[1] James R E, Ferris F G. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring[J]. Chemical Geology, 2004, 212: 301-311.[2] Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews,2005, 72: 1-19. [3] McCollom T M, Shock E L. Geochemical constrains on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J].Geochimica et Cosmochimica Acta, 1997, 61: 4 375-4 391. [4] Emerson D, Moyer C I. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J].Applied and Environment Microbiology,2002, 68: 3 085-3 093. [5] Edwards K J, Bach W, McCollom T M.Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor[J].Trends in Microbiology, 2005, 13: 449-456. [6] Hashimoto H, Yokoyama S, Asaoka H, et al. Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix orchracea[J].Journal of Magnetism and Magnetic Materials,2007, 310: 2 405-2 407. [7] Emerson D, Revsbech N P. Investigation of an ironoxidizing microbial mat community located near Aarhus, Denmark: Field studies[J]. Applied and Environment Microbiology,1994, 60: 4 022-4 031. [8] Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from axial volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J].Geomicrobiology Journal,2003, 20:199-214. [9] Kennedy C B, Scott S D, Ferris F G. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge,north-east Pacific Ocean[J]. FEMS Microbiology Ecology,2003, 43: 247-254. [10] Emerson D, Rentz J A, Lilburn T G, et al.A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities[J]. Plos One,2007,(8): 1-9. [11] Chan C S, Emerson D, Fakra S, et al. Iron oxidation and biomineralization by Mariprofundus ferrooxydans, a deep-sea microaerophilic lithoautotroph[R].American Geophysical Union Fall Meeting, 2007. [12] Sagard E G, Aruna R, Abraham-Peskir J, et al. Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water[J]. Applied Geochemistry,2001, 16: 1 129-1 137. [13] Emerson D, Moyer C L. Isolation and characterization of novel iron oxidizing bacteria that grow at circumneutral pH[J].Applied and Environment Microbiology,1997, 63: 4 784-4 792. [14] Li Jiangtao. Study on the Microbial Diversity of Deep-sea Hydrothermal Chimney and Microbial Mineralization[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,2008.[李江涛.深海热液烟囱体微生物多样性及微生物矿化作用研究[D].广州:中国科学院广州地球化学研究所,2008.] [15] Hallberg R, Ferris F G. Biomineralization by Gallionella[J].Geomicrobiol,2004,21:325-330. [16] Sobolev D, Roden E E. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(Ⅱ) and oxygen at circumneutral pH[J].Applied and Environment Microbiology,2001, 67(3): 1 328-1 334. [17] Delong D V, Corstjens A M. Oxidation of manganese and iron by Leptothrix discophora: Use of TMPD as an indicator of metal oxidation[J]. Applied and Environment Microbiology,1990, 56:3 458-3 462. [18] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[C] . New York: Wiley-Interscience, 1995:1 040. [19] Johnson K J, Ams D A, Wedel A N, et al. The impact of metabolic state on Cd adsorption onto bacterial cells[J].Geobiology,2007, 5: 211-218. [20] Schadler S, Burkhardt C, Hegler F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(Ⅱ)-oxidizing bacteria[J].Geomicrobiology Journal,2009, 26: 93-103. [21] Fortin D, Ferris F G, Scott S D.Formation of iron-silicates and iron oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J].Amernan Mineralogist,1998, 83:1 399-1 408.[22] Edwards K J, Bach W, McCollom T M, et al. Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diverisity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea[J].Geomicrobiology Journal,2004, 21: 393-404.[23] Kato S, Kobayashi C, Kakegawa T, et al. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough[J].Environmental Microbiology,2009, 11: 2 094-2 111. [24] Juniper S K, Fouquet Y. Filamentous iron silica deposits from modern and ancient hydrothermal sites[J].Canadian Mineralogist,1988, 26: 859-869. [25] Juniper S K, Sarrazin J. Interaction of vent biota and hydrothermal deposits:Present evidence and future experimentation[C]//Humphris S E, Zierenberg R A, Mullineaux L S, et al,eds. Seafloor Hydrothermal Systems:Physical,Chemical, Biological,and Geological Interactions.Geophysical Monograph,1995, 91: 178-193. [26] Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern pacific[J].Marine Geology,1988, 81: 227-239.[27] Boyd T, Scott S D, Hekinian R. Trace element patterns in Fe-Si-Mn oxyhydroxides at three hydrothermally active seafloor regions[J].Resource Geology,1993, 17: 83-95.[28] Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J].Science,2000, 289:751-754. |