地球科学进展 ›› 2010, Vol. 25 ›› Issue (7): 746 -752. doi: 10.11867/j.issn.1001-8166.2010.07.0746

所属专题: IODP研究

IODP研究 上一篇    下一篇

深海热液环境中的铁氧化菌及其矿化
陈顺,彭晓彤,周怀阳,李江涛,吴自军   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2009-12-30 修回日期:2010-06-21 出版日期:2010-07-10
  • 通讯作者: 陈顺 E-mail:chenshun319@163.com
  • 基金资助:

    中国大洋协会课题“深部生物圈微生物活动在地质载体中的地球化学记录”(编号:DYXM-11502218);国家高技术研究发展计划(863计划)重点课题“大洋钻探站位调查关键技术研究”(编号:2008AA093001);国家自然科学基金重点项目“胡安·德富卡洋脊Endeavour段热液生态环境变化与地球化学制约机理研究”(编号:40532011)资助.

Iron Oxidizing Bacteria and Its Biomineralization in Deep Sea Hydrothermal Environment

Chen Shun, Peng Xiaotong, Zhou Huaiyang, Li Jiangtao, Wu Zijun   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2009-12-30 Revised:2010-06-21 Online:2010-07-10 Published:2010-07-10
  • Contact: CHEN Shun E-mail:chenshun319@163.com

深海热液系统极端的物理化学条件蕴育了完全不依赖于太阳光的独特生态系统,化能自养型微生物是支撑这些生态系繁荣的初级生产者。铁氧化菌是海底热液环境中常见的化能自养微生物之一,能够从低价态铁氧化成高价态铁的化学反应中获取代谢能量。它们对海底金属元素的地球化学循环过程、金属矿床的形成和堆积以及丰富热液生态系统功能等有重要的影响。介绍了深海热液环境中存在的铁氧化菌,以及它们的分类、氧化机理和与之伴生的生物矿化现象。

The extreme physicochemical conditions of deep sea hydrothermal system have raised special ecosystem that barely depends on sunlight. This kind of ecology is supported by chemoautotrophic microorganisms, which are primary producers in hydrothermal system. Iron oxidizing bacteria is one of such microorganisms in seafloor hydrothermal environment, and they can gain energy through chemical reaction that oxidizes ferrous iron. They have important influence on the process of seafloor biogeochemical cycles, the formation of metal deposit and enrichment of the ecosystem functions in the deep sea hydrothermal environment. This paper is about the iron oxidizing bacteria that widely exist in deep sea hydrothermal environment, as well as their classification, mechanisms for oxidizing iron and the concomitant biomineralization phenomena. 

中图分类号: 

