地球科学进展 ›› 2009, Vol. 24 ›› Issue (6): 597 -605. doi: 10.11867/j.issn.1001-8166.2009.06.0597

综述与评述 上一篇    下一篇

碳酸盐生物沉积作用的研究现状与展望
李  为,刘丽萍,曹  龙,余龙江 *   
  1. 华中科技大学生命科学与技术学院资源生物学与生物技术研究所,湖北 武汉 430074
  • 收稿日期:2008-12-31 修回日期:2009-04-23 出版日期:2009-06-10
  • 通讯作者: 余龙江(1966-),男,湖北黄梅人,教授,博导,主要从事资源生物学与生物技术研究. E-mail:yulongjiang@hust.edu.cn
  • 基金资助:

    国家自然科学基金项目“微生物碳酸酐酶在方解石沉积中的作用及其机理研究”(编号:40772202)资助.

Research Status and Prospect of Biological Precipitation of Carbonate

Li Wei, Liu Liping, Cao Long, Yu Longjiang   

  1. Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2008-12-31 Revised:2009-04-23 Online:2009-06-10 Published:2009-06-10

碳酸盐矿物是地球上最丰富的矿物之一,碳酸盐沉积在许多地质过程中起着非常重要的作用。生物沉积碳酸盐的现象在自然界普遍存在,其中又以生物沉积碳酸钙(CaCO3)为主。生物从周围环境中选择性地吸取元素,在严格的生物控制下,组装成功能化的碳酸盐结构;生物也可以通过改变周围的环境诱导碳酸盐的沉积或自身参与碳酸盐的沉积。不同生物对碳酸盐沉积的作用和机理不同,综述了海洋动植物、藻类生物、菌类生物对碳酸盐的沉积作用及其机理以及实验室模拟调控CaCO3生物矿化方面的一些研究成果和研究现状,提出未来亟待解决的一些重要问题,并指出生物沉积碳酸盐研究所具有的巨大应用前景。



Carbonate minerals are some of the most abundant minerals on the earth. Carbonate precipitation plays an important role in many geological processes. It is a widespread phenomenon in nature that carbonate can be biologically precipitated particularly in the precipitation of calcium carbonate (CaCO3). The organisms selectively absorbed elements from surrounding environment, and assembled functional carbonate structure under strictly biological control. Moreover, the organisms induced carbonate precipitation through changing the surrounding environment. The organisms themselves could also participate in carbonate precipitation. The role and its mechanism in carbonate precipitation varied with different organisms. Here, we summarized the biological carbonate deposition and its mechanism mediated by marine plants and animals, algae organisms and bacteria organisms. The development of simulative regulation of biomineralization of CaCO3 was also discussed in this paper. Some important questions needed to be addressed in the future were proposed, and the promising application of biological precipitation of carbonate was pointed out.

中图分类号: 

