. [101] Chase C G. Extension behind island arcs and motions relative to hot spots[J].Journal of Geophysical Research,1978, 83: 5 385-5 387. [102] Uyeda S, Kanamori H. Back-arc opening and the mode of subduction[J].Journal of Geophysical Research,1979, 84: 1 049-1 061. [103] Gerya T V, Yuen D A. Rayleigh Taylor instabilities from hydration and melting propel cold plumes at subduction zones[J].Earth and Planetary Science Letters,2003, 212: 47-62. [104] Obata M, Takazawa E. Compositional continuity and discontinuity in the Horoman peridotite, Japan, and its implication for melt extraction processes in partially molten upper mantle[J].Journal of Petrology,2004, 45: 223-234. [105] Gerya T V, Yuen D A, Sevre E O D. Dynamical causes for incipient magma chambers above slabs[J].Geology,2004, 32: 89-92. [106] Manea V C, Manea M, Kostoglodov V, et al. Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport[J].Physics of the Earth and Planetary Interiors,2005, 149: 165-186. [107] Gerya T V,Yuen D A. Characteristics based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties[J].Physics of the Earth and Planetary Interiors,2003b, 140: 293-318. [108] Niida K. Strucure of Hormoman ultramafic massif of the Hidaka metamorphic belt in Hokkaido, Japan [J].Geological Society of Japan Journal,1974, 80:31-44. [109] Obata M, Nagahara N. Layering of alpine-type peridotite and the segregation of partial melt in the upper mantle[J].Journal of Geophysics Research,1987,92: 3 467-3 474. [110] Frey F A,Shimizu N,Leinbach A,et al.Compositional variation within the lower layered zone of the Horoman peridotite, Hokkaido,Japan:Constraints on models from melt segregation[J].Journal of Petrology,Special Lherolite Issue,1991,(Special Volume):211-227. [111] Takazawa E, Frey F A, Shimizu N, et al. Ploybaric petrogenesis of mafic layers in the Horoman peridotite complex, Japan[J].Journal of Petrology,1999, 40: 1 827-1 851. [112] Takazawa E, Frey F A, Shimizu N, et al. Whole rock composition compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process?[J].Geochimica et Cosmochimica Acta,2000, 64: 695-716. [113] Toramaru A, Takazawa E, Morishita T, et al. Model of layering formation in a mantle peridotite (Horoman, Hokkaido, Japan)[J].Earth and Planetary Science Letters,2001, 185: 299-313. [114] Crespo E, Luque F J, Rodas M, et al. Graphite-sulfide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks[J].Gondwana Research,2006, 9: 279-290. [115] Faccenda M, Gerya T V, Chakraborty S. Style of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production[J].Lithos, 2008, 103(1/2): 257-287. [116] Beaumont C, Jamieson R A, Nguyen M H, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature,2001, 414: 738-742. [117] Pysklywec R N. Evolution of subduction mantle lithosphere at continental plate boundary[J].Geophysics Research Letters,2001, 23(22): 4 399-4 402. [118] Pfiffner O A, Ellis S, Beaumont C. Collision tectonics in the Swiss Alps: Insight from geodynamic modeling[J]. Tectonics,2000, 19(6):1 065-1 094. [119] Burov E, Jolivet L, Le Pourhiet L, et al. A thermo-mechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts[J].Tectonophysics, 2001, 342: 113-136. [120] Burg J P, Gerya T V. The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanicalmodels and application to the Lepontine Dome in the Central Alps[J].Journal of Metamorphic Geology,2005, 23: 75-95. [121] Huerta A D, Royden L H, Hodges K V. The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating[J].Journal of Geophysical Research,1998, 103: 15 287-15 302. [122] Jamieson R A, Beaumont C, Fullsack P, et al. Barrovian regional metamorphism: Where′s the heat? [C]//Treloar P J, O′Brien P J, eds. What Drives Metamorphism and Metamorphic Reactions? London: Geological Society, Special Publications 1442,1998. [123] Chamberlain C P, Sonder L J. Heat-producing elements and the thermal and baric patterns of metamorphic belts[J].Science,1990,250(4 982): 763-769. [124] Huerta A D, Royden L H, Hodges K V. The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens[J]. Journal of Metamorphic Geology, 1999, 17: 349-366. [125] Goff B, Bousquet R, Henry P, et al. Effect of chemical composition of the crust on the metamorphic evolution of orogenic wedges [J].Journal of Metamorphic Geology,2003, 21: 123-141. [126] Vidal P, Cocherie A, Le Fort P. Geochemical investigations of the origin of the Manaslu leucogranite(Himalaya, Nepal)[J]. Geochimica et Cosmochimica Acta,1982, 46: 2 279-2 292. [127] Scaillet B C, France-Lanord P, Le Fort P. Batrinath-Gangotri plutons(Garhwal, India): Petrological and geochemical evidence for fractional processes in a high Himalaya leucogranite[J].Journal of Volcanology and Geothermal Research,1990, 44: 163-188. [128] Macfarlane A M. The Tectonic Evolution of the Core of the Himalaya, Langtang National Park, Central Nepal[D]. Cambridge: Massachusetts Institute of Technology, 1992. [129] Zhang Guibin, Gao Rui, Xiao Xuchang. Modelling of the Evolution of Collision Mountain Range across the Contact Zone between West Kunlun and Tarim[J].Acta Geoscientia Sinica, 2001, 22(6): 541-546.[张贵宾,高锐,肖序常,横过西昆仑和塔里木结合带的山隆盆降机制动力学模拟[J].地球学报,2001,22(6):541-546.] [130] Nozkhin A D,Turkina O M. Geochemistry of Granulites [M]. Novosibirsk: Institute of Geology and Geophysics Russian Academy of Sciences Press(in Russian), 1993. [131] Neumann N, Sandiford M, Foden J. Regional geochemistry and continental heat flow: Implications for the origin of the south Australian heat flow anomaly [J]. Earth and Planetary Science Letters,2000, 183: 107-120. [132] Rudnick R, Gao S. The composition of the continental crust[C]//Rudnick R,ed.Treatise on Geochemistry: The Crust. Elsevier: Amsterdam, 2004. [133] Anderson D L.The sublithospheric mantle as the source of continental flood basalts: The case against the continental lithosphere and plume head reservoirs[J].Earth and Planetary Science Letters,1994, 123: 269-280. [134] Wright T L, Klein F W. Deep magma transport at Kilauea volcano. Hawaii [J]. Lithos,2006, 87: 50-79. [135] Gerya T V, Burg J-P. Intrusion of ultramafic magmatic bodies into the continental crust: Numercial simulation[J].Physics of the Earth and Planetary Interiors,2007, 160: 124-142. |