[1] James R E, Ferris F G. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring[J]. Chemical Geology, 2004, 212: 301-311.[2] Fortin D, Langley S. Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews,2005, 72: 1-19.
[3] McCollom T M, Shock E L. Geochemical constrains on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J].Geochimica et Cosmochimica Acta, 1997, 61: 4 375-4 391.
[4] Emerson D, Moyer C I. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J].Applied and Environment Microbiology,2002, 68: 3 085-3 093.
[5] Edwards K J, Bach W, McCollom T M.Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor[J].Trends in Microbiology, 2005, 13: 449-456.
[6] Hashimoto H, Yokoyama S, Asaoka H, et al. Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix orchracea[J].Journal of Magnetism and Magnetic Materials,2007, 310: 2 405-2 407.
[7] Emerson D, Revsbech N P. Investigation of an ironoxidizing microbial mat community located near Aarhus, Denmark: Field studies[J]. Applied and Environment Microbiology,1994, 60: 4 022-4 031.
[8] Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from axial volcano, Juan de Fuca Ridge, Northeast Pacific Ocean[J].Geomicrobiology Journal,2003, 20:199-214.
[9] Kennedy C B, Scott S D, Ferris F G. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge,north-east Pacific Ocean[J]. FEMS Microbiology Ecology,2003, 43: 247-254.
[10] Emerson D, Rentz J A, Lilburn T G, et al.A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities[J]. Plos One,2007,(8): 1-9.
[11] Chan C S, Emerson D, Fakra S, et al. Iron oxidation and biomineralization by Mariprofundus ferrooxydans, a deep-sea microaerophilic lithoautotroph[R].American Geophysical Union Fall Meeting, 2007.
[12] Sagard E G, Aruna R, Abraham-Peskir J, et al. Conditions for biological precipitation of iron by Gallionella ferruginea in a slightly polluted ground water[J]. Applied Geochemistry,2001, 16: 1 129-1 137.
[13] Emerson D, Moyer C L. Isolation and characterization of novel iron oxidizing bacteria that grow at circumneutral pH[J].Applied and Environment Microbiology,1997, 63: 4 784-4 792.
[14] Li Jiangtao. Study on the Microbial Diversity of Deep-sea Hydrothermal Chimney and Microbial Mineralization[D].Guangzhou:Guangzhou Institute of Geochemistry, Chinese Academy of Sciences,2008.[李江涛.深海热液烟囱体微生物多样性及微生物矿化作用研究[D].广州:中国科学院广州地球化学研究所,2008.]
[15] Hallberg R, Ferris F G. Biomineralization by Gallionella[J].Geomicrobiol,2004,21:325-330.
[16] Sobolev D, Roden E E. Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe(Ⅱ) and oxygen at circumneutral pH[J].Applied and Environment Microbiology,2001, 67(3): 1 328-1 334.
[17] Delong D V, Corstjens A M. Oxidation of manganese and iron by Leptothrix discophora: Use of TMPD as an indicator of metal oxidation[J]. Applied and Environment  Microbiology,1990, 56:3 458-3 462.
[18] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[C] . New York: Wiley-Interscience, 1995:1 040.
[19] Johnson K J, Ams D A, Wedel A N, et al. The impact of metabolic state on Cd adsorption onto bacterial cells[J].Geobiology,2007, 5: 211-218.
[20] Schadler S, Burkhardt C, Hegler F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(Ⅱ)-oxidizing bacteria[J].Geomicrobiology Journal,2009, 26: 93-103.
[21] Fortin D, Ferris F G, Scott S D.Formation of iron-silicates and iron oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in the northeast Pacific Ocean[J].Amernan Mineralogist,1998, 83:1 399-1 408.[22] Edwards K J, Bach W, McCollom T M, et al. Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diverisity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea[J].Geomicrobiology Journal,2004, 21: 393-404.[23] Kato S, Kobayashi C, Kakegawa T, et al. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough[J].Environmental Microbiology,2009, 11: 2 094-2 111.
[24] Juniper S K, Fouquet Y. Filamentous iron silica deposits from modern and ancient hydrothermal sites[J].Canadian Mineralogist,1988, 26: 859-869.
[25] Juniper S K, Sarrazin J. Interaction of vent biota and hydrothermal deposits:Present evidence and future experimentation[C]//Humphris S E, Zierenberg R A, Mullineaux L S, et al,eds. Seafloor Hydrothermal Systems:Physical,Chemical, Biological,and Geological Interactions.Geophysical Monograph,1995, 91: 178-193.
[26] Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern pacific[J].Marine Geology,1988, 81: 227-239.[27] Boyd T, Scott S D, Hekinian R. Trace element patterns in Fe-Si-Mn oxyhydroxides at three hydrothermally active seafloor regions[J].Resource Geology,1993, 17: 83-95.[28] Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J].Science,2000, 289:751-754.

[1] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[2] 李为,刘丽萍,曹龙,余龙江. 碳酸盐生物沉积作用的研究现状与展望[J]. 地球科学进展, 2009, 24(6): 597-605.
[3] 王晓红,毅民. 海绵骨针特性及其仿生学研究[J]. 地球科学进展, 2006, 21(10): 1008-1013.
[4] 戴永定. 生物矿物学的发展与展望[J]. 地球科学进展, 1993, 8(4): 17-22.
阅读次数
全文


摘要