[1] Warren L A.Microbially mediated calcium carbonate precipitation: Implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants[J].Geomicrobiology Journal, 2001,18: 93-115.[2] Liu Zaihua, Dreybrodt W. Physicochemical mechanisms of rate-determining of calcite deposition and their implications for paleo-environmental reconstruction[J].Carsologica Sinica,2002, 21(4): 252-257.[刘再华,Dreybrodt W.方解石沉积速率控制的物理化学机制及其古环境重建意义[J].中国岩溶,2002,21(4): 252-257.]
[3] Liu Zaihua, Zhang Meiliang, You Shengyi, et al. Spatial and diurnal variations of geochemical indicators in a calcite-precipitating stream—Case study of Baishuitai, Yunnan[J].Geochimica,2004,33(3): 269-278.[刘再华,张美良,游省易,等. 碳酸钙沉积溪流中地球化学指标的空间分布和日变化特征:以云南白水台为例[J]. 地球化学, 2004,33(3): 269-278.]
[4] Millo C, Sarnthein M, Erlenkeuser H, et al. Methane-induced early diagenesis of foraminiferal tests in the southwestern Greenland Sea[J].Marine Micropaleontology,2005,58:1-12.
[5] Dreybrodt W, Buhmann D, Michaelis J, et al. Geochemically controlled calcite precipitation by CO2 outgassing:Field measurements of precipitation rates in comparison to theoretical predictions[J].Chemical Geology, 1992, 97(3/4): 285-294.
[6] Liu Zaihua, Yuan Daoxian, He Shiyi, et al. Origin and forming mechanisms of travertine at Huanglong ravine of Sichuan[J].Geochimica, 2003,32(1): 1-10.[刘再华,袁道先,何师意,等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学,2003,32(1): 1-10.]
[7] Spötl C, Fairchild I J, Tooth A F. Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves[J].Geochimica et Cosmochimica Acta, 2005, 69: 2 451-2 468.
[8] Yuan Daoxian, Jiang Zhongcheng. The progress of karstfication and carbon cycle IGCP in China[J]. Hydrogeologic and Engineering, 2000, (1):49-51.[袁道先,蒋忠诚. IGCP“岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质,2000,(1):49-51.]
[9] Frappier A, Sahagian D, González L A, et al. El Niño events recorded by stalagmite carbon Isotope[J]. Science,2002, 298(5 593): 565.
[10] Cui Fuzhai.Biological Mineralization[M]. Beijing: Tsinghua University Press, 2007.[崔福斋. 生物矿化[M]. 北京:清华大学出版社,2007.]
[11] Ma H Y, Lee I S. Characterization of vaterite in low quality freshwater-cultured pearls[J].Materials Science and Engineering C, 2006, 26: 721-723.
[12] Yang R D, Zhao Y L. Discovery of coralline fossil from the middle Cambrian of Taijiang county, Guizhou province, China[J].Chinese Science Bulletin, 2000, 45(6): 544-547.
[13] Jensen S, Gehling J G, Droser M L. Ediacara-type fossils in Cambrian sediments[J].Nature,1998, 393: 567-569.
[14] Sekino K, Shiraiwa Y. Accumulation and utilization of dissolved inorganic carbon by marine unicellular coccolithoporid, Emiliania huxleyi[J].Plant and Cell Physiology,1994, 35: 353-361.
[15] Sundquist E T. The global carbon dioxide budget[J].Science,1993, 259: 934-941.
[16] Kazmierczak J, Vittekko T, Degens E T. Biocalcification through time: Environmental challenge and cellular response[J].Annual Palaeontology,1985, 59(1/2): 15-33.
[17] Tripp B C,Smith K,Ferry J G. Carbonic anhydrase:New insights for an ancient enzyme[J].The Journal of Biological and Chemistry,2001, 276: 48 615-48 618.
[18] Miyamoto H, Miyashita T, Okushima M, et al. A carbonic anhydrase from the nacreous layer in oyster pearls[J].Proceedings of the National Academy of Sciences of the United States of America,1996, 93: 9 567-9 660.
[19] Watanable T, Fududa I, Isa Y, et al. Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species[J].Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology,2003, 136B(4): 767-774.
[20] Tohse H, Murayama E, Ohira T, et al. Localization and diurnal variations of carbonic anhydrase mRNA expression in the inner ear of the rainbow trout Oncorhynchus mykiss[J].Comparative Biochemistry and Physiology,2006,145: 257-264.
[21] Beier M, Anken R. On the role of carbonic anhydrase in the early phase of fish otolith mineralization[J].Advances in Space Research,2006, 38: 1 119-1 122.
[22] Rahman M A, Oomori T, Uehara T. Carbonic anhydrase in calcified endoskeleton: Novel activity in biocalcification in alcyonarian[J].Marine Biotechnology,2008, 10: 31-38.
[23] Milliman J D. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state[J].Global Biogeochemical Cycles,1993, 7: 927-957.
[24] Fan Jiasong, Wu Yasheng. Palaeoenvironmental analyses of Ordovician rocks in the northern uplift of Tarim basin in terms of calcareous algae and cyanobacteria[J]. Acta Micropalaeontologica Sinica,2004, 21(3):251-266.[范嘉松,吴亚生.从塔北隆起奥陶纪钙藻化石探讨奥陶纪的古环境[J]. 微体古生物学报,2004,21(3):251-266.] 
[25] Riding R, Fan J. Ordovician calcified algae and cyanobacteria, northern Tarim basin subsurface, China[J].Palacontology,2001, 44(4):783-810.
[26] Gao Kunshan. On the calcification of coralline algae[J].Oceanologia et Limnologia Sinica,1999,30(3):291-294.[高坤山. 珊瑚藻类钙化的研究[J]. 海洋与湖沼,1999,30(3): 291-294.]
[27] Li Qiang, Jin Zhenjiang, Sun Hailong. Experiment on calcite precipitation in the presence of modern algae and isotope nonequilibrium[J].Carsologica Sinica,2005,24(4): 261-264.[李强,靳振江,孙海龙. 现代藻类碳酸钙沉积试验及其同位素不平衡现象[J].中国岩溶,2005,24(4): 261-264.]
[28] Bilan M I, Usov A I. Polysaccharides of calcareous algae and their effect on the calcification process[J]. Russian Journal of Bioorganic Chemistry,2001, 27: 2-16.
[29] Beer D D, Larkum A W D. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors[J].Plant, Cell and Environment,2001,24: 1 209-1 217.
[30] Lian B, Hu Q N, Chen J, et al. Carbonate biomineralization induced by soil bacterium Bacillus megaterium[J].Geochimica et Cosmochimica Acta,2006, 70: 5 522-5 535.
[31] Riding R. Microbial carbonate: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology,2000, 47(suppl.1): 179-214.
[32] Zhang Tingshan, Shen Zhaoguo, Lan Guangzhi, et al. Microbial fossils and their biosedimentation & buildup in paleozoic mud mounds, Sichuan basin[J].Acta Sedimentologica Sinica,2002, 20(2): 243-248.[张廷山,沈昭国,兰光志,等. 四川盆地早古生代灰泥丘中的微生物及其造岩和成丘作用[J]. 沉积学报,2002,20(2): 243-248.]
[33] Shen J W, Teng J B, Pedoja K. Middle and late Devonian microbial carbonate, reefs and mounds in Guilin, South China and their sequence stratigraphic, paleoenvironmental and paleclimatic significance[J].Science in China (Series D),2005, 48(11):1 900-1 912.
[34] Bosak T, Greene S E, Newman D K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites[J].Geobiology,2007, 5: 119-126.
[35] Stocks-Fischer S, Galinat J K, Bang S S. Microbiological precipitation of CaCO3[J].Soil Biology and Biochemistry,1999, 31: 1 563-1 571.
[36] Rivadeneyra M A, Delgado G, Ramos-Cormenzana A, et al. Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: Crystal formation sequence[J].Research in Microbiology,1998, 149: 277-287.
[37] Sánchez-Román M, Rivadeneyra M A, Crisogono Vasconcelos, et al. Biomineralization of carbonate and phosphate by moderately halophilic bacteria[J].FEMS Microbiology Ecology, 2007, 61(2):273-287.
[38] Ferris F G, Phoenix V, Fujita Y,et al. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20C in artificial groundwater[J].Geochimica et Cosmochimica Acta,2003, 67(8): 1 701-1 722.
[39] Baskar S, Baskar R, Mauclaire L, et al. Microbially induced calcite precipitation in culture experiments: Possible origin for stalactites in Sahastradhara caves, Dehradun, India[J].Current Science,2006, 90(1): 58-64.
[40] Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite[J].Geochimica et Cosmochimica Acta, 2007, 71: 1 197-1 213.
[41] Párraga J, Rivadeneyra M A, Delgado R, et al. Study of biomineral formation by bacteria from soil solution equilibria[J].Reactive & Functional Polymers,1998, 36: 265-271.
[42] Rivadeneyra M A, Delgado G, Soriano M, et al. Precipitation of carbonates by Nesterenkonia halobia in liquid media[J].Chemosphere,2000, 41: 617-624.
[43] García P L, Kazmierczak J, Benzerara K, et al. Bacterial diversity and carbonate precipitation in the giant microbialites from the highly alkaline Lake Van, Turkey[J].Extremophiles,2005, 9: 263-274.
[44] Ginsburg R N. Controversies about stromatolites: Vice and virtues[C]//Müller D W, McKenzie J A, Weissert H,eds. Controversies in Modern Geology. London: Academic Press, 1991:25-36.
[45] Muynck W D, Cox K, Belie N D, et al. Bacterial carbonate precipitation as an alternative surface treatment for concrete[J].Construction and Building Materials,2008, 22: 875-885.
[46] Bang S S, Galinat J K, Ramakrishnan V. Calcite precipitation induced by polyurethane immobilized Bacillus pasteurii[J].Enzyme and Microbial Technology,2001, 28: 404-409.
[47] Castanier S, Le Métayer-Levrel G , Perthuisot J P. Ca-carbonates precipitation and limestone genesis—The microbiologist point of view[J].Sedimentary Geology, 1999, 126(1/4): 9-23.
[48] Jimenez-Lopez C,Rodriguez-Navarro C, Piňar G, et al. Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone[J]. Chemosphere,2007, 68: 1 929-1 936.
[49] Zhang Qun. Biomineralization and applied imitation[J].Journal of Anqing Teachers College(Natural Science),2004,10(4): 17-19.[张群. 生物矿化及其模拟应用[J]. 安庆师范学院学报:自然科学版,2004,10(4): 17-19.][50] Shinya H, Kousaku O, Yukie S, et al. Fibrous and helical calcite crystals induced by synthetic polypeptides containing O-Phospho-l-Serine and O-Phospho-l-Threonine[J].Macromolecular Bioscience, 2008, 8: 46-59.
[51] Matsushiro A, Miyashita T, Miyamoto H, et al. Presence of protein complex is prerequisite for aragonite crystallization in the Nacreous Layer[J].Marine Biotechnology,2003,5:37-44.
[52] Lakshminarayanan R, Loh X J, Kini R M,et al. Purification and characterization of a vaterite-Inducing peptide, pelovaterin, from the eggshells of Pelodiscus sinensis (Chinese Soft-Shelled Turtle)[J].Biomacromolecules, 2005,6:1 429-1 437.
[53] Lee S W, Choi C S. High-rate growth of calcium carbonate crystal using soluble protein from diseased oyster shell[J].Crystal Growth & Design,2007, 7(8): 1  463-1 468.
[54] Fu G, Valiyaveettil S, Wopenka B, et al. CaCO3 Biomineralization: Acidic 8-kDa proteins isolated from aragonitic Abalone shell nacre can specifically modify calcite crystal morphology[J].Biomacromolecules,2005, 6: 1 289-1 298.
[55] Zhang C, Li S, Ma Z J, et al. A novel matrix protein p10 from the Nacre of Pearl Oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic[J].Cells Marine biotechnology,2006, 8: 624-633.
[56] Hernández-Hernándeza A, Vidalb M L, Gómez-Moralesa J, et al. Influence of eggshell matrix proteins on the precipitation of calcium carbonate (CaCO3) [J].Journal of Crystal Growth, 2008, 310: 1 754-1 759.
[57] Lakshminarayanan R, Gayathri S, Banerjee Y R, et al. Formation of transient amorphous calcium carbonate precursor in quail eggshell mineralization: An in vitro study[J].Biomacromolecules,2006,7:3 202-3 209.
[58] Sondi I, Matijevi c E. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction[J]. Journal of Colloid and Interface Science,2001, 238: 208-214.
[59] Sondi I, Salopek-Sondi B. Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and Bacterial (Bacillus pasteurii) ureases[J]. Langmuir, 2005, 21: 8 876-8 882.
[60] Sondi I, Skapin S D, Salopek-Sondi B. Biomimetic precipitation of nanostructured colloidal calcite particles by enzyme-catalyzed reaction in the presence of magnesium ions[J].Crystal Growth & Design,2008, 8(2): 435-441.
[61] Jimenez-lopez C , Rodriguez-navarro A , Dominguez-vera J M, et al. Influence of lysozyme on the precipitation of calcium carbonate: A kinetic and morphologic study[J].Geochimica et Cosmochimica Acta, 2003, 67( 9): 1 667-1 676.
[62] Yang L, She L, Zhou J G, et al. Interaction of lysozyme during calcium carbonate precipitation at supramolecular level[J].Inorganic Chemistry Communications,2006,9:164-166.
[63] Dreybrodt W, Eisenlohr B, Madry B, et al. Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2 by the slow process H++HCO-3→CO2+H2O as a rate limiting step[J].Geochim Cosmochim Acta,1997, 61: 3 897-3 904.
[64] Liu N, Bond G M, Abel A, et al. Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines[J].Fuel Processing Technology, 2005, 86: 1 615-1 625.
[65] Shen F H, Feng Q L, Wang C M. The modulation of collagen on crystal morphology of calcium carbonate[J].Journal of Crystal Growth,2002, 242: 239-244.
[66] Falini G. Crystallization of calcium carbonates in biologically inspired collagenous matrices[J].International Journal of Inorganic Materials,2000, 2: 455-461.
[67] Jiao Y F, Feng Q L, Li X M. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization[J].Materials Science and Engineering C,2006, 26: 648-652.
[68] Manoli F, Dalas E. Spontaneous precipitation of calcium carbonate in the presence of chondroitin sulfate[J].Journal of Crystal Growth,2000, 217: 416-421.
[69] Ozaki N, Sakuda S, Nagasawa H. A novel highly acidic polysaccharide with inhibitory activity on calcification from the calcified scale “coccolith” of a coccolithophorid alga, Pleurochrysis haptonemofera[J].Biochemical and Biophysical Research Communications,2007, 357: 1 172-1 176.
[70] Aimoli C G, Beppu M M. Precipitation of calcium phosphate and calcium carbonate induced over chitosan membranes: A quick method to evaluate the influence of polymeric matrices in heterogeneous calcification[J]. Colloids and Surfaces B: Biointerfaces,2006, 53: 15-22.
[71] Falini G, Fermani S, Vanzo S, et al. Influence on the formation of aragonite or vaterite by otolith macromolecules[J].European Journal of Inorganic Chemistry,2005, 162-167.
[72] Liu Bin. Scientists found that bacteria contribute to the prevention of earthquake[EB/OL].http://www.biotech.org.cn/news/news/show.php?id=48096, 2007-02-28.[刘斌. 科学家发现细菌有助于预防地震[EB/OL]. http://www.biotech.org.cn/news/news/show.php?id=48096, 2007-02-28.]
[73] Li W, Yu L J, Yuan D X, et al. A study of the activity and ecological significance of carbonic anhydrase from soil and its microbes from different karst ecosystems of southwest China[J].Plant and Soil, 2005, 272: 133-141.

[1] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[2] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[3] 刘懿馨, 侯克选, 沙鑫, 马蓁, 王金荣. 北祁连西段熬油沟组玄武岩地球化学特征及构造意义[J]. 地球科学进展, 2018, 33(2): 189-205.
[4] 许恒超,彭晓彤. 地球系统中生物成因硫化物矿物:类型、形成机制及其与生命起源的关系[J]. 地球科学进展, 2013, 28(2): 262-268.
[5] 陈友良,魏 佳,叶永钦,宋 昊, 孙泽轩. 若尔盖铀矿田方解石稀土元素与碳氧同位素地球化学特征及其意义[J]. 地球科学进展, 2012, 27(10): 1061-1067.
[6] 陈顺,彭晓彤,周怀阳,李江涛,吴自军. 深海热液环境中的铁氧化菌及其矿化[J]. 地球科学进展, 2010, 25(7): 746-752.
[7] 向必伟,朱光,王勇生,谢成龙,胡召齐. 糜棱岩化过程中矿物变形温度计[J]. 地球科学进展, 2007, 22(2): 126-135.
[8] 王晓红,毅民. 海绵骨针特性及其仿生学研究[J]. 地球科学进展, 2006, 21(10): 1008-1013.
[9] 彭头平;王岳军;彭冰霞. 一种罕见的岩石——富铁玄武岩/富铁苦橄岩研究进展[J]. 地球科学进展, 2005, 20(5): 525-532.
[10] 张世涛,宋学良,张子雄,冯庆来,刘本培. 星云湖表层沉积物矿物组成及其环境意义[J]. 地球科学进展, 2003, 18(6): 928-932.
[11] 张刚生,谢先德. CaCO 3生物矿化的研究进展——有机质的控制作用[J]. 地球科学进展, 2000, 15(2): 204-209.
[12] 戴永定,陈孟莪,王尧. 微生物岩研究的发展与展望[J]. 地球科学进展, 1996, 11(2): 209-215.
[13] 戴永定. 生物矿物学的发展与展望[J]. 地球科学进展, 1993, 8(4): 17-22.
阅读次数
全文


摘要